×
20.10.2015
216.013.86eb

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ БИДОМЕННОЙ СТРУКТУРЫ В ПЛАСТИНАХ МОНОКРИСТАЛЛОВ СЕГНЕТОЭЛЕКТРИКОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения монокристаллов сегнетоэлектриков с бидоменной структурой и может быть использовано в нанотехнологии и микромеханике при создании и работе приборов точного позиционирования, в частности зондовых микроскопов, лазерных резонаторов, а также при юстировке оптических систем. Способ заключается в образовании в пластине монокристалла сегнетоэлектрика двух монодоменных областей с противоположным направлением векторов поляризации доменов и бидоменной границей и включает бесконтактное размещение пластины монокристалла сегнетоэлектрика с плоскопараллельными гранями в бескислородной среде рабочего пространства камеры установки фотонного отжига между двумя светопоглощающими экранами, при этом большие грани пластины монокристалла сегнетоэлектрика расположены параллельно продольным осям светопоглощающих экранов. Далее в камере установки фотонного отжига формируют два встречных параллельных световых потока, направленных перпендикулярно большим граням пластины монокристалла сегнетоэлектрика и продольным осям светопоглощающих экранов. При этом мощность каждого светового потока задают из условий обеспечения полного прогрева пластины монокристалла сегнетоэлектрика в диапазоне температур не менее температуры Кюри и не более температуры плавления сегнетоэлектрика. Затем осуществляют дальнейший прогрев пластины монокристалла сегнетоэлектрика при заданных условиях и ее охлаждение. В изобретении достигается технический результат, заключающийся в обеспечении формирования бидоменной структуры толщиной более 0,4 мм с заданным положением и формой границы в пластинах из монокристаллических сегнетоэлектриков, при этом сформированные пластины из монокристаллических сегнетоэлектриков с бидоменной структурой обеспечивают повышение эффективности и стабильности преобразования электрического сигнала в механические упругие деформации, чувствительности, точности за счет отсутствия механического гистерезиса, ползучести и остаточных деформаций в широком интервале рабочих температур при высокой линейности характеристики «электрическое напряжение - механическая деформация». 6 з.п. ф-лы, 3 ил.

Изобретение относится к области получения монокристаллов сегнетоэлектриков с бидоменной структурой и может быть использовано в нанотехнологии и микромеханике при создании и работе приборов точного позиционирования, в частности зондовых микроскопов, лазерных резонаторов, а также при юстировке оптических систем.

Основным конструктивным элементом таких приборов любой модификации является электромеханическое устройство, которое преобразовывает электрическую энергию в управляемое движение, т.е. микроактюатор. К перспективным методам актюации следует отнести использование пьезоэлектрических биморфных элементов на основе бидоменных структур в монокристаллах сегнетоэлектриков.

Известен способ формирования доменной структуры в монокристаллической пластине нелинейно-оптического сегнетоэлектрика, например ниобата лития (RU 2371746, опубл. 27.10.2009), путем воздействия на нее высоким напряжением, приложенным между металлическими электродами, расположенными на противоположных полярных гранях пластины, причем один из них выполнен в виде структуры, состоящей из полос определенной конфигурации (полосовой электрод), для формирования доменной структуры соответствующей конфигурации. В способе на поверхность пластины с полосовым электродом воздействуют импульсным лазерным излучением, обеспечивающим неоднородный нагрев поверхностного слоя пластины и образование под полосовым электродом приповерхностных доменов при последующем охлаждении после окончания импульса лазерного излучения. Высокое напряжение прикладывают между электродами одновременно или после воздействия импульса лазерного излучения, в результате чего формируется доменная структура, состоящая из сквозных доменов в точном соответствии с рисунком полосового электрода.

Недостатком этого способа является невозможность создания бидоменной структуры с противоположно направленными векторами поляризации.

Известен способ формирования доменной структуры в монокристаллической пластине нелинейно-оптического сегнетоэлектрика, например ниобата лития (RU 2439636, опубл. 10.01.2012), путем воздействия на нее высокого напряжения, приложенного между металлическими электродами, расположенными на противоположных полярных гранях пластины. Один из электродов выполнен в виде структуры, состоящей из полос определенной конфигурации (полосовой электрод), для формирования доменной структуры соответствующей конфигурации. Перед нанесением электрода на полярную грань, противоположную полосовому электроду, дополнительно наносят слой диэлектрического покрытия.

