×
20.10.2015
216.013.85d0

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ КОМПОНЕНТОВ НАНОЭЛЕКТРОНИКИ С ИСПОЛЬЗОВАНИЕМ ШИРОТНО-ИМПУЛЬСНОЙ МОДУЛЯЦИИ ГРЕЮЩЕЙ МОЩНОСТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике измерения теплофизических параметров компонентов наноэлектроники, таких как нанотранзисторы, нанорезисторы и др.. Сущность: способ заключается в пропускании через объект измерения последовательности импульсов греющего тока с постоянным периодом следования и длительностью, изменяющейся по гармоническому закону, измерении в паузах температурочувствительного параметра - напряжения на объекте при пропускании через него измерительного тока и определении изменения температуры объекта, вызванной модуляцией греющей мощности. Далее с помощью Фурье-преобразования вычисляют амплитуду первой гармоники температуры объекта, после чего определяют тепловое сопротивление как отношение амплитуд первых гармоник температуры и греющей мощности. При этом при определении амплитуды первой гармоники греющей мощности учитывают величину рассеиваемой мощности в паузе между греющими импульсами при пропускании через объект измерительного тока. Технический результат: повышение точности. 2 ил.
Основные результаты: Способ измерения теплового сопротивления компонентов наноэлектроники с использованием широтно-импульсной модуляции греющей мощности, заключающийся в том, что через объект измерения пропускают последовательность широтно-импульсно модулированных импульсов греющего тока I с гармоническим законом модуляции и постоянным периодом следования Т, измеряют напряжение U на объекте измерения на вершине греющих импульсов и напряжение U в паузе между ними при протекании через объект измерения измерительного тока I, определяют амплитуду Р первой гармоники греющей мощности и изменение температуры объекта измерения T(t), затем с помощью Фурье-преобразования вычисляют амплитуду Т первой гармоники переменной составляющей температуры объекта измерения, после чего определяют тепловое сопротивление объекта измерения как отношение амплитуд первых гармоник температуры и греющей мощности, отличающийся тем, что учитывают величину рассеиваемой мощности в паузе между греющими импульсами при пропускании через объект измерения измерительного тока, и расчет амплитуды Р первой гармоники греющей мощности осуществляют по формуле где а - коэффициент модуляции импульсов, τ - средняя длительность импульсов, Т - период следования импульсов, I - амплитуда импульсов греющего тока через объект измерения, U - напряжение на объекте измерения на вершине греющих импульсов, I - величина тока через объект измерения в паузе между греющими импульсами, U - напряжение на объекте измерения в паузе между греющими импульсами.

Изобретение относится к технике измерения теплофизических параметров электронных компонентов и может быть использовано для контроля теплового сопротивления при разработке и производстве нанотранзисторов, нанорезисторов и других компонентов наноэлектроники.

Параметры разрабатываемых в настоящее время нанотранзисторов и других компонентов наноэлектроники очень чувствительны к изменению их температуры. При малых значениях теплоемкости компонентов наноэлектроники небольшая рассеиваемая мощность может вызвать существенный перегрев их активной области. Это требует контроля теплового сопротивления, характеризующего степень перегрева активной области компонента при единичной рассеиваемой мощности. Тем не менее, средств измерения теплового сопротивления компонентов наноэлектроники в настоящее время не существует (Афонский А.А., Дьяконов В.П. Электронные измерения в нанотехнологиях и микроэлектронике - М.: ДМК Пресс, 2011. С. 688).

Среди существующих способов измерения теплового сопротивления электронных компонентов известен способ измерения теплового сопротивления переход-корпус диодов СВЧ (ГОСТ 19656, 18-84 Диоды полупроводниковые СВЧ. Методы измерения теплового сопротивления переход-корпус и импульсного теплового сопротивления), заключающийся в том, что через объект пропускают импульсы греющей мощности фиксированной длительности и амплитуды, а в промежутках между импульсами измеряют изменение температурочувствительного параметра UТЧП - прямого напряжения полупроводникового диода при пропускании через него малого измерительного тока. Прямое напряжение полупроводникового диода при пропускании через него малого измерительного тока линейно зависит от температуры, что позволяет косвенно измерить температуру перехода, предварительно определив температурный коэффициент напряжения.

