×
20.10.2015
216.013.8532

Результат интеллектуальной деятельности: СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ГЕРМАНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии выращивания монокристаллов германия из расплава методом Чохральского для изготовления оптических и акустооптических элементов инфракрасного диапазона длин волн, применяемых в качестве материала для детекторов ионизирующих излучений и для изготовления подложек фотоэлектрических преобразователей. В процессе вытягивания линейное перемещение кристалла ведут со скоростями 0,6-0,9 мм/мин в циклическом режиме, при этом вытягивают монокристалл из расплава вверх, затем опускают монокристалл в расплав. Соотношение линейного перемещения вверх - вниз составляет 2:1. Величину абсолютного перемещения вверх h за один цикл рассчитывают согласно математической формуле отношений диаметра тигля к диаметру кристалла в мм: h меньше или равно 1,5D/D. Способ позволяет получать кристаллы германия с низкой плотностью дислокаций - до 250 см. 4 пр.
Основные результаты: Способ выращивания монокристаллов германия из расплава по Чохральскому, включающий программирование скоростей вращения тигля и затравки, отличающийся тем, что линейное перемещение кристалла ведут со скоростями 0,6-0,9 мм/мин в циклическом режиме, включающем вытягивание из расплава - опускание в расплав монокристалла с соотношением перемещения вверх - вниз 2:1 при значении абсолютного перемещения вверх h за один цикл, рассчитанном согласно формуле: h≤1,50D/D, где h - величина перемещения вверх, мм; D - диаметр тигля, мм; D - диаметр кристалла, мм.

Изобретение относится к способам выращивания из расплава совершенных монокристаллов германия, применяемых для изготовления оптических и акустооптических элементов инфракрасного диапазона длин волн, в качестве материала для детекторов ионизирующих излучений, для изготовления подложек фотоэлектрических преобразователей.

Из уровня техники известен способ получения монокристаллов вытягиванием из расплавов по Чохральскому (Нашельский А.Я. Технология полупроводниковых материалов. 1987, С. 88-104), включающий плавление исходного материала в тигле и кристаллизацию его на монокристаллической затравке, поднимающейся в вертикальном направлении с вращением или без вращения.

Существенным недостатком способа является необходимость создания таких температурных условий выращивания, которые обеспечат получение монокристаллов с низким и контролируемым уровнем дефектов кристаллической структуры, возникающих в результате наличия неоднородного температурного поля. Для устранения таких эффектов применяют различного типа устройства и способы, обеспечивающие низкие градиенты температур в кристалле и расплаве на фронте кристаллизации, линейную зависимость градиента температур вблизи фронта кристаллизации, термообработку кристаллов после выращивания.

Известен способ выращивания монокристаллов германия из расплава методом Чохральского с использованием дополнительной термообработки монокристалла (Gafhi G., Azoulay М., Shiloh С. et al. Large Diameter Germanium Single Crystals for Infrared Optics // Optical Engineering. 1989. V. 28. №9. P. 1003-1007). Монокристаллы германия для оптического применения (инфракрасная оптика) диаметром до 200 мм выращиваются методом Чохральского и затем термообрабатываются. Цель термообработки заключается в повышении оптической однородности материала и уменьшении оптических потерь, для чего в монокристаллах анализируются оптические характеристики. Цель достигается путем применения отжига оптических образцов, который проводится путем нагрева до температуры 450°С, выдержки при этой температуре в течение нескольких дней и дальнейшем охлаждением до комнатной температуры со скоростью 2°С в минуту.

Однако авторами не проводился анализ структурных характеристик монокристаллов, не анализировалось распределение и количество дислокаций и других дефектов. Используемый авторами низкотемпературный (450°С) отжиг не может влиять на дислокационную структуру (уменьшая их количество), такое влияние может быть существенно только в области пластичности германия (при температурах выше 600°С), максимальный эффект будет наблюдаться вблизи температуры плавления (943°С). (Smirnov Yu. M., Ivanova A.I., Kaplunov I.A. Dislocation Formation and Motion in Germanium Single Crystals // Crystallografy Reports. 2008. V. 53. N7. P. 1133-1136.)

