×
20.10.2015
216.013.86f2

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПЕНОПОЛИУРЕТАНОВОГО НАНОКОМПОЗИТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к производству полимерных композитов на основе пенополиуретанов, которые могут быть использованы для теплоизоляции конструкций в судостроении, авиастроении и автомобильной промышленности. Способ получения пенополиуретанового нанокомпозита включает предварительную механоактивацию наномодификатора с последующим введением его в гидроксилсодержащий полиэфир под воздействием ультразвука в количестве 0,5-3,0% относительно веса получаемого нанокомпозита, перемешивание и введение отвердителя. В качестве наномодификатора используют диоксид циркония, стабилизированный оксидом иттрия или оксидом алюминия. Способ позволяет улучшить механические свойства материала и повысить его температуру возгорания. 1 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к производству конструкционных материалов, в частности к полимерным композитам, которые включают полимер и неорганическую добавку.

Конструкционные материалы на основе пенополиуретанов представляют существенный интерес для многих видов промышленного и энергетического строительства, а также для судостроения, авиастроения и автомобильной промышленности; этот интерес обусловлен тем, что такие материалы обладают высокими теплоизоляционными свойствами, значительной химической стойкостью по отношению к окружающей среде (атмосфере и, в ряде случаев, водной среде), а также существенными звукоизолирующими свойствами. Использование таких материалов позволяет наиболее экономично обеспечить требуемую теплоизоляцию конструкций. Особое внимание привлекают теплоизоляционные свойства таких материалов при низких температурах, что связано с активно развивающейся отраслью судостроения: проектированием и строительством судов-газоходов, предназначенных для перевозки сжиженных газов.

Основы методик производства теплоизоляционных материалов на основе вспененных полиуретанов изложены, например, в работе Г.А. Булатова «Пенополиуретаны в машиностроении и строительстве». - М: Машиностроение, 1978, с. 12, 19, и 25.

Однако основными недостатками таких материалов, препятствующими их применению в широком спектре задач, являются недостаточные прочностные свойства получаемых конструкционных материалов, и, в ряде случаев, высокая горючесть материалов.

Одним из способов преодоления этих недостатков является введение в матрицу вспененного полиуретана неорганических добавок, обладающих достаточной прочностью, например, речного песка, бетона, углерода, а также добавка в состав гипсовых или цементных вяжущих.

Наиболее близким к заявляемому изобретению является полимерный нанокомпозит и способ его получения (патент RU №2414492, МПК C08L 63/10, B82B 1/00, C09K 21/02, опубл. 20.03.2011) - прототип.

Данный композит содержит эпоксидную смолу, отвердитель и наполнитель - стеклосферы и наномодификатор. В данном изобретении наномодификатором является оксид алюминия и оксид циркония и/или оксид иттрия, изготовленный методом золь-гель синтеза, в варианте обратного соосаждения гидроксидов алюминия и циркония и/или иттрия. Композит получали перемешиванием эпоксидной смолы и наномодификатора, введением отвердителя и постепенным введением стеклосфер.

Недостатками полученного указанным способом полимерного нанокомпозита являются недостаточно высокая механическая прочность, особенно при отрицательных температурах.

Техническим результатом является повышение прочностных характеристик конструкционного материала на основе вспененного полиуретана при сохранении высоких показателей огнестойкости.

Технический результат достигается тем, что в способе получения пенополиуретанового нанокомпозита, включающем введение наномодификатора на основе неорганических оксидных соединений в виде высушенного порошка гидроксилсодержащий полиэфир, перемешивание и введение отвердителя, согласно изобретению, порошок наномодификатора предварительно механоактивируют ультразвуком, а в качестве наномодификатора используют диоксид циркония стабилизированного оксидом иттрия или оксидом алюминия, в количестве 0,5-3,0 мас. % относительно массы получаемого нанокомпозита.

В качестве наномодификатора используют диоксид циркония, стабилизированный оксидом иттрия или оксидом алюминия.

Процесс механоактивации приводит к изменению структуры поверхностного слоя частиц наномодификатора, за счет чего обеспечивается гомогенность материала, которая, в свою очередь, во многом определяет его прочностные и огнестойкие свойства.

