×
20.10.2015
216.013.834c

Результат интеллектуальной деятельности: ГРАДИЕНТНЫЙ МЕТАЛЛОСТЕКЛОПЛАСТИК И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО

Вид РИД

Изобретение

Аннотация: Изобретение относится к слоистым алюмополимерным композиционным материалам, предназначенным для применения в силовых элементах планера самолета и их ремонта, а также в других транспортных средствах. Градиентный металлостеклопластик, состоящий из внешних листов высокомодульного Al-Li сплава с пределом текучести в диапазоне 300-400 МПа и слоев стеклопластика на базе термореактивного клеевого связующего с армирующим наполнителем из стекловолокон в виде тканей или ровинга, который содержит внутренний лист из высокопрочного Al-Li сплава с пределом текучести более 500 МПа, причем каждый слой стеклопластика расположен между упомянутым внутренним листом и внешними листами, причем толщина внутреннего листа составляет 25-40% от общей толщины градиентного металлостеклопластика. Технический результат - создание высокопрочного слоистого градиентного композиционного материла на основе листов из двух типов градиентных высокомодульных Al-Li сплавов пониженной плотности и слоев стеклопластика, обладающего высокой статической прочностью (по пределу текучести), при сохранении повышенного модуля упругости, пониженной плотности, сопротивления усталостному разрушению и других эксплуатационных характеристик трещиностойкости. 2 н. и 3 з.п. ф-лы, 2 табл.

Изобретение относится к области слоистых алюмополимерных композиционных материалов, содержащих тонкие листы из алюминиевых сплавов и слои армированных полимерных композиционных материалов и применяемых в качестве конструкционного материала для силовых элементов планера самолета (обшивок, стрингеров, противопожарных перегородок фюзеляжа и крыла, панелей пола, соединительных лент, стопперов и др.) и их ремонта, а также для других транспортных средств.

Известен класс слоистых композиционных алюмополимерных материалов на основе алюминиевых листов и прослоек стеклопластика. Материалы этого типа, предложенные фирмой «AKZO» (Нидерланды) и обозначенные маркой Glare (Glass + Aluminium + Reinforced), состоят из тонких листов сплавов традиционных систем легирования Al-Cu (2024Т3 - типа Д16чТ), Al-Zn (7075Т6.Т76 - типа В95пчТ1Т2) и промежуточных слоев стеклопластика, которые содержат непрерывные стеклянные волокна и термопластичное или термореактивное связующее [Патент США №5,039,571].

На базе алюминиевых сплавов имеются российские слоистые алюмостеклопластики, обозначенные маркой СИАЛ (Стекло И Алюминий) [O.G. Senatorova, L.I. Anikhovskaya, J.N. Fridlyander, V.V. Sidelnikov, a.o Features of Al Laminate Behavior at Fatigue Loading. Proc. of ICAA-5, France, 1996].

Одним из основных недостатков этой серии слоистых алюмополимерных композиционных материалов, обусловленных свойствами слоев стеклопластика, является пониженный на 10-30% модуль упругости по сравнению с основными конструкционными алюминиевыми сплавами.

Кроме того, композиты обладают большей (до 8-10%) плотностью по сравнению с ранее разработанными слоистыми алюмоорганопластиками класса АЛОР (ARALL).

Наиболее близким по составу и назначению к предлагаемому изобретению является слоистый композиционный материал, состоящий из листов алюминий-литиевого высокомодульного сплава пониженной плотности и слоев стеклопластика на основе термореактивного связующего и армирующего наполнителя из высокопрочных стеклянных волокон [Патент РФ №2185964].

Использование в составе слоистого материала тонких листов из Al-Li сплава, предпочтительно системы Al-Li-Cu-Mg, с высоким модулем упругости (не менее 78 ГПа) и пониженной плотностью (не более 2620 кг/м3) вместо листов из традиционных среднепрочных сплавов типа дуралюмин системы Al-Cu-Mg с модулем упругости 71,5 ГПа и плотностью 2770 кг/м3, позволяет повысить в целом модуль упругости при растяжении и сжатии слоистого алюмостеклопластика на ~10% (до более 60 ГПа) и приблизить его к модулю для алюминиевых сплавов, а также дополнительно понизить плотность материала преимущественно до 2300-2400 кг/м3.

Для обеспечения монолитности слоя стеклопластика и его надежной связи с алюминиевыми листами и повышения температуры эксплуатации материала до 130°C применяется модифицированное термореактивное связующее с повышенной температурой отверждения (170-180°C).

К общим главным недостаткам этих слоистых алюмостеклопластиков двух групп относятся:

- слоистый композиционный материал имеет недостаточную статическую прочность (предел текучести) при достижении пониженной плотности и повышенной жесткости, что сужает область их применения;

- в структуре композиционного материала используются одинаковые тонкие алюминиевые листы (из одного сплава, размера, объемной доли), взаимосвязанные с величиной предела текучести и ограничивающие изготовление различных видов изделий.

Технической задачей и техническим результатом настоящего изобретения является создание высокопрочного слоистого градиентного композиционного материла на основе листов из двух типов градиентных высокомодульных Al-Li сплавов пониженной плотности и слоев стеклопластика, обладающего высокой статической прочностью (по пределу текучести), при сохранении повышенного модуля упругости, пониженной плотности, сопротивления усталостному разрушению и других эксплуатационных характеристик трещиностойкости для конструкционного применения в основных силовых элементах планера самолетов и изделий других транспортных средств.