Известно, что дислокационная структура германия (дислокации и дислокационные дефекты типа малоугловых границ, линий скольжения) может приводить к существенному ухудшению рабочих параметров оптических изделий тепловизионной техники на основе германия (в частности, рассеянию инфракрасного излучения). При превышении уровня плотности дислокаций более 300 см-2 монокристаллы практически не применимы для изготовления на их основе подложек для самых эффективных в настоящее время фотоэлектрических преобразователей - каскадных многослойных фотоэлементов, в которых на подложку из совершенного монокристалла германия (диаметром 100 или 150 мм) осаждают полупроводниковые слои на основе А3В5.

Существует ряд способов выращивания из расплава методом Чохральского монокристаллов кремния (RU 2077615 С1, опубл. 20.04.1997), германия (RU 97101248 А, опубл. 10.02.1999; RU 99123739 А, опубл. 20.01.2002). Сущность способов включает, в том числе, изменение кинетических параметров процесса (скоростей вращения затравочного кристалла и тигля); результатом является повышение качества материала за счет более однородного распределения примесей, более точного поддержания диаметра кристалла.

Наиболее близким к заявленному техническому решению является способ выращивания монокристаллов методом Чохральского, включающий программирование скоростей вращения затравочного кристалла и тигля и позволяющий существенно стабилизировать процесс выращивания монокристаллов, повышая качество кристаллов, выход годной продукции (RU 2128250 С1, опубл. 27.03.1999).

Указанные способы выращивания монокристаллов, так же, как и прототип, имеют недостатки - способы напрямую не влияют на количество дислокаций и дислокационных дефектов.

В основу настоящего изобретения положена задача повышения выхода годной продукции за счет получения монокристаллов с минимальной концентрацией дефектов структуры.

Данная задача решается за счет того, что заявленный способ выращивания монокристаллов германия из расплава по Чохральскому включает программирование скоростей вращения тигля и затравки, при этом линейное перемещение кристалла может вестись со скоростями 0,6-0,9 мм/мин в циклическом режиме, включающем вытягивание из расплава - опускание в расплав монокристалла с соотношением перемещения вверх - вниз 2:1 при значении абсолютного перемещения вверх h за один цикл, рассчитанном согласно формуле: h≤1,5Dтигля/Dкристалла, где h - величина перемещения вверх, мм; Dтигля - диаметр тигля, мм; Dкристалла - диаметр кристалла, мм.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является снижение дефектов кристаллической структуры в монокристаллах германия (величины плотности дислокаций), выращиваемых из расплава, до средней величины 250 см-2.

Задача была реализована за счет применения специально разработанного цикла линейного перемещения верхнего штока с растущим кристаллом: использовалось цикличное вытягивание - опускание растущего монокристалла, причем соотношение линейной величины перемещений вверх - вниз составляло 2:1.

Термоупругие напряжения, которые являются причинами образования дислокаций, возникают в монокристаллах при выращивании в неоднородном температурном поле, которое характеризуется величиной градиентов температуры и величиной соотношения осевого и радиального температурных градиентов (наиболее существенное влияние оказывает величина радиального температурного градиента). Температурное поле в ростовой системе определяется конструкцией оснастки печи, геометрическими размерами кристалла, кинетическими характеристиками процесса (которые определяют скорость изменения тепловых потоков в системе расплав-кристалл-окружающая среда). Высокие скорости вытягивания приводят к появлению дислокаций; после возникновения отдельные дислокации способствуют генерации новых дислокаций, что обычно приводит к увеличению плотности дислокаций от верха кристалла к нижней его части.