Недостатком этого способа является возможность формирования только регулярной доменной структуры, состоящей из чередующихся доменов разных знаков. Такая структура не может быть использована в качестве рабочих элементов электромеханической деформации.

Известен способ формирования доменной структуры в монокристаллической пластине нелинейно-оптического сегнетоэлектрика, например ниобата лития, с помощью приложения электрического поля к полярным поверхностям пластины, на одну из которых нанесен диэлектрический слой, выполненный определенным рисунком (US 5756263, опубл. 26.05.1998). Согласно этому способу, на одной из полярных поверхностей наносят диэлектрический слой, в котором с помощью известных технологий фотолитографии формируется рисунок. К полярным поверхностям пластины прикладывают электроды (например, в виде жидкого электролита) и воздействуют электрическим полем определенной величины и длительности, достаточным для того, чтобы осуществить переключение спонтанной поляризации.

Недостатком этого способа также является возможность формирования только регулярной доменной структуры, состоящей из чередующихся доменов разных знаков. Такая структура не может быть использована в качестве рабочих элементов электромеханической деформации.

Прототипом предложенного изобретения является способ получения монокристаллов ниобата лития с бидоменной структурой (RU 2492283, опубл. 10.09.2013) для устройств нанотехнологии и микромеханики путем наложения электродов на две грани кристалла при нагреве до температуры фазового перехода - температуры Кюри под действием неоднородного электрического поля. Грани кристалла являются плоскопараллельными, кристалл ориентируют под углом z+36° к полярной оси, а электроды выполнены в виде системы параллельных струн. Согласно данному способу, электроды изготавливают из палладиевой пасты и наносят на пластины сапфира.

Недостатком этого способа является обеспечение формирования бидоменной структуры, толщина которой не может превышать 600 мкм. Это происходит вследствие того, что при высоких температурах глубина проникновения электрического поля в объем образца ограничена 200-300 мкм, благодаря возникновению при таких температурах свободных носителей заряда, экранирующих внешнее поле.

В изобретении достигается технический результат, заключающийся в обеспечении формирования бидоменной структуры толщиной более 0,4 мм с заданным положением и формой границы в пластинах из монокристаллических сегнетоэлектриков, при этом сформированные пластины из монокристаллических сегнетоэлектриков с бидоменной структурой обеспечивают повышение эффективности и стабильности преобразования электрического сигнала в механические упругие деформации, чувствительности, точности за счет отсутствия механического гистерезиса, ползучести и остаточных деформаций в широком интервале рабочих температур при высокой линейности характеристики «электрическое напряжение - механическая деформация».

Указанный технический результат достигается следующим образом.

Способ формирования бидоменной структуры в пластинах монокристаллов сегнетоэлектриков, заключающийся в образовании в пластине монокристалла сегнетоэлектрика двух монодоменных областей с противоположным направлением векторов поляризации доменов и бидоменной границей, включает бесконтактное размещение пластины монокристалла сегнетоэлектрика с плоскопараллельными гранями в бескислородной среде рабочего пространства камеры установки фотонного отжига между двумя светопоглощающими экранами. При этом большие грани пластины монокристалла сегнетоэлектрика расположены параллельно продольным осям светопоглощающих экранов.

Далее в камере установки фотонного отжига формируют два встречных параллельных световых потока, направленных перпендикулярно большим граням пластины монокристалла сегнетоэлектрика и продольным осям светопоглощающих экранов. При этом мощность каждого светового потока задают из условий обеспечения полного прогрева пластины монокристалла сегнетоэлектрика в диапазоне температур не менее температуры Кюри и не более температуры плавления сегнетоэлектрика.

Затем происходит дальнейший прогрев пластины монокристалла сегнетоэлектрика при заданных условиях и ее охлаждение.

В частном случае пластину монокристалла сегнетоэлектрика охлаждают с заданным градиентом температуры, меняющейся от минимального значения на противоположных больших гранях пластины монокристалла сегнетоэлектрика до максимального значения в области формирования бидоменной границы, например, с градиентом температуры 10°C/мм.

