×
27.10.2015
216.013.885b

Результат интеллектуальной деятельности: СПОСОБ И СИСТЕМА ДЛЯ РЕГУЛИРОВАНИЯ ЗАЗОРА НА КРОМКАХ ЛОПАТОК РОТОРА ТУРБИНЫ

Вид РИД

Изобретение

№ охранного документа
0002566510
Дата охранного документа
27.10.2015
Аннотация: Изобретение относится к системе для регулирования зазора между кромками поворотных лопаток самолетного газотурбинного двигателя и бандажом турбины наружного кожуха, окружающего лопатки. Клапан, расположенный в воздушном канале, открывается для охлаждения бандажа турбины во время фазы с высоким числом оборотов (TO+CL), соответствующей фазам взлета и набора высоты самолета, приводимого в движение двигателем, и во время фазы с номинальным числом оборотов (CR), сопровождающей фазу с высоким числом оборотов и соответствующей крейсерской фазе упомянутого самолета. Изобретение также относится к системе, реализующей такой способ. Технический результат изобретения - упрощение системы регулирования и снижение ее массы. 3 н. и 7 з.п. ф-лы, 4 ил.

Настоящее изобретение относится к общей области турбин турбомашин для самолетных газотурбинных двигателей. Более точно, оно относится к регулированию зазора между, с одной стороны, кромками поворотных лопаток ротора турбины и, с другой стороны, бандажом турбины наружного кожуха, окружающего лопатки.

Для увеличения производительности турбины известная практика состоит в том, чтобы минимизировать до возможной степени зазор, существующий между кромкой лопаток турбины и бандажом, который окружает их. Этот зазор кромки лопатки является зависящим от разброса размеров между вращающимися частями (диском и лопатками, составляющими ротор турбины) и неподвижными частями (наружным кожухом, включающим в себя бандаж турбины, который является его частью). Эти разбросы размеров имеют как тепловое происхождение (связанное с колебаниями температуры лопаток, диска и кожуха), так и механическое происхождение (в частности, связанное с центробежной силой, прикладываемое к ротору турбины).

Чтобы минимизировать этот зазор, известная практика состоит в том, чтобы прибегать к системам активного регулирования. Эти системы обычно действуют, направляя на наружную поверхность бандажа турбины воздух, отбираемый от компрессора и/или от вентилятора газотурбинного двигателя. Холодный воздух, подаваемый на наружную поверхность бандажа турбины, обладает эффектом охлаждения последнего и, таким образом, ограничения его теплового расширения. Такое активное регулирование, например, управляется посредством полнофункциональной системы 46 управления (или FADEC) газотурбинного двигателя и является функцией его разных рабочих уровней.

Документ EP 1,860,281 описывает пример системы активного регулирования, в которой воздух, отбираемый от вентилятора газотурбинного двигателя, охлаждает бандаж турбины во время фаз крейсерского полета. Такая система, однако, проявляет многочисленные недостатки, такие как ее значительное использование пространства внутри гондолы газотурбинного двигателя, сильная зависимость ее эффективности от воздушно-тепловых условий, существующих внутри гондолы, и потери производительности, связанные с отведением потока воздуха от вентилятора, который не содействует выдаче тяги.

Еще одна система активного регулирования состоит из отведения воздуха на двух разных ступенях компрессора газотурбинного двигателя и модулирования подачи каждого из этих отведенных потоков для регулирования температуры смеси, которая должна направляться на наружную поверхность бандажа турбины. Хотя и эффективна, такая система проявляет недостаток обращения к сложному и громоздкому клапану для модулирования потока охлаждающего воздуха. В частности, в случае применения малогабаритного газотурбинного двигателя, использование такого клапана не является оптимальным в показателях массы и стоимости.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение, поэтому, имеет своей главной целью исправить такие недостатки, предлагая решение активного регулирования, которое минимизирует в показатели массы и стоимости.