Применение режима выращивания, связанного сначала с подъемом, а затем опусканием кристалла в расплав снижает вероятность образования и развития дислокаций в монокристаллах, а также способствует удалению из кристалла части дислокаций и равномерному распределению по кристаллу оставшихся дислокаций. Кристалл при опускании подплавляется, скрытая теплота кристаллизации влияет на перераспределение тепловых потоков. Это обеспечивает, во-первых, дополнительный отжиг участков кристалла вблизи фронта кристаллизации (при отжиге часть дислокаций выходит из кристалла). Во-вторых, такой процесс приводит к поддержанию низкого значения радиального температурного градиента в кристалле - до 0,5-1,0 К/см.

Таким образом, применяемый режим цикличного вытягивания - опускания кристалла обеспечивает получение монокристаллов с низкой плотностью дислокаций.

Технологический цикл выращивания монокристаллов германия с отжигом состоит в следующем. В графитный тигель установки загружают предварительно химически протравленный зонноочищенный германий. В затравкодержатель устанавливают монокристаллическую затравку, ориентированную в требуемом кристаллографическом направлении (обычно 〈111〉 или 〈100〉). Установку выращивания герметично закрывают. Включают подачу охлаждающей воды, в установке создают необходимый вакуум. Включают нагреватель сопротивления. Германий расплавляют. Температуру расплава снижают до температуры, соответствующей процессу затравления, выдерживают в таком состоянии 15-20 минут, после чего затравочный кристалл опускают в расплав. Путем снижения температуры и постепенного вытягивания монокристалла при угле конуса вытягивания 30° диаметр монокристалла доводят до требуемого, после чего производят рабочее выращивание монокристалла в осевом направлении.

Вытягивание кристалла производят со скоростью 0,6-0,9 мм/мин на заданную величину линейного перемещения, затем кристалл опускают в расплав с такой же скоростью на величину в 2 раза меньше.

При выращивании монокристаллов необходимо учитывать размеры оснастки, в частности размеры тигля. Экспериментально установленная величина перемещения кристалла зависит от соотношения диаметров тигля и кристалла и составляет примерно h≤1,5Dтигля/Dкристалла, где h - величина перемещения вверх, мм; Dтигля - диаметр тигля, мм; Dкристалла - диаметр кристалла, мм.

Циклы повторяют до достижения кристаллом заданной длины. Истинная скорость роста, таким образом, составляет примерно 0,2-0,3 мм/мин.

Вытягивают монокристалл до заданной длины, которая для таких процессов составляет обычно 100-150 мм, и производят отрыв кристалла от расплава с формированием нижнего конуса с углом примерно 30°. Затем температуру снижают, причем снижение до 730-750 К осуществляют со скоростью не более 60-80 К/ч. После полного остывания монокристалл извлекают, обрабатывают, определяют требуемые технические характеристики.

Примеры реализации заявляемого способа при выращивании монокристалла германия из тигля диаметром 230 мм.

Пример 1.

Монокристалл без применения изобретения:

диаметр - 90 мм; длина - 100 мм;

плотность дислокаций в верхней части 5000 см-2;

плотность дислокаций в нижней части верхней части 6000-7000 см-2;

скорость вытягивания: 0,9 мм/мин.

Пример 2.

Монокристалл без применения изобретения:

диаметр - 150 мм; длина - 110 мм;

плотность дислокаций в верхней части 4000-5000 см-2;

плотность дислокаций в нижней части верхней части 6000-7500 см-2;

скорость вытягивания: 0,7 мм/мин.

Пример 3.

Монокристалл с применением изобретения (с цикличным режимом вытягивания):

диаметр - 95 мм; длина - 110 мм;

плотность дислокаций в верхней части 200-210 см-2;

плотность дислокаций в нижней части верхней части 240-250 см-2;

скорость вытягивания (результирующая): 0,3 мм/мин;

величина перемещения вверх за цикл: 3,5 мм;

величина перемещения вниз за цикл: 1,75 мм.

Пример 4.

Монокристалл с применением изобретения (с цикличным режимом вытягивания):

диаметр - 150 мм; длина - 120 мм;

плотность дислокаций в верхней части 200-220 см-2;

плотность дислокаций в нижней части верхней части 210-250 см-2;

скорость вытягивания: 0,25 мм/мин.