Недостатком способа является низкая точность, обусловленная большой погрешностью измерения импульсного напряжения UТЧП(t) из-за влияния переходных тепловых и электрических процессов при переключении полупроводникового диода из режима разогрева в режим измерения.

Наиболее близким по технической сущности к заявленному изобретению (прототипом) является способ измерения теплового импеданса полупроводниковых диодов (см. патент РФ №2402783. Способ измерения теплового импеданса полупроводниковых диодов, Б.И. №30, 2010 г.), суть которого заключается в следующем. Через полупроводниковый диод в прямом направлении пропускают последовательность импульсов греющего тока, длительность τ которых изменяется по гармоническому закону

где τ0 - средняя длительность импульсов; а - коэффициент модуляции; ω - частота модуляции. Период следования импульсов Тсл и амплитудное значение греющего тока Iгр на полупроводниковом диоде поддерживают постоянными. В промежутках между импульсами греющего тока через диод пропускают малый измерительный ток Iизм, измеряют температурочувствительный параметр UТЧП - прямое напряжение на p-n-переходе и при известном температурном коэффициенте напряжения КТ определяют изменения температуры p-n-перехода T(t), вызванные пропусканием через диод широтно-импульсно модулированных импульсов греющего тока

Среднюю за период следования Тсл греющую мощность определяют по формуле:

ге - среднее значение греющей мощности; Uгр - напряжение на объекте измерения на вершине греющих импульсов;

Р1ср·а - амплитуда переменной составляющей греющей мощности.

По результатам вычисления амплитуд первых гармоник температуры T1(ω) p-n-перехода и греющей мощности Р1(ω) определяют тепловое сопротивление RT(ω) на частоте модуляции ω по формуле

Недостатком прототипа является то, что при его применении для измерения теплового сопротивления компонентов наноэлектроники появляется значительная погрешность, обусловленная тем, что значение измерительного тока Iизм в паузе между греющими импульсами не является пренебрежимо малым по сравнению с амплитудным значением греющего тока Iгр, в результате чего амплитуда первой гармоники греющей мощности P1 и, как следствие, тепловое сопротивление RT определяются с существенной погрешностью.

Технический результат - повышение точности измерения теплового сопротивления компонентов наноэлектроники.

Технический результат достигается тем, что, как и в прототипе, через объект измерения пропускают последовательность импульсов греющего тока амплитудой Iгр и постоянным периодом следования Тсл, а в паузах между ними измеряют температурочувствительный параметр UТЧП при постоянном значении Iизм - величине тока через объект измерения в паузе между греющими импульсами. В качестве температурочувствительного параметра может быть использовано, например, электрическое сопротивление жгутов углеродных нанотрубок, которое линейно зависит от температуры (Z.J. Han, К. Ostrikov. Controlled electronic transport in single-walled carbon nanotube networks // Applied Physics Letters 2010, 96, 233115). По измеренным значениям UТЧП - напряжения на объекте измерения в паузе между греющими импульсами и Uгр - напряжения на объекте измерения на вершине греющих импульсов вычисляют амплитуды первых гармоник температуры T1 и рассеиваемой мощности Р1, отношение которых определяет тепловое сопротивление объекта измерения. В отличие от прототипа, в котором измерительный ток Iизм считают пренебрежимо малым по сравнению с греющим током Iгр, в заявляемом изобретении учитывают величину рассеиваемой мощности в паузе между греющими импульсами при пропускании через объект измерительного тока Iизм и расчет средней за период следования Тсл греющей мощности осуществляют по формуле

где Рср - среднее значение греющей мощности, которое с учетом (1) вычисляют по формуле

P1 - амплитуда первой гармоники переменной составляющей греющей мощности, которую с учетом (1) вычисляют по формуле

При расчете амплитуды первой гармоники P1 переменной составляющей греющей мощности используют допущение, что вариации напряжения на объекте, вызванные циклическим изменением его температуры, существенно меньше напряжения Uгр в момент протекания греющего тока (на вершине греющего импульса) и напряжения UТЧП в паузе между греющими импульсами, что позволяет при расчете Р1 по формуле (5) принять напряжения Uгр и UТЧП постоянными для всех греющих импульсов.