Эта цель достигается способом для регулирования зазора между кромками поворотных лопаток ротора турбины самолетного газотурбинного двигателя и бандажом турбины наружного кожуха, окружающего лопатки, способ содержит управление, согласно рабочему числу оборотов двигателя, клапаном, расположенным в воздушном канале, открывающемся в ступени компрессора двигателя и ведущем в корпус управления, расположенный вокруг наружной поверхности бандажа турбины, при этом упомянутый корпус управления питается воздухом, отбираемым исключительно от упомянутой ступени компрессора. В соответствии с изобретением, клапан открывается для охлаждения бандажа турбины наружного кожуха во время рабочей фазы с высоким числом оборотов, соответствующей фазам взлета и набора высоты самолета, приводимого в движение двигателем, и во время фазы с номинальным числом оборотов, сопровождающей фазу с высоким числом оборотов и соответствующей крейсерской фазе упомянутого самолета.

Аналогичным образом, изобретение предусматривает систему для регулирования зазора между кромками лопаток ротора турбины самолетного газотурбинного двигателя и бандажом турбины наружного кожуха, окружающего лопатки, система содержит воздушный канал, предназначенный для открывания в ступени компрессора двигателя и для ведения в корпус управления, расположенный вокруг наружной поверхности бандажа турбины и предназначенный для питания воздухом, отведенным из упомянутой ступени компрессора, клапан, расположенный в воздушном канале, и схему, выполненную с возможностью управления клапаном, с тем чтобы открывать его во время рабочей фазы с высоким числом оборотов, соответствующей фазам взлета и набора высоты самолета, приводимого в движение двигателем, и во время фазы с номинальным числом оборотов, сопровождающей фазу с высоким числом оборотов и соответствующей крейсерской фазе упомянутого самолета.

Под фазой с высоким числом оборотов подразумевается фаза с числом оборотов, более высокая, чем фаза с номинальным числом оборотов, газотурбинного двигателя. В самолетном газотурбинном двигателе, фаза с номинальным числом оборотов является крейсерской фазой полета, которая выбрана в течение большей части полета, а фаза с высоким числом оборотов является фазой, более высокой, чем крейсерская фаза полета, в частности, используемой во время фаз взлета и набора высоты самолета.

Изобретение, в частности, примечательно тем, что оно использует одиночный воздушный отвод в компрессоре, который гарантирует достаточный перепад давления для обеспечения подачи холодного воздуха на бандаж турбины (корпус управления представляет всего лишь одиночный и уникальный источник подачи воздуха). В дополнение, этот воздух, отведенный в компрессоре, подается только в корпус управления и не подается ни в какие другие компоненты двигателя. К тому же, когда клапан закрыт, воздух фактически не отводится от компрессора, что ограничивает потерю напора внутри такового. Таким образом, можно минимизировать воздушные каналы и воздушные отводы в двигатели и применять простейший возможный клапан (в показателях конструкции и управления). Результатом является система регулирования низкой стоимости с малой массой.

Предпочтительно, клапан закрыт во время фазы полета с числом оборотов холостого хода, сопровождающей фазу с номинальным числом оборотов и соответствующей фазе захода на посадку самолета перед приземлением.

К тому же, предпочтительно, клапан закрыт во время наземной фазы с числом оборотов холостого хода, предшествующей фазе с номинальным числом оборотов и соответствующей фазе руления самолета перед взлетом.

Фаза с числом оборотов холостого хода является уровнем, более низким, чем фаза с номинальным числом оборотов, турбомашины. В самолетном газотурбинном двигателе фаза с числом оборотов холостого хода, поэтому, является фазой, более низкой, чем крейсерская фаза полета.

Преимущественно, подача воздуха, ведущая к наружной поверхности бандажа турбины, постепенно уменьшается во время перехода между фазой с высоким числом оборотов и фазой с номинальным числом оборотов. В случае клапана с переменным положением, такое постепенное уменьшение подачи воздуха может получаться постепенным закрыванием клапана. В случае двухпозиционного клапана, постепенное уменьшение подачи воздуха может получаться чередованием открытой и закрытой фаз клапана.