Также пластину монокристалла сегнетоэлектрика можно охлаждать с заданным градиентом температуры, меняющейся от максимального значения на противоположных больших гранях пластины монокристалла сегнетоэлектрика до минимального значения в области формирования бидоменной границы, например, с градиентом температуры 3°C/мм.

В частном случае пластина монокристалла сегнетоэлектрика выполнена из монокристалла ниобата лития LiNbO3.

Кроме того, бесконтактное размещение пластины монокристалла сегнетоэлектрика обеспечивается путем помещения брусков, выполненных из сапфира.

При этом светопоглощающие экраны выполнены в виде пластин из кристаллического кремния.

Также месторасположение и форма границы бидоменной структуры формируются за счет изменения интенсивности и мощности светового потока.

Изобретение поясняется чертежами, на которых на фиг. 1 изображена схема нагрева пластины монокристалла сегнетоэлектрика, на фиг. 2 и фиг. 3 изображено рабочее пространство камеры установки фотонного отжига (вид спереди и вид слева соответственно).

На фиг. 1 показаны пластина 1 монокристалла сегнетоэлектрика, например ниобата лития LiNO3, светопоглощающие кремниевые экраны 2, сапфировые бруски 3, входящие в кристалл световые потоки 4, тепловые потоки 5, 6, излучаемые кремниевыми экранами, тепловые потоки 7, выходящие из пластины через боковые грани.

Предложенное изобретение осуществляется следующим образом.

Пластину 1, имеющую плоскопараллельные грани, размещают в бескислородной среде рабочего пространства камеры 9 установки фотонного отжига (целиком установка на чертеже не показана) на держателе 8.

Неточности ориентировки пластины 1 относительно центра камеры 9 установки фотонного отжига могут приводить к искажению плоской формы междоменной границы и ухудшению эксплуатационных характеристик бидоменного элемента деформации.

Ориентировка граней пластины относительно полярных осей монокристалла сегнетоэлектрика выбирается из условия обеспечения заданной величины поперечной упругой деформации пластины.

В камеру 9 установки фотонного отжига пластину 1 помещают между двумя светопоглощающими кремниевыми экранами 2, располагая большие грани пластины 1 параллельно продольным осям экранов 2. Контакт между пластиной 1 и экранами 2 предотвращают посредством сапфировых брусков 3.

В камере установки фотонного отжига формируют два встречных параллельных световых потока 4, направленных перпендикулярно большим граням пластины 1 и продольным осям экранов 2.

Большие грани пластины 1 подвергают фотонному нагреву, облучая тепловыми потоками 5, часть энергии при этом переизлучается в направлении от пластины 1 посредством теплового потока 6 и не участвует в формировании бидоменной структуры. Мощность каждого светового потока задают из условий обеспечения полного прогрева пластины 1. Диапазон температур, обеспечивающий полный прогрев пластины 1, ограничивают нижним пределом не менее температуры Кюри и верхним пределом не более температуры плавления сегнетоэлектрика.

За счет создания однородных световых потоков 4 лампами с параболическими отражателями распределение температуры по объему экранов 2 является равномерным. Через торцевые грани пластины 1 отводятся тепловые потоки 7. Экраны 2 создают в объеме пластины 1 неоднородное температурное поле, симметричное относительно центра пластины 1. Тем самым, создаются условия, при которых пластину 1 можно представить в виде двух слоев, в которых градиент температуры направлен от поверхности к центру. Величина градиента температуры меняется по толщине пластины 1 и величина его максимальна на гранях пластины 1 и равна нулю в области формирования бидоменной границы.

Обеспечив полный прогрев пластины 1 при заданных условиях, проводят ее охлаждение. Охлаждение можно осуществлять с заданным градиентом температуры, меняющейся от минимального значения на противоположных больших гранях пластины монокристалла сегнетоэлектрика до максимального значения в области формирования бидоменной границы, например, с градиентом температуры 10°C/мм.

Также охлаждение можно осуществлять с заданным градиентом температуры, меняющейся от максимального значения на противоположных больших гранях пластины монокристалла сегнетоэлектрика до минимального значения в области формирования бидоменной границы, например, с градиентом температуры 3°C/мм.

В обоих случаях при охлаждении пластины 1 от температуры Кюри происходит формирование двух доменов с противоположными направлениями векторов поляризации и плоской междоменной границей. Направление векторов поляризации задаются распределением и ориентацией тепловых полей в пластине 1.

