×
20.10.2015
216.013.86f2

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПЕНОПОЛИУРЕТАНОВОГО НАНОКОМПОЗИТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к производству полимерных композитов на основе пенополиуретанов, которые могут быть использованы для теплоизоляции конструкций в судостроении, авиастроении и автомобильной промышленности. Способ получения пенополиуретанового нанокомпозита включает предварительную механоактивацию наномодификатора с последующим введением его в гидроксилсодержащий полиэфир под воздействием ультразвука в количестве 0,5-3,0% относительно веса получаемого нанокомпозита, перемешивание и введение отвердителя. В качестве наномодификатора используют диоксид циркония, стабилизированный оксидом иттрия или оксидом алюминия. Способ позволяет улучшить механические свойства материала и повысить его температуру возгорания. 1 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к производству конструкционных материалов, в частности к полимерным композитам, которые включают полимер и неорганическую добавку.

Конструкционные материалы на основе пенополиуретанов представляют существенный интерес для многих видов промышленного и энергетического строительства, а также для судостроения, авиастроения и автомобильной промышленности; этот интерес обусловлен тем, что такие материалы обладают высокими теплоизоляционными свойствами, значительной химической стойкостью по отношению к окружающей среде (атмосфере и, в ряде случаев, водной среде), а также существенными звукоизолирующими свойствами. Использование таких материалов позволяет наиболее экономично обеспечить требуемую теплоизоляцию конструкций. Особое внимание привлекают теплоизоляционные свойства таких материалов при низких температурах, что связано с активно развивающейся отраслью судостроения: проектированием и строительством судов-газоходов, предназначенных для перевозки сжиженных газов.

Основы методик производства теплоизоляционных материалов на основе вспененных полиуретанов изложены, например, в работе Г.А. Булатова «Пенополиуретаны в машиностроении и строительстве». - М: Машиностроение, 1978, с. 12, 19, и 25.

Однако основными недостатками таких материалов, препятствующими их применению в широком спектре задач, являются недостаточные прочностные свойства получаемых конструкционных материалов, и, в ряде случаев, высокая горючесть материалов.

Одним из способов преодоления этих недостатков является введение в матрицу вспененного полиуретана неорганических добавок, обладающих достаточной прочностью, например, речного песка, бетона, углерода, а также добавка в состав гипсовых или цементных вяжущих.

Наиболее близким к заявляемому изобретению является полимерный нанокомпозит и способ его получения (патент RU №2414492, МПК C08L 63/10, B82B 1/00, C09K 21/02, опубл. 20.03.2011) - прототип.

Данный композит содержит эпоксидную смолу, отвердитель и наполнитель - стеклосферы и наномодификатор. В данном изобретении наномодификатором является оксид алюминия и оксид циркония и/или оксид иттрия, изготовленный методом золь-гель синтеза, в варианте обратного соосаждения гидроксидов алюминия и циркония и/или иттрия. Композит получали перемешиванием эпоксидной смолы и наномодификатора, введением отвердителя и постепенным введением стеклосфер.

Недостатками полученного указанным способом полимерного нанокомпозита являются недостаточно высокая механическая прочность, особенно при отрицательных температурах.

Техническим результатом является повышение прочностных характеристик конструкционного материала на основе вспененного полиуретана при сохранении высоких показателей огнестойкости.

Технический результат достигается тем, что в способе получения пенополиуретанового нанокомпозита, включающем введение наномодификатора на основе неорганических оксидных соединений в виде высушенного порошка гидроксилсодержащий полиэфир, перемешивание и введение отвердителя, согласно изобретению, порошок наномодификатора предварительно механоактивируют ультразвуком, а в качестве наномодификатора используют диоксид циркония стабилизированного оксидом иттрия или оксидом алюминия, в количестве 0,5-3,0 мас. % относительно массы получаемого нанокомпозита.

В качестве наномодификатора используют диоксид циркония, стабилизированный оксидом иттрия или оксидом алюминия.

Процесс механоактивации приводит к изменению структуры поверхностного слоя частиц наномодификатора, за счет чего обеспечивается гомогенность материала, которая, в свою очередь, во многом определяет его прочностные и огнестойкие свойства.