Улучшение механических свойств пластиков при введении в них наполнителей связан с интегральной величиной поверхности частиц наполнителя, которая тем выше, чем больше количество малоразмерных частиц. Иными словами, агломерация нескольких наноразмерных частиц в одну размерами в сотни микрон в разы понижает интегральную поверхность частиц наполнителя, снижая тем самым положительный эффект его введения. Задачей настоящей работы является достижение как можно более равномерного распределения частиц наномодификатора в объеме матрицы пластика. Очевидно, что такая задача тоже требует присутствия как можно большего количества частиц модификатора, следовательно, с этой точки зрения, наличие наноразмерных частиц предпочтительнее, чем присутствие их агломератов. Кроме того, реакционноспособность наночастиц также отчетливо возрастает с уменьшением их размеров, при приближении размера к характерному для макрообразований (сотни нанометров), качественно новые эффекты нанохимии практически отсутствуют. Исходя из вышеизложенного, устранение агломерации наночастиц на этапе введения их в матрицу пластика под воздействием ультразвука является существенным и в значительной степени определяет положительный эффект влияния введения наномодификатора.

Способ изготовления пенополиуретанового нанокомпозита состоит в следующем. Материал на основе пенополиуретана включает в себя гидроксилсодержащий полиэфир - компонент А и отвердитель - компонент Б (в соотношении А:Б=1:1-1:1,5). В качестве наполнителя в матрицу пенополиуретана вводят механоактивированный наномодификатор, представляющий собой наноразмерный стабилизированный оксидом иттрия или оксидом алюминия диоксид циркония, количество которого может варьироваться от 0,5% до 3,0% относительно веса получаемого нанокомпозита.

Наномодификатор готовят методом золь-гель синтеза в варианте обратного соосаждения.

Перед введением наномодификатора в матрицу вспененного полиуретана производится его механическая активация (один из режимов помола может быть осуществлен, например, с использованием планетарной мельницы Pulverisette 6 при 350 оборотах в минуту в течение 2 часов).

Полученный в результате порошок подвергался воздействию ультразвуком с целью разрушения агломератов. Произведенный таким образом наномодификатор имел флюоритоподобную кубическую структуру, большая часть частиц порошка имела характерный размер менее 300 нанометров (90% частиц), при этом средний размер частиц составлял порядка 200 нанометров.

Схематично, химическую реакцию образования пенополиуретана из вышеуказанных компонентов можно представить следующим образом:

Механоактивированный порошок-наномодификатор смешивают небольшими порциями с частью компонента А под воздействием ультразвука и тщательно перемешивают.

Полученную суспензию вводят в основную массу компонента А под воздействием ультразвука. После смешивания всех компонентов под высоким давлением (порядка 100-115 атм) в смесительной головке машины при встречном соударении компонентов в условиях высокоточной дозировки, полученную массу равномерно распределяют на гладкой подготовленной поверхности заданного размера (пресс-форме) с помощью набора форсунок и оставляют для затвердевания под прессом.

Пример 1.

В соответствии с ТУ 5.967-11666-98, исходными компонентами для производства пенополиуретана были: гидроксилсодержащий полиэфир - компонент А (изолан-252 + 0.8% викат-252) и отвердитель - изоцианат (МФИ) - компонент Б в соотношении компонентов А:Б=1:1,27, для заливки плиты массой 21,6 кг расходовали 9,5 кг изолана-252 и 12,1 кг изоцианата (МФИ).

Наномодификатор - нанопорошок диоксида циркония, стабилизированный оксидом иттрия, готовят методом золь-гель синтеза в варианте обратного соосаждения.

Сушка геля проводилась между двумя гладкими стеклянными поверхностями при температуре 110°C под давлением порядка 2 кг/см2 в течение 10 минут, после чего полученный порошок прокаливали при температуре 550°C.

Перед введением наномодификатора в матрицу вспененного полиуретана производится его механическая активация с использованием планетарной мельницы Pulverisette 6 при 350 оборотах в минуту в течение 2 часов. Полученный порошок подвергался воздействию ультразвука с целью разрушения агломератов.