Поляризация монокристалла сегнетоэлектрика происходит благодаря тому, что при температуре фазового перехода коэрцитивная сила в монокристалле сегнетоэлектрика становится близкой к нулю и направления существующих в сегнетоэлектрике элементарных диполей кристаллической решетки выстраиваются в направлении внутреннего электрического поля, индуцированного объемным градиентом температуры. После уменьшения температуры ниже температуры фазового перехода их положение становится фиксированным.

Расположение и форма бидоменной границы в объеме пластины 1 задаются режимами нагрева и охлаждения, в частности, за счет изменения интенсивности и мощности световых потоков 4. Их также можно задавать при изменении положения пластины 1 в рабочем пространстве камеры установки фотонного отжига, толщины и геометрической формы светопоглощающих кремниевых экранов 2 и сапфировых брусков 3.

Конкретные примеры осуществления способа

Для изготовления экранов из пластин кристаллического кремния диаметром 100 мм и толщиной 500 мкм были вырезаны два экрана размерами 75×45 мм, соответствующие размеру держателя.

а. Образец в виде прямоугольной пластины монокристалла ниобата лития с размерами 20 мм (срез Z) на 20 мм (срез X) и толщиной 1,6 мм помещался между кремниевыми экранами через сапфировые бруски. Затем собранная конструкция помещалась в установку фотонного отжига.

В установке пластину монокристалла ниобата лития нагревали до температуры выше точки Кюри ниобата лития конгруэнтного состава - 1150°C в течение 40 минут, пластину выдерживали 5 минут, затем охлаждали до температуры 100-150°C в течение 90 минут.

б. Образец в виде прямоугольной пластины монокристалла танталата лития с размерами 20 мм (срез Z) на 20 мм (срез X) и толщиной 1 мм помещался между кремниевыми экранами через сапфировые бруски. Затем собранная конструкция помещалась в установку фотонного отжига.

В установке пластину монокристалла ниобата лития нагревали до температуры выше точки Кюри танталата лития 700°C в течение 40 минут, пластину выдерживали 5 минут, затем охлаждали до температуры 100-150°C в течение 50 минут.

в. Образец в виде прямоугольной пластины монокристалла ниобата лития с размерами 70 мм (срез Z +36°) на 20 мм (срез X) и толщиной 0,4 мм помещался между кремниевыми экранами через сапфировые бруски. Затем собранная конструкция помещалась в установку фотонного отжига.

В установке пластину монокристалла ниобата лития нагревали до температуры выше точки Кюри ниобата лития конгруэнтного состава - 1150°C в течение 40 минут, пластину выдерживали 5 минут, затем охлаждали до температуры 100-150°C в течение 90 минут.

Во время отжига происходило зарождение доменов у граней монокристалла, прорастание доменных границ по его объему и формирование одной доменной границы в середине пластины.

Исследования морфологии и визуализация полученной доменной структуры в кристаллах ниобата лития и танталата лития методами селективного травления, рентгеновской топографии и сканирующей зондовой микроскопии подтвердили, что в процессе отжига сформировалась устойчивая бидоменная структура.

Эффективность и стабильность преобразования электрического сигнала в механические упругие деформации на экспериментальном макете биморфного элемента, которым является пластина из монокристаллического сегнетоэлектрика (ниобата лития) размерами 70×20×0,4 мм при консольном закреплении характеризуется следующими параметрами: изменение деформации в интервале напряжений ±300 В составила ±300 мкм, остаточная деформация элементов не превышает 0,3%, линейность деформации не хуже 0,01% в диапазоне рабочих температур от комнатной до 850°C.

В предложенном изобретении изгибные деформации полученных бидоменных кристаллических структур характеризуются отсутствием механического гистерезиса, ползучести и остаточных деформаций в широком интервале рабочих температур при высокой линейности величины электрическое напряжение - механическая деформация.