величина перемещения вверх за цикл: 2,2 мм;

величина перемещения вниз за цикл: 1,1 мм.

Применение способа позволило существенно снизить плотность дислокаций в монокристаллах, применяемых в оптике, акустооптике и для изготовления подложек фотоэлектрических преобразователей.

Предложенный способ выращивания монокристаллов возможен к применению не только в опытных производствах, но и при серийном производстве в промышленности.

Способ выращивания монокристаллов германия из расплава по Чохральскому, включающий программирование скоростей вращения тигля и затравки, отличающийся тем, что линейное перемещение кристалла ведут со скоростями 0,6-0,9 мм/мин в циклическом режиме, включающем вытягивание из расплава - опускание в расплав монокристалла с соотношением перемещения вверх - вниз 2:1 при значении абсолютного перемещения вверх h за один цикл, рассчитанном согласно формуле: h≤1,50D/D, где h - величина перемещения вверх, мм; D - диаметр тигля, мм; D - диаметр кристалла, мм.
Источник поступления информации: Роспатент

Показаны записи 61-65 из 65.
22.05.2020
№220.018.1fe7

Хромсодержащий катализатор жидкофазного синтеза метанола и способ его получения

Изобретение относится к химической промышленности, а именно к производству гетерогенных катализаторов процесса жидкофазного синтеза метанола, и может быть применено на предприятиях химической промышленности для получения метанола, который используется в качестве растворителя, экстрагента и...
Тип: Изобретение
Номер охранного документа: 0002721547
Дата охранного документа: 20.05.2020
24.07.2020
№220.018.36e3

Маскирантно-кислотный слой индикаторной бумаги для определения нитрат-ионов

Изобретение относится к органическим соединениям, содержащим в своем составе одновременно кислотные и основные группировки, имеющим общее название – комплексоны, и может быть использовано в аналитической химии для изготовления химических индикаторов на твердофазных носителях, в частности, для...
Тип: Изобретение
Номер охранного документа: 0002727571
Дата охранного документа: 22.07.2020
12.04.2023
№223.018.4813

Способ получения стандартов сравнения для измерения электрокинетического (дзета) потенциала

Изобретение относится к способам приготовления стандартов сравнения для измерения электрокинетического (дзета) потенциала наночастиц коллоидных систем на основе супрамолекулярных растворов серосодержащих аминокислот, например, L-цистеина и N-ацетил-L-цистеина, и ацетата серебра. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002746992
Дата охранного документа: 23.04.2021
12.04.2023
№223.018.4820

Способ получения макропористой пленки для регенеративной медицины на основе l-цистеина, нитрата серебра и поливинилового спирта

Изобретение относится к области фармацевтики и медицины, а именно к способу получения макропористой пленки для регенеративной медицины на основе L-цистеина, нитрата серебра и поливинилового спирта. Способ включает смешивание водного раствора L-цистеина с водным раствором нитрата серебра при...
Тип: Изобретение
Номер охранного документа: 0002746882
Дата охранного документа: 21.04.2021
16.05.2023
№223.018.5e82

Способ выделения границ водных объектов и ареалов распространения воздушно-водной растительности по многоспектральным данным дистанционного зондирования земли

Изобретение относится к области изучения окружающей среды и касается способа выделения границ водных объектов и ареалов распространения воздушно-водной растительности по многоспектральным данным дистанционного зондирования Земли. Способ включает в себя радиометрическую калибровку снимка земной...
Тип: Изобретение
Номер охранного документа: 0002750853
Дата охранного документа: 05.07.2021
Показаны записи 51-51 из 51.
10.05.2023
№223.018.533f

Способ очистки сточных вод от эмульгированных масел

Изобретение относится к способам очистки сточных вод от эмульгированных масел, стабилизированных анионактивными эмульгаторами, и может быть использовано на предприятиях электротехнической промышленности, чёрной и цветной металлургии, тяжёлого машиностроения и приборостроения. Способ очистки...
Тип: Изобретение
Номер охранного документа: 0002795308
Дата охранного документа: 02.05.2023
+ добавить свой РИД