×
27.10.2015
216.013.87d8

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ АТМОСФЕРНОЙ РЕФРАКЦИИ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА

Вид РИД

Изобретение

№ охранного документа
0002566379
Дата охранного документа
27.10.2015
Аннотация: Заявляемое изобретение относится к навигационной технике, а именно к способу навигации космического аппарата (КА). Способ основан на измерении отклонения истинного и измеренного положения звезды, наблюдаемой сквозь земную атмосферу. Отклонение связано с атмосферной рефракцией. Для этого с помощью звездного прибора проводят одновременно измерения угловых расстояний между видимым положением известной звезды, лучи которой подвергаются рефракции в атмосфере, и положением каждой из не менее чем двух звезд, находящихся над атмосферой, лучи которых проходят выше атмосферы и не подвергаются рефракции. По измеренным расстояниям определяют величину угла атмосферной рефракции в момент измерения. Технический результат - определение величины атмосферной рефракции для использования ее в системе автономной навигации КА с целью уточнения параметров орбиты. 5 ил.
Основные результаты: Способ определения величины угла атмосферной рефракции в условиях космического полета, отличающийся тем, что одновременно измеряют угловые расстояния между одной звездой, наблюдаемой сквозь атмосферу, и каждой из не менее чем двух звезд, находящихся над атмосферой, а по измеренным расстояниям определяют величину угла атмосферной рефракции в момент измерения по формуле: ,гдеρ - угол атмосферной рефракции,α - известное угловое расстояние между первой и второй звездами, находящимися выше атмосферы планеты, относительно которых проводят угловые измерения относительно третьей звезды, заходящей за горизонт планеты,µ - известное угловое расстояние между первой звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты без учета атмосферной рефракции,λ - известное угловое расстояние между второй звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты без учета атмосферной рефракции,µ′ - измеренное угловое расстояние между первой звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты (т.е. с учетом атмосферной рефракции),λ′ - измеренное угловое расстояние между второй звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты (т.е. с учетом атмосферной рефракции).

Способ определения величины атмосферной рефракции (ρ) в условиях космического полета для определения параметров орбиты космического аппарата предназначен для применения в системах управления движением (СУД) и автономной навигации (АН) космического аппарата (КА).

Во время полета КА при значительных удалениях от Земли, например при перелетах с околоземной орбиты на лунную орбиту, необходимо уточнение параметров орбиты, для чего средствами автономной системы навигации КА предусматриваются измерения различных навигационных параметров.

Наиболее известным навигационным параметром, который измеряется для уточнения параметров орбиты КА, является угловое расстояние в заданный момент времени между известной (опознанной) звездой и видимым горизонтом планеты. Для измерения этого навигационного параметра применяется хорошо известный способ с использованием секстанта, как это делалось при полетах КА «Apollon» к Луне. Описание способа измерения этого навигационного параметра приведено в книге «Навигация, наведение и стабилизация в космосе», изд. «Машиностроение», Москва, 1970, стр. 235, посвященной КА Apollon.

Однако указанный способ измерения этого навигационного параметра имеет ряд недостатков:

- неопределенность положения линии видимого горизонта относительно поверхности планеты;

- необходимость определенной ориентации измерительной плоскости секстанта относительно линии видимого горизонта.

В качестве аналога способа можно привести предложенный американским ученым Kenneth Р. способ измерять навигационный параметр (для уточнения параметров орбиты КА) в виде угла между истинным направлением на звезду и видимым направлением на звезду, лучи света которой подверглись рефракции (отклонению) в атмосфере Земли (патент №3439427, USA).

Однако предложенный в патенте USA №3439427 способ измерения в условиях комического полета такого навигационного параметра требует:

- сложного прецизионного оборудования (гироскопов),

- предварительного наведения оси измерительного инструмента (телескопа) на звезду до ее погружения в атмосферу,

стабилизации этой оси в инерциальном пространстве либо с помощью гиростабилизированной платформы, на которой установлен телескоп, либо стабилизации целиком КА,

- отслеживания трека звезды с фиксацией времени измерений,

- вычисления угла рефракции по величине трека,

- повторения измерений, не менее чем для 6 звезд, для определения положения КА на орбите классическими способами определения орбиты по 6-ти параметрам.

К недостаткам данного способа можно отнести значительную погрешность, относительно большое время измерений, а также необходимость наличия большого приборного состава для реализации этого способа.