СПОСОБ ФОРМИРОВАНИЯ БИДОМЕННОЙ СТРУКТУРЫ В ПЛАСТИНАХ МОНОКРИСТАЛЛОВ СЕГНЕТОЭЛЕКТРИКОВ
СПОСОБ ФОРМИРОВАНИЯ БИДОМЕННОЙ СТРУКТУРЫ В ПЛАСТИНАХ МОНОКРИСТАЛЛОВ СЕГНЕТОЭЛЕКТРИКОВ
СПОСОБ ФОРМИРОВАНИЯ БИДОМЕННОЙ СТРУКТУРЫ В ПЛАСТИНАХ МОНОКРИСТАЛЛОВ СЕГНЕТОЭЛЕКТРИКОВ
Источник поступления информации: Роспатент

Показаны записи 181-190 из 235.
10.07.2015
№216.013.5cc9

Способ пирометаллургической переработки меднолитейных шлаков

Изобретение относится к пирометаллургической переработке меднолитейных шлаков. Готовят шихту, содержащую шлак, графитированный коксик в количестве 10% от массы шлака, медный коллектор и карбонаты щелочных и щелочно-земельных металлов в качестве активатора процесса восстановления при расходе...
Тип: Изобретение
Номер охранного документа: 0002555294
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.602f

Способ получения тонкостенных труб на трубопрокатных агрегатах с трехвалковым раскатным станом

Изобретение относится к области обработки металлов давлением и касается производства бесшовных тонкостенных труб поперечно-винтовой прокаткой. Способ включает прошивку сплошной заготовки в полую гильзу в стане поперечно-винтовой прокатки на перемещаемой оправке и последующую раскатку гильзы в...
Тип: Изобретение
Номер охранного документа: 0002556164
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.648c

Способ исследования напряженного состояния массива горных пород

Изобретение относится к горному делу и предназначено для определения направления максимального напряжения в конструктивных элементах систем разработки относительно пробуренных в них контрольных скважин. Технический результат направлен на обеспечение возможности определения направления...
Тип: Изобретение
Номер охранного документа: 0002557287
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.648d

Способ определения напряжений в массиве горных пород

Изобретение относится к горному делу и может быть использовано для определения напряжений в массиве горных пород. Техническим результатом изобретения является определение факта превышения значением максимального главного напряжения критического уровня, равного или превышающего 0,9 от предела...
Тип: Изобретение
Номер охранного документа: 0002557288
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.648e

Установка для подготовки шахтного метана к утилизации

Изобретение относится к угольной промышленности и может быть использовано при подготовке шахтного метана к утилизации различными потребителями. Техническим результатом является повышение эффективности работы установки подготовки шахтного метана к утилизации, путем обеспечения возможности...
Тип: Изобретение
Номер охранного документа: 0002557289
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.65ca

Теплоноситель для солнечного коллектора

Изобретение относится к органическим теплоносителям, а именно к жидким пожаробезопасным теплоносителям на водно-гликолиевой основе, используемым для преобразования электромагнитного излучения Солнца в тепловую энергию для нагрева теплоносителя. Теплоноситель седиментационно устойчивый для...
Тип: Изобретение
Номер охранного документа: 0002557611
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.65cb

Запирающая прокладка для многопуансонного устройства высокого давления и высоких температур

Изобретение относится к области изготовления синтетических алмазов с использованием многопуансонных устройств высокого давления и касается запирающей прокладки для многопуансонных устройств высокого давления и высоких температур. Прокладка размещена между пуансонами многопуансонного устройства...
Тип: Изобретение
Номер охранного документа: 0002557612
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6894

Способ электролитического получения мелкодисперсных порошков серебра

Изобретение относится к порошковой металлургии. Мелкодисперсный порошок серебра получают электролизом раствора азотнокислого серебра с концентрацией серебра 15-60 г/дм и свободной азотной кислоты 5-20 г/дм при постоянном токе плотностью 1,5-2,0 А/дм. В качестве катодов используют титановые...
Тип: Изобретение
Номер охранного документа: 0002558325
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6982

Способ определения объема скважины

Изобретение относится к горному делу и может быть использовано для определения объема скважины, пробуренной в газоносных породных массивах, а также в измерительной технике для определения объема негерметичной емкости. Сущность способа заключается в том, что при определении объема скважины,...
Тип: Изобретение
Номер охранного документа: 0002558563
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69a8

Способ получения карбида хрома crc

Изобретение может быть использовано в металлургии. Для получения карбида хрома CrC смесь порошка хрома и сажи механически активируют в центробежной планетарной мельнице при ускорении шаров 25-45 g и соотношении шихта : шаровая загрузка по массе 1:20 в течение 30-40 мин. Затем шихту нагревают...
Тип: Изобретение
Номер охранного документа: 0002558601
Дата охранного документа: 10.08.2015
Показаны записи 181-190 из 244.
27.06.2015
№216.013.58a9