Наномодификатор в виде нанопорошка диоксида циркония, стабилизированного оксидом иттрия, вводили в пенополиуретан следующим образом: в емкости 0,5-0,55 литра, содержащие компонент А, небольшими порциями вводили 108 г наномодификатора, стабилизированного оксидом иттрия, и параллельно в аналогичные емкости 0,5-0,55 литра, содержащие компонент А, вводили 108 г наномодификатора, стабилизированного оксидом алюминия, что соответствовало в каждом случае по 0,5 мас. % от общей массы получаемой плиты.

Для предотвращения возможной агломерации наномодификатора полученные смеси обрабатывали ультразвуком в ультразвуковой бане (модель УЗВ6)

Полученную таким образом часть компонента А с наномодификатором возвращали в заливочный бак к общей массе компонента А (исходным весом 9,5 кг), где происходило перемешивание смеси компонента А с наномодификатором с основным объемом компонента А и компонентом Б.

Смешивание осуществлялось под высоким давлением (115 атм) в смесительной головке машины при встречном соударении компонентов в условиях высокоточной дозировки. Полученную таким образом смесь равномерно распределяли на пресс-форме с помощью набора форсунок с площадь сечения 0,196 мм2, после чего оставляли для затвердевания на 40 мин под прессом.

Прочностные испытания наномодифицированного пенополиуретана на сжатие проводились в соответствии с ГОСТ-3206-78, испытания на статический изгиб в соответствии с ГОСТ-18564-73.

Пример 2.

В соответствии с ТУ 5.967-11666-98, исходными компонентами для производства пенополиуретана были: гидроксилсодержащий полиэфир - компонент А (изолан-252 + 0.8% викат-252) и отвердитель - изоцианат (МФИ) - компонент Б в соотношении компонентов А:Б=1:1,27 для заливки плиты массой 21,6 кг расходовали 9,5 кг изолана-252 и 12,1 кг изоцианата (МФИ).

Наномодификатор - нанопорошок диоксида циркония, стабилизированный оксидом алюминия, готовят методом золь-гель синтеза в варианте обратного соосаждения.

Применяли лиофильную сушку геля (например, на установке Labconco производства США), после чего полученный порошок прокаливали при температуре 550°C.

Перед введением наномодификатора в матрицу вспененного полиуретана производится его механическая активация с использованием планетарной мельницы Pulverisette 6 при 350 оборотах в минуту в течение 2 часов. Полученный порошок подвергался воздействию ультразвука с целью разрушения агломератов.

Наномодификатор в виде - нанопорошка диоксида циркония, стабилизированного оксидом иттрия, вводили в пенополиуретан в три отдельные емкости объемом 0,7 литра, отбирали примерно по 0,3-0,35 литра компонента А и небольшими порциями по 5-7 г. при постоянном перемешивании вводили в каждый объем 216 г, при этом суммарная масса из трех емкостей составляла 648 г и параллельно в три такие же емкости объемом 0,7 литра отбирали примерно по 0,3-0,35 литра компонента А и небольшими порциями по 5-7 г при постоянном перемешивании вводили в каждый объем общей массой 216 г наномодификатора, стабилизированного оксидом алюминия, при этом суммарная масса составила из трех емкостей в каждом случае 648 г, что соответствовало в обоих случаях 3,0 мас. % от общей массы получаемой плиты.

Для предотвращения возможной агломерации наномодификатора полученные смеси обрабатывали ультразвуком в ультразвуковой бане (модель УЗВ6)

Полученную таким образом часть компонента А с наномодификатором возвращали в заливочный бак к общей массе компонента А (исходным весом 9,5 кг), где происходило перемешивание смеси компонента А с наномодификатором с основным объемом компонента А и компонентом Б.

Смешивание осуществлялось под высоким давлением (115 атм) в смесительной головке машины при встречном соударении компонентов в условиях высокоточной дозировки. Полученную таким образом смесь равномерно распределяли на пресс-форме с помощью набора форсунок с площадью сечения 0.196 мм2, после чего оставляли для затвердевания на 40 мин под прессом.

Прочностные испытания наномодифицированного пенополиуретана на сжатие проводились в соответствии с ГОСТ-3206-78, испытания на статический изгиб в соответствии с ГОСТ-18564-73.

Результаты испытаний пенополиуретановых нанокомпозитов по сравнению со стандартным пенополиуретаном (плита теплоизоляционная ПТИ-252 по ТУ 5.967-11666-98 без добавок модификаторов) приведены в таблице 1.