Изобретение также предусматривает самолетный газотурбинный двигатель, имеющий систему регулирования зазора, как определенная ранее.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Другие признаки и преимущества настоящего изобретения будут следовать из описания, приведенного ниже со ссылкой на прилагаемые чертежи, которые иллюстрируют вариант его осуществления, который, по сути, не является ограничивающим. На фигурах:

- фиг.1 - схематический вид в продольном разрезе газотурбинного авиационного двигателя, оборудованного системой регулирования согласно изобретению;

- фиг.2 - увеличенный вид двигателя по фиг.1, показывающий, в частности, его турбину высокого давления;

- фиг.3 показывает кривые, иллюстрирующие одно изменение рабочего уровня и соответствующие изменения радиального размера ротора и статора в газотурбинном авиационном двигателе; и

- фиг. с 4A по 4C показывают кривые, представляющие примеры управления двухпозиционным клапаном, используемым в варианте осуществления системы регулирования согласно изобретению.

ПОДРОБНОЕ ОПИСАНИЕ ОДНОГО ИЗ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

Фиг.1 схематически показывает турбореактивный двигатель 10 байпасного двухроторного типа, к которому в частности применяется изобретение. Конечно, изобретение не ограничено этим конкретным типом газотурбинного авиационного двигателя.

Хорошо известным образом, турбореактивный двигатель 10 с продольной осью X-X, в частности, включает в себя вентилятор 12, который подает поток воздуха в проток 14 первичного потока и в проток 16 вторичного потока, соосный с протоком первичного потока. От выше по потоку до ниже по потоку в направлении течения газового потока, проходящего через него, проток 14 первичного потока включает в себя компрессор 18 низкого давления, компрессор 20 высокого давления, камеру 22 сгорания, турбину 24 высокого давления и турбину 26 низкого давления.

Как точнее показано посредством фиг. 2, турбина 24 высокого давления турбореактивного двигателя включает в себя ротор, состоящий из диска 28, на котором установлено множество поворотных лопаток 30, расположенных в протоке первичного потока 14. Ротор окружен кожухом 32 турбины, включающим в себя бандаж 34 турбины, несомый наружным кожухом 36 турбины через монтажные скобы 37.

Бандаж 34 турбины может быть сформирован из множества смежных секторов или сегментов. На внутренней стороне, он снабжен слоем 34a истираемого материала и окружает лопатки 30 ротора, оставляя зазор 38 с их кромками 30a.

В соответствии с изобретением, предложена система, которая предоставляет возможность регулирования зазора 38 посредством уменьшения, регулируемым образом, внутреннего диаметра наружного кожуха 36 турбины.

Для этой цели корпус 40 управления расположен вокруг наружного кожуха 36 турбины. Этот корпус принимает холодный воздух посредством воздушного канала 42, открывающегося на своем конце выше по потоку в проток первичного потока в одной из ступеней компрессора 20 высокого давления (например, посредством заборного сопла, которое известно само по себе, а потому, не показано на фигурах). В частности, корпус управления питается воздухом только этого одиночного отвода в компрессоре (нет других источников воздуха, питающих корпус).

Холодный воздух, циркулирующий в воздушном канале 42, полностью выпускается на наружный кожух 36 турбины (например, посредством многочисленных перфораций стенок корпуса 40 управления), побуждая его охлаждаться, а отсюда, уменьшая его внутренний диаметр. В частности, воздух, отведенный на ступени компрессора высокого давления, не питает никакие иные компоненты, нежели корпус управления.

Как показано на фиг. 1, клапан 44 расположен в воздушном канале 42. Этот клапан управляется полнофункциональной системой 46 управления (или FADEC) турбореактивного двигателя в зависимости от рабочих уровней турбореактивного двигателя.

Посредством управления клапаном 44 в качестве функции разных фаз полета самолета, таким образом, можно менять в ходе полетного задания внутренний диаметр наружного кожуха 36 турбины - а отсюда, внутренний диаметр бандажа 34 турбины - а следовательно, регулировать зазор, существующий между бандажом турбины и кромкой лопаток 30 ротора турбины высокого давления.

Фиг. 3 показывает изменение этого зазора 38 в ходе типичного полетного задания самолета, которое получается системой и способом регулирования согласно изобретению.

На этой фигуре показаны разные кривые, а именно: кривая 100, иллюстрирующая частоту вращения ротора высокого давления турбореактивного двигателя, кривая 200, иллюстрирующая наружный диаметр ротора турбины высокого давления (диска 28 и лопаток 30), кривая 300, иллюстрирующая внутренний диаметр статора турбины высокого давления (наружного кожуха 36 турбины и бандажа 23 турбины), который регулируется системой регулирования согласно изобретению, и кривая 300a (пунктирная), иллюстрирующая внутренний диаметр статора, как он был бы в отсутствие регулирования.