Зависимость тока I через объект измерения от времени представлена на фиг. 1а. Широтно-импульсная модуляция греющего тока Iгр, осуществляемая по гармоническому закону, вызывает соответствующие изменения рассеиваемой в объекте мощности график которой представлен на фиг. 1б. Модуляция греющей мощности вызывает соответствующие изменения температуры T(t) объекта измерения, сдвинутые по фазе относительно мощности (фиг. 1в). Изменение температуры вызывает соответствующие изменения температурочувствительного параметра UТЧП(t), например напряжения на жгуте из углеродных нанотрубок при протекании через него постоянного измерительного тока Iизм. Зависимость температурочувствительного параметра UТЧП(t) от времени представлена на фиг. 1г.

Для измерения теплового сопротивления компонентов наноэлектроники, например жгутов из углеродных нанотрубок, через объект пропускают последовательность широтно-импульсно модулированных импульсов греющего тока Iгр с гармоническим законом модуляции и постоянным периодом следования Тсл, измеряют напряжение Uгр на объекте измерения на вершине греющих импульсов и напряжение UТЧП в паузе между ними при протекании через объект измерительного тока Iизм, по формуле (5) определяют амплитуду P1 первой гармоники греющей мощности, а по формуле (2) - изменение температуры объекта T(t), затем с помощью Фурье-преобразования вычисляют амплитуду T1 первой гармоники переменной составляющей температуры объекта, после чего с помощью формулы (3) определяют тепловое сопротивление RT(ω) на частоте модуляции греющей мощности ω.

Предлагаемый способ может быть реализован с помощью устройства, структурная схема которого показана на фиг. 2. Устройство содержит источник 1 измерительного тока; формирователь 2 греющих импульсов, управляемый микроконтроллером 3; аналого-цифровой преобразователь 4, вход которого соединен с объектом измерения 5, а выход - с микроконтроллером 3.

Способ осуществляют следующим образом. С выхода формирователя 2 греющих импульсов на объект измерения 5 поступает заданное микроконтроллером 3 количество импульсов греющего тока Iгр, период следования Тсл которых постоянный, а длительность модулируют по гармоническому закону. Измеряют напряжение Uгр на вершине греющего импульса, а в паузах между греющими импульсами измеряют температурочувствительный параметр - напряжение UТЧП на объекте 5, возникающее при протекании через него измерительного тока Iизм, сформированного источником 1. Напряжение UТЧП с помощью аналого-цифрового преобразователя 4 преобразуют в цифровой код, поступающий в микроконтроллер 3, в результате чего в памяти микроконтроллера 3 формируют массив значений {UТЧП}, который затем преобразуют в массив температур {Т}. С помощью Фурье-преобразования вычисляют амплитуду T1 первой гармоники переменной составляющей температуры объекта. Используя измеренные значения напряжений на вершине греющих импульсов Uгр и в паузах между ними UТЧП, вычисляют амплитуду Р1 первой гармоники греющей мощности и далее определяют тепловое сопротивление объекта, равное отношению амплитуд первых гармоник температуры Т1 и греющей мощности Р1.

Повышение точности измерения теплового сопротивления компонентов наноэлектроники в заявленном способе достигается за счет того, что в отличие от прототипа, в нем при расчете амплитуды P1 первой гармоники греющей мощности учтена тепловая мощность, рассеиваемая в объекте в паузе между греющими импульсами при протекании через него измерительного тока.