Прототипа заявленного способа не найдено.

Задачей изобретения является обеспечение возможности определения параметров орбиты с высокой точностью и быстродействием при одновременной простоте аппаратурного состава.

Для решения поставленной задачи определяется навигационный параметр - величина угла рефракции звезды, заходящей за атмосферу планеты, для чего одновременно проводят измерения угловых расстояний между видимым положением известной звезды, лучи которой подвергаются рефракции в атмосфере и двумя другими известными звездами, лучи которых проходят выше атмосферы и не подвергаются рефракции. Для этих измерений может использоваться, например, звездный датчик. Взаимное положение этих трех звезд, поверхность планеты и толща атмосферы в угловом поле звездного прибора показаны на Фиг. 1. С помощью прибора одновременно (в момент времени, когда одна из звезд наблюдается сквозь атмосферу) измеряются угловые расстояния между 1-й и 3-й звездами - µ′, между 2-й и 3-й звездами - λ′.

Угловое расстояние между 1-й и 2-й звездами - α, а также истинные (т.е. без учета атмосферной рефракции) угловые расстояния между 1-й и 3-й звездами - µ и между 2-й и 3-й звездами - λ - константы (вычисляются по координатам этих трех звезд, приведенным в звездном каталоге).

Значение угла атмосферной рефракции ρ вычисляем по формуле, приведенной ниже:

где

α - известное угловое расстояние между первой и второй звездами, находящимися выше атмосферы Земли, относительно которых проводят угловые измерения относительно третьей звезды, заходящей за горизонт Земли,

µ - известное угловое расстояние между первой звездой, находящейся выше верхней границы атмосферы Земли и третьей звездой, заходящей за атмосферу Земли без учета атмосферной рефракции,

λ - известное угловое расстояние между второй звездой, находящейся выше верхней границы атмосферы Земли и третьей звездой, заходящей за атмосферу Земли без учета атмосферной рефракции,

µ′ - измеренное угловое расстояние между первой звездой, находящейся выше верхней границы атмосферы Земли и третьей звездой, заходящей за атмосферу Земли (т.е. с учетом атмосферной рефракции),

λ′ - измеренное угловое расстояние между второй звездой, находящейся выше верхней границы атмосферы Земли и третьей звездой, заходящей за атмосферу Земли (т.е. с учетом атмосферной рефракции);

В качестве примера покажем определение угла рефракции по данным измерений с КА звездным прибором угловых расстояний между тремя звездами из созвездия Южный Крест, одна из которых заходит за атмосферу Земли. Геоцентрические координаты звезд (эпоха J2000):

1-я звезда: β Южного Креста α1=191°55′48′′, δ1=-59°41′19′′,

2-я звезда: γ Южного Креста α2=187°47′28′′, δ2=-57°06′47′′,

3-я звезда: α Южного Креста α3=186°38′58′′, δ3=-63°05′56′′,

3-я звезда заходит за атмосферу Земли.

Истинные угловые расстояния между звездами (без учета атмосферной рефракции) составляют:

между 1-й и 2-й звездами угол α=3,6571°,

между 1-й и 3-й звездами угол µ=4,24237°,

между 2-й и 3-й звездами угол λ=6,01256°.

Измеренные угловые расстояния между заходящей за атмосферу 3-й звездой и звездами над атмосферой составили:

между 1-й и 3-й звездами угол µ′=4,378°,

между 2-й и 3-й звездами угол λ′=6,169°.

Подставив вычисленные и измеренные значения в формулу, получим значение угла рефракции ρ=9,39486′≈2,73 мрад.

Взаимное положение КА и хода луча от звезды (лини ed, db, bc, cKA) показаны на Фиг. 2. Высота Н соответствует отрезку ab, лежащему на линии, совпадающей с радиусом Земли, а точка b соответствует максимальному погружению луча от звезды, наблюдаемой из точки КА. Зависимость угла рефракции ρ от высоты Н является известной (табличные значения для разных значений длин волн оптического излучения, географических широт и времен года). Пример графика зависимости угла рефракции ρ от высоты Н для длины волны 0,850 мкм и средних широт показан на Фиг. 3. По этому графику вычисленное выше в примере значение угла рефракции ρ≈2,73 мрад соответствует высоте луча от звезды над поверхностью Земли H≈13 км.