Улучшение механических свойств пластиков при введении в них наполнителей связан с интегральной величиной поверхности частиц наполнителя, которая тем выше, чем больше количество малоразмерных частиц. Иными словами, агломерация нескольких наноразмерных частиц в одну размерами в сотни микрон в разы понижает интегральную поверхность частиц наполнителя, снижая тем самым положительный эффект его введения. Задачей настоящей работы является достижение как можно более равномерного распределения частиц наномодификатора в объеме матрицы пластика. Очевидно, что такая задача тоже требует присутствия как можно большего количества частиц модификатора, следовательно, с этой точки зрения, наличие наноразмерных частиц предпочтительнее, чем присутствие их агломератов. Кроме того, реакционноспособность наночастиц также отчетливо возрастает с уменьшением их размеров, при приближении размера к характерному для макрообразований (сотни нанометров), качественно новые эффекты нанохимии практически отсутствуют. Исходя из вышеизложенного, устранение агломерации наночастиц на этапе введения их в матрицу пластика под воздействием ультразвука является существенным и в значительной степени определяет положительный эффект влияния введения наномодификатора.

Способ изготовления пенополиуретанового нанокомпозита состоит в следующем. Материал на основе пенополиуретана включает в себя гидроксилсодержащий полиэфир - компонент А и отвердитель - компонент Б (в соотношении А:Б=1:1-1:1,5). В качестве наполнителя в матрицу пенополиуретана вводят механоактивированный наномодификатор, представляющий собой наноразмерный стабилизированный оксидом иттрия или оксидом алюминия диоксид циркония, количество которого может варьироваться от 0,5% до 3,0% относительно веса получаемого нанокомпозита.

Наномодификатор готовят методом золь-гель синтеза в варианте обратного соосаждения.

Перед введением наномодификатора в матрицу вспененного полиуретана производится его механическая активация (один из режимов помола может быть осуществлен, например, с использованием планетарной мельницы Pulverisette 6 при 350 оборотах в минуту в течение 2 часов).

Полученный в результате порошок подвергался воздействию ультразвуком с целью разрушения агломератов. Произведенный таким образом наномодификатор имел флюоритоподобную кубическую структуру, большая часть частиц порошка имела характерный размер менее 300 нанометров (90% частиц), при этом средний размер частиц составлял порядка 200 нанометров.

Схематично, химическую реакцию образования пенополиуретана из вышеуказанных компонентов можно представить следующим образом:

Механоактивированный порошок-наномодификатор смешивают небольшими порциями с частью компонента А под воздействием ультразвука и тщательно перемешивают.

Полученную суспензию вводят в основную массу компонента А под воздействием ультразвука. После смешивания всех компонентов под высоким давлением (порядка 100-115 атм) в смесительной головке машины при встречном соударении компонентов в условиях высокоточной дозировки, полученную массу равномерно распределяют на гладкой подготовленной поверхности заданного размера (пресс-форме) с помощью набора форсунок и оставляют для затвердевания под прессом.

Пример 1.

В соответствии с ТУ 5.967-11666-98, исходными компонентами для производства пенополиуретана были: гидроксилсодержащий полиэфир - компонент А (изолан-252 + 0.8% викат-252) и отвердитель - изоцианат (МФИ) - компонент Б в соотношении компонентов А:Б=1:1,27, для заливки плиты массой 21,6 кг расходовали 9,5 кг изолана-252 и 12,1 кг изоцианата (МФИ).

Наномодификатор - нанопорошок диоксида циркония, стабилизированный оксидом иттрия, готовят методом золь-гель синтеза в варианте обратного соосаждения.

Сушка геля проводилась между двумя гладкими стеклянными поверхностями при температуре 110°C под давлением порядка 2 кг/см2 в течение 10 минут, после чего полученный порошок прокаливали при температуре 550°C.

Перед введением наномодификатора в матрицу вспененного полиуретана производится его механическая активация с использованием планетарной мельницы Pulverisette 6 при 350 оборотах в минуту в течение 2 часов. Полученный порошок подвергался воздействию ультразвука с целью разрушения агломератов.