Эти разные кривые показаны согласно разным фазам работы турбореактивного двигателя, представляющим типичное полетное задание, а именно: наземную фазу GI с числом оборотов холостого хода (соответствующую фазе руления самолета перед взлетом), сопровождаемую фазой TO+CL с высоким числом оборотов (соответствующей фазам взлета и набора высоты самолета), сопровождаемой фазой CR с номинальным числом оборотов (соответствующей крейсерской фазе самолета), сопровождаемой фазой FI полета с числом оборотов холостого хода (соответствующей заходу на посадку самолета перед приземлением), сопровождаемой фазой REV реверса тяги (соответствующей торможению самолета на земле), сопровождаемой еще одной наземной фазой GI с числом оборотов холостого хода.

Как показано кривой 100, будет отмечено, что фаза TO+CL с высоким числом оборотов имеет место на числе оборотов, более высоком, чем номинальное число оборотов турбореактивного двигателя (фазе CR). Фазы с числом оборотов холостого хода (на земле и в полете) имеют место при числах оборотов, более низких, чем номинальное число оборотов турбореактивного двигателя, фаза FI полета с числом оборотов холостого хода, имеет число оборотов, которое также является более низким, чем у наземной фазы GI с числом оборотов холостого хода. Также будет отмечено, что фаза CR с номинальным числом оборотов принимается в течение большей части полетного задания.

Управление клапаном 44 согласно изобретению является следующим:

- Во время наземной фазы GI с числом оборотов холостого хода, клапан закрыт, и внутренний диаметр статора остается по существу неизменным. Во время переходной фазы между фазой GI и фазой TO+CL, клапан по-прежнему закрыт, и статор волен расширяться под влиянием горячего воздуха в протоке первичного потока. Во время этой же самой переходной фазы, будет отмечено, что ротор начинает механически расширяться под влиянием центробежной силы.

- Во время фазы TO+CL с высоким числом оборотов, клапан 44 открыт, что охлаждает статор, а следовательно, уменьшает его внутренний диаметр. Зазор невелик и значительно уменьшен по сравнению с тем, каким он был бы в отсутствие регулирования. Результатом является серьезный выигрыш в производительности на этой фазе. Точнее будет отмечено, что открывание клапана происходит после того, как пройдена точка защемления, то есть, как только достигнута точка перехода между фазой механического расширения ротора и фазой теплового расширения ротора.

- Во время фазы CR с номинальным числом оборотов, клапан 44 удерживается открытым для охлаждения статора и, таким образом, для получения небольшого зазора, что является благотворным для производительности двигателя.

Будет отмечено, что в конце фазы TO+CL, во время перехода в фазу CR с номинальным числом оборотов, подача воздуха, направленного на статор, постепенно уменьшается. Также будет отмечено, что, во время фазы CR, эта же самая подача воздуха может быть большей или меньшей в зависимости от высоты полета. Разные способы получения уменьшения подачи воздуха будут детализированы позже в связи с фиг. 4.

- Во время фазы FI полета с числом оборотов холостого хода, клапан 44 вновь закрывается, так чтобы статор мог расширяться под влиянием горячего воздуха, протекающего в протоке первичного потока. Зазор раскрывается во время этой фазы захода на посадку самолета перед приземлением, для того чтобы предусмотреть непредвиденное обстоятельство, требующее, чтобы самолет вновь взлетал (а отсюда, возобновления высокого числа оборотов).

- В заключение, во время фазы реверса тяги, REV, и наземной фазы с числом оборотов холостого хода, GI, клапан 44 поддерживается закрытым.

Разные конструкции клапана могут использоваться для реализации такого регулирования зазора. Клапан 44 может иметь тип регулируемой подачи (под управлением FADEC), который содействует регулированию подачи воздуха, направленной на статор, особенно в конце фазы TO+CL и в фазе CR.

Однако, по причинам стоимости и надежности, полезно прибегать к клапану двухпозиционного типа. Чтобы получать модуляцию подачи воздуха, направляемой на статор, с этим типом клапана, можно чередовать фазы открывания и закрывания клапана.