Положение точки КА на орбите в геоцентрической системе координат определяется углом θ между векторами КА - центр планеты и КА - первая звезда, показанным на фиг. 2, и углом η между векторами КА - центр планеты и КА - вторая звезда. Углы θ и η в проекции сферических треугольников на плоскость показаны на фиг. 4, а также на фиг. 5 в плоскостях 1 зв. - КА-О и 2 зв. - КА-О. Вычисление углов θ и η производится по формулам:

и

,

где

θ - угол между направлением на первую звезду, находящуюся выше атмосферы, и направлением местной вертикали для КА,

η - угол между направлением на вторую звезду, находящуюся выше атмосферы, и направлением местной вертикали для КА,

R - радиус планеты,

H0 - высота орбиты КА,

h - высота рефрагированного луча от третьей звезды, для угла рефракции ρ.

Для примера рассчитаем углы θ и η по приведенным выше формулам для следующих исходных данных: R=6371 км, H0=300 км, ρ=0,006 рад, h=30 км, µ=4,6°, µ′=4,59°, λ=6,6°, λ′=6,58°. После подстановки исходных данных в приведенные выше формулы получим:

θ≈73,656° и η≈73,962°.

Аналогичные измерения в другой момент времени и в другом направлении (по азимуту), как описано выше, позволяют определить второе положение точки КА на орбите, а следовательно, и уточнить параметры орбиты.

Таким образом, поставленная задача решена. На фигурах 1-5 изображено:

1 зв. - 1-я известная звезда, наблюдаемая над атмосферой планеты,

2 зв. - 2-я известная звезда, наблюдаемая над атмосферой планеты,

3 зв. - 3-я известная звезда, наблюдаемая сквозь атмосферу планеты (истинное положение без рефракции),

3′ зв. - 3-я известная звезда, наблюдаемая сквозь атмосферу планеты (видимое положение с учетом рефракции),

А - атмосфера планеты,

П - твердая поверхность планеты,

α - угловое расстояние между 1-й и 2-й известными звездами, наблюдаемыми над атмосферой планеты,

λ - угловое расстояние между 2-й звездой и истинным положением 3-й звезды,

λ′ - угловое расстояние между 2-й звездой и видимым положением 3-й звезды,

µ - угловое расстояние между 1-й звездой и истинным положением 3-й звезды,

µ′ - угловое расстояние между 1-й звездой и видимым положением 3-й звезды,

ρ - угол рефракции луча от 3-й звезды в момент измерений,

R - радиус планеты,

Но - высота орбиты,

КА - космический аппарат,

h - максимальная высота рефрагированного луча над поверхностью планеты,

θ - угол между направлениями КА - 1-я звезда и КА - О (центр планеты),

η - угол между направлениями КА - 2-я звезда и КА - О (центр планеты).

Преимуществами описываемого способа по сравнению с аналогом являются:

1. Уменьшение погрешности.

Длительность измерений влияет на погрешность способа. Например, если время измерений составляет ~1 мс (что достаточно для современного звездного прибора), то за это время КА сместится по орбите на ~7,5 м, при орбитальной скорости 7,5 км/с. Это смещение и составит ошибку определения положения для одиночного цикла измерений. При последующих измерениях эта ошибка может быть учтена и минимизирована. В случае упомянутого выше аналога, где измеряется трек звезды, длительность измерения определяется длиной трека звезды на чувствительном элементе измерительного инструмента, ось которого стабилизирована. Так, при погружении луча звезды в атмосферу на глубину ~20 км (от поверхности до луча) угловой размера трека рефрагированной звезды ~5′. При угловой скорости захода звезд (в плоскости орбиты) ~4′/с, и если считать, что выше 50 км угол рефракции практически ~0, то время измерения составит:

Тизм.=arctg[(50 км - 20 км) / 2300 км]/(4′/c)≈10 с,

что соответствует смещению КА по орбите на ~75 км. Т.е. погрешность заявленного способа (7,5 м) значительно меньше погрешности аналога (75 км). Всего же, для полного определения положения КА на орбите для способа, принятого в качестве аналога, нужно не менее 6 измерений, что соответственно приводит к увеличению ошибки и сложности ее учета.

2. Уменьшение времени измерений.

Длительность процесса измерений, включающего не менее 6 измерений, для способа, рассматриваемого в качестве аналога, составляет не менее 60 с, что в несколько раз превышает необходимое время для заявленного способа ~1 мс.

3. Простота аппаратурного состава.