Как следует из таблицы 1, предлагаемый способ получения пенополиуретанового нанокомпозита позволяет существенно улучшить механические свойства материала и повысить его температуру возгорания.

Технико-экономические показатели предлагаемого изобретения по сравнению с прототипом позволят увеличить срок службы и надежности изделий, изготовленных из предложенного пенополиуретанового нанокомпозита.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 255.
27.06.2013
№216.012.50c9

Способ изготовления листов из алюминиевых сплавов

Изобретение относится к области металлургии сплавов на основе алюминия, в частности сплавов систем Al-Mg-Si и Al-Zn-Mg, используемых в качестве конструкционных и обшивочных листов в авиакосмической технике, судостроении и транспортном машиностроении, в том числе и в сварных конструкциях. Способ...
Тип: Изобретение
Номер охранного документа: 0002486274
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.51f9

Способ построения системы сообщений многоуровневой несимметричной транспортной системы

Изобретение относится к системам автоматизации, основанным на использовании вычислительных машин. Техническим результатом является территориальная независимость АРМ при неограниченном расширении системы через свои повторяющие структуры с построением иерархической транспортной системы за счет...
Тип: Изобретение
Номер охранного документа: 0002486578
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.5390

Способ получения композиционного катода

Изобретение относится к пайке и может быть использовано, в частности, для изготовления композиционного катода из тугоплавких материалов, используемого для вакуумного нанесения тонкопленочных покрытий различного функционального назначения в отраслях машиностроения, микроэлектроники,...
Тип: Изобретение
Номер охранного документа: 0002486995
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.544b

Способ электрошлакового переплава

Изобретение относится к электрометаллургии и может быть использовано при выплавке слитков электрошлаковым переплавом расходуемых электродов. В способе используют по меньшей мере две затравки, которые выполняют в виде цилиндра или параллелепипеда, изолируют от корпуса кристаллизатора и размещают...
Тип: Изобретение
Номер охранного документа: 0002487182
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.5538

Система комплексной обработки информации радионавигационных и автономных средств навигации для определения действительных значений параметров самолетовождения

Изобретение относится к системам навигации летательных аппаратов (ЛА), а именно к обработке информации в навигационно-пилотажных комплексах. На борту ЛА расположены: инерциальная навигационная система (ИНС), радионавигационный корректор - спутниковая навигационная система (СНС) и автономный...
Тип: Изобретение
Номер охранного документа: 0002487419
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.574f

Двухслойный стальной прокат

Изобретение относится к области металлургии и может быть использовано при изготовлении сварных конструкций из двухслойного проката, длительно эксплуатирующихся при отрицательных температурах в условиях интенсивного механического, коррозионно-эрозионного воздействия мощных ледовых полей и...
Тип: Изобретение
Номер охранного документа: 0002487959
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.59a0

Сырьевая смесь для изготовления огнестойкого конструкционного материала

Изобретение относится к строительным материалам и может быть использовано в строительстве, судостроении, атомной промышленности для защиты от пожара служебных и жилых помещений в составе огнестойких конструкций, а также в качестве среднего слоя панелей, облицованных декоративно-отделочными...
Тип: Изобретение
Номер охранного документа: 0002488565
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5c89

Движительно-рулевая колонка

Изобретение относится к судостроению и может быть использовано при создании судовых движительно-рулевых комплексов. Движительно-рулевая колонка содержит баллер, гондолу, гребной винт и механизм поворота колонки. Баллер в верхней части соединен с корпусом через опорный шар, а в нижней части -...
Тип: Изобретение
Номер охранного документа: 0002489310
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.5f87

Способ изготовления крепежных элементов из высокопрочных титановых сплавов

Изобретение относится к области металлургии и может быть использовано при изготовлении стержневых деталей с головками из титановых сплавов. Заготовки подвергают термообработке, после чего производят горячую высадку головок крепежных элементов. После механообработки заготовок с головками...
Тип: Изобретение
Номер охранного документа: 0002490087
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.60a4