Фиг. с 4A по 4C показывают разные подачи, которые могут получаться с этим типом управления двухпозиционным клапаном. На этих фигурах показаны прямоугольные импульсные сигналы, иллюстрирующие, по ординате, положение клапана (0 = открытый клапан, 1 = закрытый клапан), а по абсциссе, время t. Кривые с Ca по Cc иллюстрируют среднюю подачу воздуха, подводимую клапаном в зависимости от разных моментов времени его открывания: чем в большей степени продолжительнее открыт клапан (в каждом цикле открывания), тем более высокая средняя подача воздуха подводится клапаном (и наоборот).

Таким образом, понятно, что оперируя, с одной стороны, частотой открывания, а с другой стороны, соотношением циклического открывания/закрывания клапана, можно получать изменение средней подачи воздуха, направленного на статор.

Разные клапаны двухпозиционного типа хорошо известны специалистам в данной области техники, а потому здесь описаны не будут. Предпочтительно, будет выбран электрически управляемый клапан, который будет оставаться в закрытом положении в отсутствие подачи электрической мощности (таким образом, гарантируя, что клапан будет оставаться закрытым в случае отказа системы управления).


СПОСОБ И СИСТЕМА ДЛЯ РЕГУЛИРОВАНИЯ ЗАЗОРА НА КРОМКАХ ЛОПАТОК РОТОРА ТУРБИНЫ
СПОСОБ И СИСТЕМА ДЛЯ РЕГУЛИРОВАНИЯ ЗАЗОРА НА КРОМКАХ ЛОПАТОК РОТОРА ТУРБИНЫ
СПОСОБ И СИСТЕМА ДЛЯ РЕГУЛИРОВАНИЯ ЗАЗОРА НА КРОМКАХ ЛОПАТОК РОТОРА ТУРБИНЫ
СПОСОБ И СИСТЕМА ДЛЯ РЕГУЛИРОВАНИЯ ЗАЗОРА НА КРОМКАХ ЛОПАТОК РОТОРА ТУРБИНЫ
СПОСОБ И СИСТЕМА ДЛЯ РЕГУЛИРОВАНИЯ ЗАЗОРА НА КРОМКАХ ЛОПАТОК РОТОРА ТУРБИНЫ
СПОСОБ И СИСТЕМА ДЛЯ РЕГУЛИРОВАНИЯ ЗАЗОРА НА КРОМКАХ ЛОПАТОК РОТОРА ТУРБИНЫ
Источник поступления информации: Роспатент

Показаны записи 111-120 из 928.
20.08.2013
№216.012.6153

Направляющее устройство элемента в отверстии стенки камеры сгорания газотурбинного двигателя, камера сгорания и газотурбинный двигатель

Направляющее устройство для элемента, располагающегося в отверстии стенки камеры сгорания газотурбинного двигателя, содержит соосные кольцо и втулку, установленные одно внутри другой. Кольцо предназначено для прохождения сквозь него в осевом направлении упомянутого элемента и содержит кольцевой...
Тип: Изобретение
Номер охранного документа: 0002490547
Дата охранного документа: 20.08.2013
27.08.2013
№216.012.64d2

Кожух для рабочего колеса турбомашины

Кожух для рабочего колеса турбомашины содержит внутреннюю стенку, которая является по существу цилиндрической вокруг оси кожуха и содержит множество окружных канавок. Каждая канавка имеет по существу постоянное сечение в осевой плоскости сечения. Площадь сечения окружных канавок уменьшается от...
Тип: Изобретение
Номер охранного документа: 0002491447
Дата охранного документа: 27.08.2013
10.09.2013
№216.012.6839

Ротор компрессора газотурбинного двигателя, содержащий средства центробежного забора воздуха, и газотурбинный двигатель

Ротор компрессора газотурбинного двигателя содержит, по меньшей мере, два коаксиальных диска, средства центробежного забора воздуха и радиальные ребра. На дисках расположены лопатки. Диски соединены между собой, по существу, цилиндрической коаксиальной стенкой вращения. Средства центробежного...
Тип: Изобретение
Номер охранного документа: 0002492328
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.683b