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением, а именно к оправке прошивного стана. Длина оправки равна длине прошиваемой заготовки. Уменьшение усилий на оправку, уменьшение разностенности изделий, устранение дефектов непрерывнолитой заготовки обеспечивается за счет того, что...
Тип: Изобретение
Номер охранного документа: 0002554238
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5b00

Способ упрочнения сырых железорудных окатышей

Изобретение относится к черной металлургии и может быть использовано для упрочнения сырых железорудных окатышей. Способ включает формирование окатышей путем окомкования влажной шихты в окомкователях для придания сырым окатышам прочности. Добавляемый в шихту бентонит перед указанными действиями...
Тип: Изобретение
Номер охранного документа: 0002554837
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5cc9

Способ пирометаллургической переработки меднолитейных шлаков

Изобретение относится к пирометаллургической переработке меднолитейных шлаков. Готовят шихту, содержащую шлак, графитированный коксик в количестве 10% от массы шлака, медный коллектор и карбонаты щелочных и щелочно-земельных металлов в качестве активатора процесса восстановления при расходе...
Тип: Изобретение
Номер охранного документа: 0002555294
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.602f

Способ получения тонкостенных труб на трубопрокатных агрегатах с трехвалковым раскатным станом

Изобретение относится к области обработки металлов давлением и касается производства бесшовных тонкостенных труб поперечно-винтовой прокаткой. Способ включает прошивку сплошной заготовки в полую гильзу в стане поперечно-винтовой прокатки на перемещаемой оправке и последующую раскатку гильзы в...
Тип: Изобретение
Номер охранного документа: 0002556164
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.648c

Способ исследования напряженного состояния массива горных пород

Изобретение относится к горному делу и предназначено для определения направления максимального напряжения в конструктивных элементах систем разработки относительно пробуренных в них контрольных скважин. Технический результат направлен на обеспечение возможности определения направления...
Тип: Изобретение
Номер охранного документа: 0002557287
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.648d

Способ определения напряжений в массиве горных пород

Изобретение относится к горному делу и может быть использовано для определения напряжений в массиве горных пород. Техническим результатом изобретения является определение факта превышения значением максимального главного напряжения критического уровня, равного или превышающего 0,9 от предела...
Тип: Изобретение
Номер охранного документа: 0002557288
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.648e

Установка для подготовки шахтного метана к утилизации

Изобретение относится к угольной промышленности и может быть использовано при подготовке шахтного метана к утилизации различными потребителями. Техническим результатом является повышение эффективности работы установки подготовки шахтного метана к утилизации, путем обеспечения возможности...
Тип: Изобретение
Номер охранного документа: 0002557289
Дата охранного документа: 20.07.2015
27.07.2015
№216.013.65ca

Теплоноситель для солнечного коллектора

Изобретение относится к органическим теплоносителям, а именно к жидким пожаробезопасным теплоносителям на водно-гликолиевой основе, используемым для преобразования электромагнитного излучения Солнца в тепловую энергию для нагрева теплоносителя. Теплоноситель седиментационно устойчивый для...
Тип: Изобретение
Номер охранного документа: 0002557611
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.65cb

Запирающая прокладка для многопуансонного устройства высокого давления и высоких температур

Изобретение относится к области изготовления синтетических алмазов с использованием многопуансонных устройств высокого давления и касается запирающей прокладки для многопуансонных устройств высокого давления и высоких температур. Прокладка размещена между пуансонами многопуансонного устройства...
Тип: Изобретение
Номер охранного документа: 0002557612
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6894

Способ электролитического получения мелкодисперсных порошков серебра

Изобретение относится к порошковой металлургии. Мелкодисперсный порошок серебра получают электролизом раствора азотнокислого серебра с концентрацией серебра 15-60 г/дм и свободной азотной кислоты 5-20 г/дм при постоянном токе плотностью 1,5-2,0 А/дм. В качестве катодов используют титановые...
Тип: Изобретение
Номер охранного документа: 0002558325
Дата охранного документа: 27.07.2015
+ добавить свой РИД