Наномодификатор в виде нанопорошка диоксида циркония, стабилизированного оксидом иттрия, вводили в пенополиуретан следующим образом: в емкости 0,5-0,55 литра, содержащие компонент А, небольшими порциями вводили 108 г наномодификатора, стабилизированного оксидом иттрия, и параллельно в аналогичные емкости 0,5-0,55 литра, содержащие компонент А, вводили 108 г наномодификатора, стабилизированного оксидом алюминия, что соответствовало в каждом случае по 0,5 мас. % от общей массы получаемой плиты.

Для предотвращения возможной агломерации наномодификатора полученные смеси обрабатывали ультразвуком в ультразвуковой бане (модель УЗВ6)

Полученную таким образом часть компонента А с наномодификатором возвращали в заливочный бак к общей массе компонента А (исходным весом 9,5 кг), где происходило перемешивание смеси компонента А с наномодификатором с основным объемом компонента А и компонентом Б.

Смешивание осуществлялось под высоким давлением (115 атм) в смесительной головке машины при встречном соударении компонентов в условиях высокоточной дозировки. Полученную таким образом смесь равномерно распределяли на пресс-форме с помощью набора форсунок с площадь сечения 0,196 мм2, после чего оставляли для затвердевания на 40 мин под прессом.

Прочностные испытания наномодифицированного пенополиуретана на сжатие проводились в соответствии с ГОСТ-3206-78, испытания на статический изгиб в соответствии с ГОСТ-18564-73.

Пример 2.

В соответствии с ТУ 5.967-11666-98, исходными компонентами для производства пенополиуретана были: гидроксилсодержащий полиэфир - компонент А (изолан-252 + 0.8% викат-252) и отвердитель - изоцианат (МФИ) - компонент Б в соотношении компонентов А:Б=1:1,27 для заливки плиты массой 21,6 кг расходовали 9,5 кг изолана-252 и 12,1 кг изоцианата (МФИ).

Наномодификатор - нанопорошок диоксида циркония, стабилизированный оксидом алюминия, готовят методом золь-гель синтеза в варианте обратного соосаждения.

Применяли лиофильную сушку геля (например, на установке Labconco производства США), после чего полученный порошок прокаливали при температуре 550°C.

Перед введением наномодификатора в матрицу вспененного полиуретана производится его механическая активация с использованием планетарной мельницы Pulverisette 6 при 350 оборотах в минуту в течение 2 часов. Полученный порошок подвергался воздействию ультразвука с целью разрушения агломератов.

Наномодификатор в виде - нанопорошка диоксида циркония, стабилизированного оксидом иттрия, вводили в пенополиуретан в три отдельные емкости объемом 0,7 литра, отбирали примерно по 0,3-0,35 литра компонента А и небольшими порциями по 5-7 г. при постоянном перемешивании вводили в каждый объем 216 г, при этом суммарная масса из трех емкостей составляла 648 г и параллельно в три такие же емкости объемом 0,7 литра отбирали примерно по 0,3-0,35 литра компонента А и небольшими порциями по 5-7 г при постоянном перемешивании вводили в каждый объем общей массой 216 г наномодификатора, стабилизированного оксидом алюминия, при этом суммарная масса составила из трех емкостей в каждом случае 648 г, что соответствовало в обоих случаях 3,0 мас. % от общей массы получаемой плиты.

Для предотвращения возможной агломерации наномодификатора полученные смеси обрабатывали ультразвуком в ультразвуковой бане (модель УЗВ6)

Полученную таким образом часть компонента А с наномодификатором возвращали в заливочный бак к общей массе компонента А (исходным весом 9,5 кг), где происходило перемешивание смеси компонента А с наномодификатором с основным объемом компонента А и компонентом Б.

Смешивание осуществлялось под высоким давлением (115 атм) в смесительной головке машины при встречном соударении компонентов в условиях высокоточной дозировки. Полученную таким образом смесь равномерно распределяли на пресс-форме с помощью набора форсунок с площадью сечения 0.196 мм2, после чего оставляли для затвердевания на 40 мин под прессом.