Двухлопастная лопатка с пластинками, колесо турбины и газотурбинный двигатель, содержащие такие лопатки

Лопатка газотурбинного двигателя содержит первую лопасть, вторую лопасть и, по меньшей мере, одну пластинку. Каждая из первой лопасти и второй лопасти имеет внутреннюю и внешнюю стороны, размещенные между передней и задней кромками. Первая и вторая лопасти расположены рядом таким образом, что...
Тип: Изобретение
Номер охранного документа: 0002492330
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.683c

Устройство для соединения радиальных кронштейнов с круглым кольцом и турбомашина

Устройство для соединения радиальных кронштейнов с круглым кольцом содержит круглое кольцо, радиальные кронштейны, соединяющие кольцо с другим концентричным кольцом и средства для соединения кронштейнов с кольцом. Средства для соединения содержат выступы, фиксаторы, содержащие выступы,...
Тип: Изобретение
Номер охранного документа: 0002492331
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.6843

Турбореактивный двухконтурный двигатель, содержащий реверсор тяги

Турбореактивный двухконтурный двигатель содержит гондолу, в которой первичный поток проходит через компрессор, камеру сгорания и на выходе из нее выбрасывается через турбину в обтекатель первичного реактивного сопла, а также реверсор тяги. Реверсор тяги содержит средства отклонения, способные...
Тип: Изобретение
Номер охранного документа: 0002492338
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6ac5

Способ изготовления моноблочного лопаточного диска с кольцом для временного удержания лопаток

Изобретение относится к моноблочным лопаточным дискам (1), в частности к способам их изготовления. Способ изготовления включает этап вырезания материала из блока (100) абразивной водяной струей, в результате которого получают заготовки (102) лопаток, проходящие в радиальном направлении от диска...
Тип: Изобретение
Номер охранного документа: 0002492984
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6c47

Амортизатор для лопаток газотурбинного двигателя, ротор газотурбинного двигателя (варианты), компрессор газотурбинного двигателя (варианты) и газотурбинный двигатель (варианты)

Амортизатор для лопаток ротора компрессора газотурбинного двигателя. Конструкция амортизатора приспособлена для размещения между нижней гранью платформ двух смежных лопаток газотурбинного двигателя и ободом диска ротора, на котором установлены лопатки. Амортизатор содержит инерционный груз...
Тип: Изобретение
Номер охранного документа: 0002493370
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6c4c

Средство стопорения секторов кольца на корпусе газотурбинного двигателя, содержащее осевые каналы для его захвата

Средство (24) стопорения выполнено в окружном направлении (С) от первого окружного конца (24а) до второго окружного конца (24b). В разрезе по плоскости, перпендикулярной к указанному окружному направлению, указанное средство содержит две зажимные ветви (28, 30), сопрягающиеся между собой на...
Тип: Изобретение
Номер охранного документа: 0002493375
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6c72

Устройство для гашения поперечных усилий вследствие отделения реактивной струи, действующих на сопло реактивного двигателя, и сопло реактивного двигателя

Устройство гашения поперечных усилий включает устройства ориентации, установленные на сопле реактивного двигателя и содержащие первый узел, образующий тягу, второй узел, образующий звено крепления, и приводной узел. Первый конец тяги шарнирно укреплен на сопле. Первый конец звена крепления...
Тип: Изобретение
Номер охранного документа: 0002493413
Дата охранного документа: 20.09.2013
Показаны записи 111-120 из 668.
20.08.2013
№216.012.6121

Турбореактивный двигатель с электрическим генератором, расположенным в вентиляторе

Турбореактивный двигатель содержит корпус высокого давления, корпус низкого давления, гондолу и электрический генератор. Корпус низкого давления приводит во вращение вентилятор, расположенный в неподвижном картере, являющемся частью гондолы. Электрический генератор расположен в вентиляторе и...
Тип: Изобретение
Номер охранного документа: 0002490497
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.6153

Направляющее устройство элемента в отверстии стенки камеры сгорания газотурбинного двигателя, камера сгорания и газотурбинный двигатель