Способ измерения теплового сопротивления компонентов наноэлектроники с использованием широтно-импульсной модуляции греющей мощности, заключающийся в том, что через объект измерения пропускают последовательность широтно-импульсно модулированных импульсов греющего тока I с гармоническим законом модуляции и постоянным периодом следования Т, измеряют напряжение U на объекте измерения на вершине греющих импульсов и напряжение U в паузе между ними при протекании через объект измерения измерительного тока I, определяют амплитуду Р первой гармоники греющей мощности и изменение температуры объекта измерения T(t), затем с помощью Фурье-преобразования вычисляют амплитуду Т первой гармоники переменной составляющей температуры объекта измерения, после чего определяют тепловое сопротивление объекта измерения как отношение амплитуд первых гармоник температуры и греющей мощности, отличающийся тем, что учитывают величину рассеиваемой мощности в паузе между греющими импульсами при пропускании через объект измерения измерительного тока, и расчет амплитуды Р первой гармоники греющей мощности осуществляют по формуле где а - коэффициент модуляции импульсов, τ - средняя длительность импульсов, Т - период следования импульсов, I - амплитуда импульсов греющего тока через объект измерения, U - напряжение на объекте измерения на вершине греющих импульсов, I - величина тока через объект измерения в паузе между греющими импульсами, U - напряжение на объекте измерения в паузе между греющими импульсами.
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ КОМПОНЕНТОВ НАНОЭЛЕКТРОНИКИ С ИСПОЛЬЗОВАНИЕМ ШИРОТНО-ИМПУЛЬСНОЙ МОДУЛЯЦИИ ГРЕЮЩЕЙ МОЩНОСТИ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ КОМПОНЕНТОВ НАНОЭЛЕКТРОНИКИ С ИСПОЛЬЗОВАНИЕМ ШИРОТНО-ИМПУЛЬСНОЙ МОДУЛЯЦИИ ГРЕЮЩЕЙ МОЩНОСТИ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ КОМПОНЕНТОВ НАНОЭЛЕКТРОНИКИ С ИСПОЛЬЗОВАНИЕМ ШИРОТНО-ИМПУЛЬСНОЙ МОДУЛЯЦИИ ГРЕЮЩЕЙ МОЩНОСТИ
Источник поступления информации: Роспатент

Показаны записи 121-130 из 261.
27.07.2015
№216.013.6882

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ получения многослойного покрытия для режущего инструмента включает вакуумно-плазменное нанесение многослойного покрытия, при этом наносят нижний слой из...
Тип: Изобретение
Номер охранного документа: 0002558307
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6883

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ включает вакуумно-плазменное нанесение многослойного покрытия, при этом наносят нижний слой из нитрида соединения титана, циркония и хрома при их...
Тип: Изобретение
Номер охранного документа: 0002558308
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6884

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ получения многослойного покрытия для режущего инструмента включает вакуумно-плазменное нанесение многослойного покрытия, при этом наносят нижний слой из...
Тип: Изобретение
Номер охранного документа: 0002558309
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6885

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ получения многослойного покрытия для режущего инструмента включает вакуумно-плазменное нанесение многослойного покрытия, при этом наносят нижний слой из...
Тип: Изобретение
Номер охранного документа: 0002558310
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6886

Способ обработки маложестких заготовок сложнопрофильных деталей

Изобретение относится к машиностроению и может быть использовано при поверхностном пластическом деформировании маложестких заготовок с криволинейными поверхностями. Устанавливают на опорных шариках в акустических концентраторах напротив друг друга по обе стороны заготовки сферические...
Тип: Изобретение
Номер охранного документа: 0002558311
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6887

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ получения многослойного покрытия для режущего инструмента включает вакуумно-плазменное нанесение многослойного покрытия, при этом наносят нижний слой из...
Тип: Изобретение
Номер охранного документа: 0002558312
Дата охранного документа: 27.07.2015
27.07.2015
№216.013.6888

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида титана. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002558313
Дата охранного документа: 27.07.2015
10.08.2015
№216.013.6948

Ремень безопасности для транспортного средства

Изобретение относится к ремню безопасности для транспортного средства. Ремень включает пряжку 1 с прорезью 2, сквозь которую с возможностью скольжения пропущена лямка 3 ремня, и язычковой защелкой 4, вводимой в запирающий пряжку замок 5, укрепленный на боковине 6 кресла 7. Перемычка 8 между...
Тип: Изобретение
Номер охранного документа: 0002558505
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6972

Узловое соединение стержневых элементов пространственной конструкции

Изобретение относится к области строительства, а именно к узловым соединениям в пространственных конструкциях покрытий. Технический результат изобретения заключается в упрощении монтажа узла за счет возможности соединения стержневых элементов при различных углах наклона к касательной плоскости...
Тип: Изобретение
Номер охранного документа: 0002558547
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6dcd

Ремень безопасности для транспортного средства

Изобретение относится к ремню безопасности для транспортного средства. Ремень включает пряжку 1 с прорезью 2, сквозь которую протянута лямка 3, и язычковой защелкой 4, вводимой в замок 5, укрепленный на боковине 6 сиденья 7. Перемычка между прорезью пряжки и ее наружним контуром выполнена в...
Тип: Изобретение
Номер охранного документа: 0002559667
Дата охранного документа: 10.08.2015
Показаны записи 121-130 из 432.
20.02.2014
№216.012.a353