Способ получения градиентного каталитического покрытия

Изобретение относится к области нанесения покрытий, в частности к каталитическим оксидным покрытиям, а также к электрохимическим производствам, и может быть использовано при изготовлении электродных материалов. Способ получения градиентного каталитического покрытия на подложке из титана или его...
Тип: Изобретение
Номер охранного документа: 0002490372
Дата охранного документа: 20.08.2013
Показаны записи 31-40 из 196.
20.06.2013
№216.012.4c96

Способ получения биметаллического слитка

Изобретение относится к металлургии, конкретнее к области специальной электрометаллургии, а именно к производству биметаллических слитков с использованием электрошлаковой технологии. В способе размещают в качестве основного слоя биметаллического слитка стальную заготовку с зазором от стенки...
Тип: Изобретение
Номер охранного документа: 0002485188
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4ca7

Состав расплава на основе цинка для нанесения защитных покрытий на стальную полосу горячим погружением

Изобретение относится к области нанесения защитных металлических покрытий, в частности, к нанесению покрытий из расплава на основе цинка на стальную полосу. Расплав содержит 0,7-3,4 мас.% магния, 0,01-0,1 мас.% серебра, 0,84-4,08 мас.% алюминия, цинк - остальное. При этом содержание алюминия к...
Тип: Изобретение
Номер охранного документа: 0002485205
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4daa

Емкостный датчик давления

Изобретение относится к измерительной технике, в частности для измерения статического и динамического давления без нарушения целостности обтекания потока газа и изделий. Емкостный датчик давления состоит из двухсторонней фольгированной диэлектрической пленки, являющейся основанием датчика. На...
Тип: Изобретение
Номер охранного документа: 0002485464
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4db8

Устройство для испытаний на контактную выносливость

Изобретение относится к технологии машиностроения, к устройствам для определения пластических деформаций и износа, испытаний на контактную выносливость плоских поверхностей деталей машин, изготовленных из металлических материалов. Устройство содержит привод, обкатник, сепаратор с деформирующими...
Тип: Изобретение
Номер охранного документа: 0002485478
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e36

Способ оценки звукоизоляции салона пассажирского самолета

Использование: в способах оценки звукоизоляции салона пассажирского самолета. Сущность: способ оценки звукоизоляции салона самолета в условиях полета заключается в одновременном измерении шума внутри салона с помощью акустических микрофонов или акустических антенн и измерении вибрации на...
Тип: Изобретение
Номер охранного документа: 0002485604
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.5056

Способ получения керамического изделия

Изобретение относится к способам получения керамических материалов, предназначенных для высокотемпературных изделий конструкционного назначения, таких как элементы камеры сгорания и соплового аппарата газотурбинного двигателя. Способ получения керамического изделия на основе муллита,...
Тип: Изобретение
Номер охранного документа: 0002486159
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.50c9

Способ изготовления листов из алюминиевых сплавов

Изобретение относится к области металлургии сплавов на основе алюминия, в частности сплавов систем Al-Mg-Si и Al-Zn-Mg, используемых в качестве конструкционных и обшивочных листов в авиакосмической технике, судостроении и транспортном машиностроении, в том числе и в сварных конструкциях. Способ...
Тип: Изобретение
Номер охранного документа: 0002486274
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.51f9

Способ построения системы сообщений многоуровневой несимметричной транспортной системы

Изобретение относится к системам автоматизации, основанным на использовании вычислительных машин. Техническим результатом является территориальная независимость АРМ при неограниченном расширении системы через свои повторяющие структуры с построением иерархической транспортной системы за счет...
Тип: Изобретение
Номер охранного документа: 0002486578
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.5390

Способ получения композиционного катода

Изобретение относится к пайке и может быть использовано, в частности, для изготовления композиционного катода из тугоплавких материалов, используемого для вакуумного нанесения тонкопленочных покрытий различного функционального назначения в отраслях машиностроения, микроэлектроники,...
Тип: Изобретение
Номер охранного документа: 0002486995
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.544b

Способ электрошлакового переплава

Изобретение относится к электрометаллургии и может быть использовано при выплавке слитков электрошлаковым переплавом расходуемых электродов. В способе используют по меньшей мере две затравки, которые выполняют в виде цилиндра или параллелепипеда, изолируют от корпуса кристаллизатора и размещают...
Тип: Изобретение
Номер охранного документа: 0002487182
Дата охранного документа: 10.07.2013
+ добавить свой РИД