Направляющее устройство для элемента, располагающегося в отверстии стенки камеры сгорания газотурбинного двигателя, содержит соосные кольцо и втулку, установленные одно внутри другой. Кольцо предназначено для прохождения сквозь него в осевом направлении упомянутого элемента и содержит кольцевой...
Тип: Изобретение
Номер охранного документа: 0002490547
Дата охранного документа: 20.08.2013
27.08.2013
№216.012.64d2

Кожух для рабочего колеса турбомашины

Кожух для рабочего колеса турбомашины содержит внутреннюю стенку, которая является по существу цилиндрической вокруг оси кожуха и содержит множество окружных канавок. Каждая канавка имеет по существу постоянное сечение в осевой плоскости сечения. Площадь сечения окружных канавок уменьшается от...
Тип: Изобретение
Номер охранного документа: 0002491447
Дата охранного документа: 27.08.2013
10.09.2013
№216.012.6839

Ротор компрессора газотурбинного двигателя, содержащий средства центробежного забора воздуха, и газотурбинный двигатель

Ротор компрессора газотурбинного двигателя содержит, по меньшей мере, два коаксиальных диска, средства центробежного забора воздуха и радиальные ребра. На дисках расположены лопатки. Диски соединены между собой, по существу, цилиндрической коаксиальной стенкой вращения. Средства центробежного...
Тип: Изобретение
Номер охранного документа: 0002492328
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.683b

Двухлопастная лопатка с пластинками, колесо турбины и газотурбинный двигатель, содержащие такие лопатки

Лопатка газотурбинного двигателя содержит первую лопасть, вторую лопасть и, по меньшей мере, одну пластинку. Каждая из первой лопасти и второй лопасти имеет внутреннюю и внешнюю стороны, размещенные между передней и задней кромками. Первая и вторая лопасти расположены рядом таким образом, что...
Тип: Изобретение
Номер охранного документа: 0002492330
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.683c

Устройство для соединения радиальных кронштейнов с круглым кольцом и турбомашина

Устройство для соединения радиальных кронштейнов с круглым кольцом содержит круглое кольцо, радиальные кронштейны, соединяющие кольцо с другим концентричным кольцом и средства для соединения кронштейнов с кольцом. Средства для соединения содержат выступы, фиксаторы, содержащие выступы,...
Тип: Изобретение
Номер охранного документа: 0002492331
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.6843

Турбореактивный двухконтурный двигатель, содержащий реверсор тяги

Турбореактивный двухконтурный двигатель содержит гондолу, в которой первичный поток проходит через компрессор, камеру сгорания и на выходе из нее выбрасывается через турбину в обтекатель первичного реактивного сопла, а также реверсор тяги. Реверсор тяги содержит средства отклонения, способные...
Тип: Изобретение
Номер охранного документа: 0002492338
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6ac5

Способ изготовления моноблочного лопаточного диска с кольцом для временного удержания лопаток

Изобретение относится к моноблочным лопаточным дискам (1), в частности к способам их изготовления. Способ изготовления включает этап вырезания материала из блока (100) абразивной водяной струей, в результате которого получают заготовки (102) лопаток, проходящие в радиальном направлении от диска...
Тип: Изобретение
Номер охранного документа: 0002492984
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6c47

Амортизатор для лопаток газотурбинного двигателя, ротор газотурбинного двигателя (варианты), компрессор газотурбинного двигателя (варианты) и газотурбинный двигатель (варианты)

Амортизатор для лопаток ротора компрессора газотурбинного двигателя. Конструкция амортизатора приспособлена для размещения между нижней гранью платформ двух смежных лопаток газотурбинного двигателя и ободом диска ротора, на котором установлены лопатки. Амортизатор содержит инерционный груз...
Тип: Изобретение
Номер охранного документа: 0002493370
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6c4c

Средство стопорения секторов кольца на корпусе газотурбинного двигателя, содержащее осевые каналы для его захвата

Средство (24) стопорения выполнено в окружном направлении (С) от первого окружного конца (24а) до второго окружного конца (24b). В разрезе по плоскости, перпендикулярной к указанному окружному направлению, указанное средство содержит две зажимные ветви (28, 30), сопрягающиеся между собой на...
Тип: Изобретение
Номер охранного документа: 0002493375
Дата охранного документа: 20.09.2013
+ добавить свой РИД