Прочностные испытания наномодифицированного пенополиуретана на сжатие проводились в соответствии с ГОСТ-3206-78, испытания на статический изгиб в соответствии с ГОСТ-18564-73.

Результаты испытаний пенополиуретановых нанокомпозитов по сравнению со стандартным пенополиуретаном (плита теплоизоляционная ПТИ-252 по ТУ 5.967-11666-98 без добавок модификаторов) приведены в таблице 1.

Как следует из таблицы 1, предлагаемый способ получения пенополиуретанового нанокомпозита позволяет существенно улучшить механические свойства материала и повысить его температуру возгорания.

Технико-экономические показатели предлагаемого изобретения по сравнению с прототипом позволят увеличить срок службы и надежности изделий, изготовленных из предложенного пенополиуретанового нанокомпозита.

Источник поступления информации: Роспатент

Показаны записи 211-220 из 255.
18.05.2019
№219.017.59c4

Термопластичный эластомерный материал

Изобретение относится к резиновой промышленности и может быть использовано для изготовления различных экструзионных профилей и формованных гибких деталей. Материал выполнен из композиции, включающей каучук, термопласт, серную вулканизующую систему или смоляную вулканизующую систему на основе...
Тип: Изобретение
Номер охранного документа: 0002470962
Дата охранного документа: 27.12.2012
18.05.2019
№219.017.59f1

Конструкционный радиопоглощающий материал

Изобретение относится к области конструкционных радиопоглощающих материалов, которые используются для обеспечения электромагнитной совместимости бортовой аппаратуры, защиты персонала от электромагнитного излучения в СВЧ диапазоне. Предложенный конструкционный радиопоглощающий материал содержит...
Тип: Изобретение
Номер охранного документа: 0002456722
Дата охранного документа: 20.07.2012
18.05.2019
№219.017.59f5

Фиксатор положения лопастей

Изобретение относится к судостроению и авиастроению, в частности к конструкции систем управления движителем. Фиксатор положения управляемых лопастей включает управляющую тягу, расположенную в полой части вала, и установленный на корпусе гидроцилиндр. Шток гидроцилиндра кинематически связан с...
Тип: Изобретение
Номер охранного документа: 0002457147
Дата охранного документа: 27.07.2012
18.05.2019
№219.017.5b5e

Огнестойкий слоистый звукотеплоизолирующий материал

Изобретение относится к области создания слоистых звукотеплоизолирующих огнестойких материалов авиационного назначения, используемых в бортовой звукотеплоизолирующей конструкции пассажирских самолетов. Огнестойкий слоистый звукотеплоизолирующий материал содержит теплозвукоизолирующий и...
Тип: Изобретение
Номер охранного документа: 0002465145
Дата охранного документа: 27.10.2012
18.05.2019
№219.017.5b73

Способ получения волокнистого керамического материала

Изобретение относится к волокнистым керамическим материалам, которые способны выдерживать вибрационные нагрузки и градиент температур как по толщине материала, так и по его поверхности и которые предназначены для теплоизоляции металлических корпусов камер сгорания газотурбинных двигателей....
Тип: Изобретение
Номер охранного документа: 0002466966
Дата охранного документа: 20.11.2012
18.05.2019
№219.017.5b7e

Способ определения прочностных характеристик полимерных композиционных материалов

Использование: для определения прочностных характеристик полимерных композиционных материалов. Сущность изобретения заключается в том, что в полимерном композиционном материале контролируемого изделия с помощью излучающего преобразователя возбуждают импульсы ультразвуковых колебаний, принимают...
Тип: Изобретение
Номер охранного документа: 0002461820
Дата охранного документа: 20.09.2012
20.05.2019
№219.017.5cca

Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя

Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя содержит твердотопливный газогенератор с выпускным патрубком и воспламенителем и газификатор, имеющий полый корпус с впускной и выпускной полостями, расположенными на противоположных сторонах корпуса,...
Тип: Изобретение
Номер охранного документа: 0002688054
Дата охранного документа: 17.05.2019
20.05.2019
№219.017.5d69