Для заявленного способа может быть использован современный звездный датчик, в памяти которого хранится звездный каталог с координатами звезд, и имеющий процессор для обработки результатов измерений. Положение КА определяется по результатам измерений в вычислительном комплексе КА.

Для способа, указанного в качестве аналога, необходимы следующие компоненты:

- измерительный инструмент - телескоп в кардановом подвесе,

- система наведения телескопа на заданную звезду,

- система стабилизации для удержания направления оси телескопа на звезду в процессе измерения трека звезды (из-за рефракции) на чувствительном элементе телескопа,

- процессор для обработки результатов измерений и вычисления положения КА

- система управления для сопряжения и согласованной работы всех составляющих компонентов.

Как видим, в случае аналога, приборный состав для решения поставленной задачи превышает приборный состав для заявленного способа по номенклатуре (количественному составу компонентов), а следовательно, по объему, массе, габаритам, энергопотреблению, т.е. тем параметрам, которые имеют большое значение для космических аппаратов.

Литература

1. «Навигация, наведение и стабилизация в космосе», изд. «Машиностроение», Москва, 1970,

2. Патент №3439427, USA.

Способ определения величины угла атмосферной рефракции в условиях космического полета, отличающийся тем, что одновременно измеряют угловые расстояния между одной звездой, наблюдаемой сквозь атмосферу, и каждой из не менее чем двух звезд, находящихся над атмосферой, а по измеренным расстояниям определяют величину угла атмосферной рефракции в момент измерения по формуле: ,гдеρ - угол атмосферной рефракции,α - известное угловое расстояние между первой и второй звездами, находящимися выше атмосферы планеты, относительно которых проводят угловые измерения относительно третьей звезды, заходящей за горизонт планеты,µ - известное угловое расстояние между первой звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты без учета атмосферной рефракции,λ - известное угловое расстояние между второй звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты без учета атмосферной рефракции,µ′ - измеренное угловое расстояние между первой звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты (т.е. с учетом атмосферной рефракции),λ′ - измеренное угловое расстояние между второй звездой, находящейся выше верхней границы атмосферы планеты и третьей звездой, заходящей за атмосферу планеты (т.е. с учетом атмосферной рефракции).
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ АТМОСФЕРНОЙ РЕФРАКЦИИ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ АТМОСФЕРНОЙ РЕФРАКЦИИ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ АТМОСФЕРНОЙ РЕФРАКЦИИ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ АТМОСФЕРНОЙ РЕФРАКЦИИ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ АТМОСФЕРНОЙ РЕФРАКЦИИ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА
СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ АТМОСФЕРНОЙ РЕФРАКЦИИ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА
Источник поступления информации: Роспатент

Показаны записи 311-320 из 370.
15.03.2019
№219.016.e09b

Способ определения географических координат изображений объектов на поверхности планеты при съемке с пилотируемого космического аппарата

Изобретение относится к космической технике. Целью изобретения является съемка Земли и других планет с помощью ручных фото- и видеокамер экипажами пилотируемых космических аппаратов (КА). Задачей изобретения является определение координат при съемке камерой, не имеющей жесткой связи с...
Тип: Изобретение
Номер охранного документа: 0002353902
Дата охранного документа: 27.04.2009
15.03.2019
№219.016.e0b7

Система распределения электроэнергии

Использование: в электротехнике, в частности в системах распределения электроэнергии самолета, корабля или космического аппарата (КА). Технический результат заключается в увеличении эксплуатационной надежности системы распределения электроэнергии путем снятия зарядов статического электричества...
Тип: Изобретение
Номер охранного документа: 0002331959
Дата охранного документа: 20.08.2008
15.03.2019
№219.016.e0b9

Система распределения электроэнергии

Использование: в электротехнике, в частности в системах распределения электроэнергии самолета, корабля или космического аппарата (КА). Технический результат заключается в увеличении эксплуатационной надежности системы путем обеспечения контроля сопротивления изоляции системы распределения...
Тип: Изобретение
Номер охранного документа: 0002331958
Дата охранного документа: 20.08.2008
20.03.2019
№219.016.e871

Вентиль электрический

Изобретение относится к области электроники и электротехники и может быть использовано в выпрямителях, в устройствах с параллельным соединением источников напряжения питания на общую нагрузку и т.п. Технический результат - увеличение коэффициента полезного действия системы электропитания и...
Тип: Изобретение
Номер охранного документа: 0002451385
Дата охранного документа: 20.05.2012
20.03.2019
№219.016.e949