Способ измерения теплового импеданса полупроводниковых диодов с использованием полигармонической модуляции греющей мощности

Изобретение относится к технике измерения теплофизических параметров полупроводниковых диодов. Способ измерения теплового импеданса полупроводниковых диодов, заключающийся в том, что через полупроводниковый диод пропускают последовательность импульсов греющего тока, период следования которых...
Тип: Изобретение
Номер охранного документа: 0002507526
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a379

Устройство сравнения двоичных чисел

Изобретение относится к вычислительной технике и может быть использовано в цифровых компараторах, ассоциативных процессорах и машинах баз данных. Техническим результатом является упрощение устройства за счет обеспечения однородности аппаратурного состава. Устройство сравнения двоичных чисел...
Тип: Изобретение
Номер охранного документа: 0002507564
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a418

Устройство для управления электрическим режимом дуговой сталеплавильной печи

Изобретение относится к электротермии, в частности к устройствам управления дуговыми сталеплавильными печами. Технический результат - снижение чувствительности системы управления дуговой сталеплавильной печи к изменяющимся параметрам процесса плавки, повышение стабильности режимов работы,...
Тип: Изобретение
Номер охранного документа: 0002507723
Дата охранного документа: 20.02.2014
10.03.2014
№216.012.a8ee

Способ получения объемных сложнопрофильных наноструктурных конструкционных и функциональных материалов

Изобретение относится к порошковой металлургии, в частности к получению объемных наноструктурных материалов. Пористую металломатричную основу формируют путем спекания в состоянии свободной засыпки полиморфных порошковых материалов дисперсностью 1-10 мкм. В основу, нагретую до температуры 0,4 от...
Тип: Изобретение
Номер охранного документа: 0002508961
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.a9d4

Устройство для удаления сосулек

Устройство для удаления сосулек относится к строительству крыш жилых и производственных зданий, исключающих опасность схода с крыши снега и льда. Устройство для удаления сосулек 1 с карниза 2 крыши 3 здания 4 содержит гибкие режущие элементы 5, расположенные вдоль карниза параллельно ему....
Тип: Изобретение
Номер охранного документа: 0002509191
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.a9d5

Устройство для сброса сосулек, наледи и снега со свеса кровли

Изобретение относится к области строительства, в частности к устройству для сброса сосулек, наледи и снега со свеса крыши. Технический результат изобретения заключается в повышении эксплуатационной надежности крыши. Устройство для сброса сосулек и наледи и слоя снега со свеса кровли здания...
Тип: Изобретение
Номер охранного документа: 0002509192
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.a9ee

Способ работы тепловой электрической станции

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях. Способ работы тепловой электрической станции характеризуется тем, что вырабатываемый в котле пар подают в турбину, паром отборов турбины нагревают сетевую воду в сетевых подогревателях, из...
Тип: Изобретение
Номер охранного документа: 0002509217
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.a9f2

Устройство для включения вентилятора

Устройство относится к области машиностроения и может быть использовано для включения и выключения вентилятора охлаждающей системы двигателей внутреннего сгорания. Устройство содержит чувствительный элемент, выполненный из ферромагнитного материала с точкой Кюри, равной критической температуре...
Тип: Изобретение
Номер охранного документа: 0002509221
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa03

Торсион для подрессоривания транспортного средства

Изобретение относится к системам подрессоривания транспортных средств. Торсион содержит упругий элемент, выполненный в виде цилиндрической пружины кручения с переменным шагом витков. Пружина размещена в цилиндрическом корпусе. Внутрь цилиндрической пружины помещен усеченный конусный шток....
Тип: Изобретение
Номер охранного документа: 0002509238
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa20

Контактный теплоутилизатор

Изобретение относится к теплоэнергетике и может быть использовано для конденсации паров, охлаждения газов водой, нагревания воды газами, охлаждения воды воздухом, мокрой очистки газов. Контактный утилизатор содержит входной патрубок горячих газов; штуцер для отвода нагретой воды; переливной...
Тип: Изобретение
Номер охранного документа: 0002509267
Дата охранного документа: 10.03.2014
+ добавить свой РИД