Судно на подводных крыльях

Изобретение относится к судостроению и касается создания судов на подводных крыльях. Судно на подводных крыльях, имеющее корпус, движительный комплекс и комплекс подводных крыльев, оборудовано расположенным по обе стороны корпуса центропланом брызгозащитной конфигурации, простирающимся вдоль...
Тип: Изобретение
Номер охранного документа: 0002434778
Дата охранного документа: 27.11.2011
29.05.2019
№219.017.681a

Способ летного моделирования ручной визуальной посадки самолета на объект

Изобретение относится к области исследований устойчивости, управляемости и динамики посадки самолетов и может быть использовано в приборном оборудовании летательных аппаратов для повышения безопасности и сокращения сроков и стоимости летного обучения и летной отработки управляемости самолетов...
Тип: Изобретение
Номер охранного документа: 0002471151
Дата охранного документа: 27.12.2012
29.05.2019
№219.017.6909

Многоцелевая подводная станция (мпс)

Изобретение относится к области освоения минеральных ресурсов недр арктического шельфа. Многофункциональная подводная станция имеет семь отсеков, атомную энергетическую установку (7), лебедки, грузовой трюм (5), самоходную спасательную камеру, устройство для разрушения льда (9). В отсеках...
Тип: Изобретение
Номер охранного документа: 0002436705
Дата охранного документа: 20.12.2011
Показаны записи 191-196 из 196.
10.04.2019
№219.017.06e3

Огнестойкий теплоизоляционный конструкционный материал

Изобретение относится к противопожарной технике и касается огнестойкого теплоизоляционного конструкционного материала. Материал включает базальтовые волокна, связующее и наполнитель, дополнительно содержит микростеклосферы при следующем соотношении компонентов, мас.%: Изобретение позволяет...
Тип: Изобретение
Номер охранного документа: 0002424021
Дата охранного документа: 20.07.2011
19.04.2019
№219.017.3239

Способ создания конструкционного керамического материала

Изобретение относится к получению керамических и композиционных материалов, используемых в высокотемпературном газотурбостроении. Для получения конструкционного керамического материала готовят шихту, включающую следующие компоненты, мол. %: SiC - 53-62, BN - 3-7, Аl - 35-40, при этом в нее...
Тип: Изобретение
Номер охранного документа: 0002450998
Дата охранного документа: 20.05.2012
13.06.2019
№219.017.80d5

Устройство для приготовления мясных и рыбных блюд в ограниченном пространстве

Изобретение относится к устройствам приготовления мясных и рыбных блюд и может быть использовано на предприятиях общественного питания, в столовых воинских частей и камбузах морских судов. Устройство для приготовления мясных и рыбных блюд в ограниченном пространстве (УПМБ-1) содержит корпус и...
Тип: Изобретение
Номер охранного документа: 0002691242
Дата охранного документа: 11.06.2019
03.08.2019
№219.017.bc04

Способ очистки воды из открытых водоисточников с возможностью регулирования ее температуры

Изобретение относится к фильтрующим элементам и предназначено для очистки воды из открытых водоисточников. Технической задачей изобретения является придание возможности снижения количества микроорганизмов и бактерий методом очистки воды на этапе ее забора из поверхностных водоисточников, минуя...
Тип: Изобретение
Номер охранного документа: 0002696452
Дата охранного документа: 01.08.2019
30.10.2019
№219.017.dbca

Способ получения объемного композиционного материала никель - диоксид циркония с повышенной устойчивостью к окислению

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов на основе никеля. Может использоваться в авиастроении, автомобильной промышленности, а также при производстве турбин. Проводят отсев фракции никелевого порошка с размерами частиц не более 40 мкм,...
Тип: Изобретение
Номер охранного документа: 0002704343
Дата охранного документа: 28.10.2019
10.04.2020
№220.018.13c9

Способ получения порошкового композита на основе меди с улучшенными прочностными характеристиками

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов на основе меди. Может использоваться в электротехнической промышленности. Фракцию медного порошка с размерами не более 5,0 мкм смешивают с порошком терморасширенного графита в соотношениях...
Тип: Изобретение
Номер охранного документа: 0002718523
Дата охранного документа: 08.04.2020
+ добавить свой РИД