Коммутатор шин электропитания

Изобретение относится к области электротехники и может быть использовано в аппаратуре систем электропитания для параллельного соединения источников электропитания при работе на общую нагрузку, в ответственных и разветвленных системах с резервированием источников электропитания, в реверсивных...
Тип: Изобретение
Номер охранного документа: 0002444840
Дата охранного документа: 10.03.2012
20.03.2019
№219.016.e998

Устройство для разделения трубопроводов

Изобретение относится к ракетно-космической технике и предназначено для дистанционного разделения трубопроводов, заполненных жидкостями. На разделяемом трубопроводе (1) смонтирован корпус (2), в котором размещены детонирующий удлиненный заряд (3), электродетонатор (4) и кольцевой нож (5)....
Тип: Изобретение
Номер охранного документа: 0002465182
Дата охранного документа: 27.10.2012
29.03.2019
№219.016.ef51

Способ управления кластером находящихся на геостационарной орбите спутников (варианты)

Изобретения относятся к управлению группировками спутников, размещенных в одних и тех же или пересекающихся долготных и широтных диапазонах геостационарной орбиты. Предлагаемый способ заключается в измерении параметров орбит спутников, определении по ним орбитальных элементов, сравнении их с...
Тип: Изобретение
Номер охранного документа: 0002284950
Дата охранного документа: 10.10.2006
04.04.2019
№219.016.fc84

Способ управления давлением в гидравлической системе терморегулирования пилотируемого космического объекта, снабженной гидропневматическим компенсатором

Изобретение относится к системам терморегулирования долговременных пилотируемых космических объектов и может быть использовано экипажем при проведении ремонтных работ. Изобретение может быть также использовано в общем и специальном машиностроении. Способ включает выравнивание давления в...
Тип: Изобретение
Номер охранного документа: 0002360846
Дата охранного документа: 10.07.2009
04.04.2019
№219.016.fd26

Способ контроля герметичности замкнутых изделий

Изобретение относится к области испытательной техники и позволяет повысить достоверность и точность контроля изделий при испытаниях на герметичность. Замкнутое изделие помещают в барокамеру, опрессовывают изделие в барокамере контрольным газом в течение заданного времени, затем контрольный газ...
Тип: Изобретение
Номер охранного документа: 02181195
Дата охранного документа: 10.04.2002
10.04.2019
№219.017.0634

Ракетный разгонный блок

Изобретение относится к ракетно-космической технике, а именно к конструкции ракетных разгонных блоков. Ракетный разгонный блок содержит корпус, состоящий из верхнего переходника, среднего переходника и нижнего переходника, бак окислителя с основными перегородками и заборным устройством, бак...
Тип: Изобретение
Номер охранного документа: 0002412088
Дата охранного документа: 20.02.2011
Показаны записи 291-293 из 293.
28.07.2018
№218.016.7610

Устройство контроля ориентации космических аппаратов при сближении

Изобретение относится к оптико-электронным приборам, используемым в системах управления движением космического аппарата (КА), гл. обр., к мишени стыковки пассивного КА. Мишень с высоким коэфф. поглощения её поверхности находится снаружи вблизи порта стыковки. Ось OA мишени (смотрит на нас)...
Тип: Изобретение
Номер охранного документа: 0002662620
Дата охранного документа: 26.07.2018
20.02.2019
№219.016.bf95

Способ определения глубины каверны на оптической поверхности внешнего стекла иллюминатора пилотируемого космического аппарата

Способ определения глубины каверны на оптической поверхности внешнего стекла иллюминатора пилотируемого космического аппарата включает стереосъемку каверны, измерение расстояния от центра каждого снимка стереопары до одной и той же точки изображения каверны. А также измерение расстояния между...
Тип: Изобретение
Номер охранного документа: 0002359254
Дата охранного документа: 20.06.2009
17.07.2019
№219.017.b52e

Устройство контроля взаимного положения сближающихся космических аппаратов

Изобретение относится к области оптико-электронного приборостроения и предназначено для применения в системах управления движением космического аппарата. Заявленное устройство контроля взаимного положения сближающихся космических аппаратов содержит мишень, установленную на пассивном космическом...
Тип: Изобретение
Номер охранного документа: 0002694458
Дата охранного документа: 15.07.2019
+ добавить свой РИД