Для достижения заявленного технического результата предложен градиентный металлостеклопластик, состоящий из внешних листов высокомодульного Аl-Li сплава с пределом текучести в диапазоне 300-400 МПа, и слоев стеклопластика на базе термореактивного клеевого связующего с армирующим наполнителем из стекловолокон в виде тканей или ровинга, отличающийся тем, что дополнительно содержит внутренний лист из высокопрочного Al-Li сплава с пределом текучести более 500 МПа, причем каждый слой стеклопластика расположен между упомянутым внутренним листом и внешними листами, причем толщина внутреннего листа составляет 25-40% от общей толщины градиентного металлостеклопластика.

Предпочтительно, в качестве внешнего листа Al-Li сплава используют сплав с плотностью не более 2620 кг/см3 и модулем упругости при растяжении не менее 78 ГПа.

Предпочтительно, в качестве внутреннего листа Al-Li сплава используют сплав с плотностью не более 2690 кг/см3 и модулем упругости при растяжении не менее 76 ГПа.

Предпочтительно, основа армирующего наполнителя выполнена из стеклянных волокон диаметром ⌀ 5-20 мкм, плотностью 2500-2580 кг/м3, с пределом прочности σв 4000-5000 МПа, модулем упругости при растяжении Е 85-100 ГПа.

Предпочтительно, в качестве термореактивного связующего он содержит связующее на основе смеси эпоксидных смол, модифицированное термопластичным материалом с повышенной температурой отверждения 170-180°C.

Настоящее изобретение поясняется чертежом

На фиг. 1 показана схема градиентного металлостеклопластика, где:

1 - внешний лист среднепрочного высокомодульного Al-Li сплава;

2 - термореактивное клеевое связующее с армирующим наполнителем из стекловолокон;

3 - внутренний лист высокопрочного высокомодульного Al-Li сплава.

Важнейшим преимуществом предлагаемого высокопрочного слоистого градиентного композиционного материала является его повышенная статическая прочность, как следствие присутствия внутренних симметрично расположенных неплакированных листов из высокопрочного Al-Li сплава с высоким пределом текучести. Это способствует расширению номенклатуры композиционного материала в целом. Разработанный металлостеклопластик является градиентным материалом, так как он состоит из нескольких слоев, уровень свойств которых систематически различается по толщине. Так, по краям у него листы среднепрочного Al-Li сплава, в центре лист из высокопрочного Al-Li сплава, а между ними прослойки стеклопластика.

Использование в составе композиционного материала внешних тонких листов из среднепрочного Al-Li сплава и слоев стеклопластика на базе модифицированного термореактивного связующего с различным стеклоармирующим наполнителем приводит к сохранению высокого сопротивления усталостному разрушению и других эксплуатационных характеристик трещиностойкости.

Использование в составе слоистого градиентного композиционного материала двух высокомодульных Al-Li сплавов пониженной плотности позволит достичь повышения жесткости и весовой эффективности от применения материала в конструкциях.

Предложенная регламентация соотношения толщин слоев внутреннего листа и материала в целом обеспечивает создание оптимального комплекса свойств композиционного алюмополимерного материала.

Существенным фактором является совместимость температурно-временных параметров отверждения двух градиентных Al-Li сплавов внешних и внутренних листов при повышенной температуре клеевого модифицированного связующего для создания надежной связи между металлическими листами и полимерными слоями, а также повышения температуры эксплуатации композиционного материала.

Указанное термореактивное клеевое связующее включает следующие компоненты: смесь эпоксидиановой смолы с одной из эпоксидных смол, выбранных из группы N,N-тетраглицидилпроизводное 3,3′-дихлор-4,4′-диаминодифенилметана, полиглицидилпроизводное низкомолекулярного фенол-формальдегидного новолака, триглицидилпроизводное парааминофенола, дициандиамид в качестве отвердителя и полиарилсульфон с концевыми гидроксильными группами, молекулярной массой 25000-45000 и температурой стеклования 190-260°C, являющийся продуктом нуклеофильной поликонденсации бис-(галогенарил)сульфонов с бисфенолом, которые взяты в следующем соотношении, мас.ч.:

смесь эпоксидиановой смолы с одной из эпоксидных
смол, выбранных из группы
N,N-тетраглицидил-производное 3,3′-дихлор-4,4′-
диаминодифенилметана, полиглицидилпроизводное
низкомолекулярного фенолформальдегидного новолака,
триглицидилпроизводное парааминофенола 59-120
дициандиамид 6-16
полиарилсульфон 10-35

Приготовление связующеего осуществляют следующим образом

В реактор загружают 50 мас.ч. эпоксидной смолы ЭД-20, 40 мас.ч. N,N-тетраглицидилпроизводное 3,3′-дихлор-4,4′-диаминодифенилметана и 25 мас.ч. полиарилсульфона с молекулярной массой 25000. Смесь нагревают при перемешивании до температуры 170-180°C. Затем в полученный расплав вводят 10 мас.ч. дициандиамида и осуществляют перемешивание до получения гомогенного состава. Затем полученный расплав охлаждают до комнатной температуры.

Примеры осуществления

В опытном производстве были отформованы пятислойные градиентные листы композиционного материала (см. фиг. 1) габаритами 500×500 мм, состоящие из двух внешних листов тонких (1), например толщиной (t=0,31 мм), предпочтительно односторонне плакированных листов из сред непрочного (σ0,2=340 МПа) высокомодульного (Е=80 ГПа) Al-Li сплава пониженной плотности (d~2600 кг/м3), и внутреннего листа (3) из другого высокопрочного (σ0,2=500 МПа) высокомодульного (Е=77 ГПа) Al-Li сплава пониженной плотности (d~2670 кг/м3), и двух слоев стеклопластика (2) с двунаправленной схемой армирования высокопрочными, высокомодульными стеклянными волокнами, распределенными в связующем на основе модифицированных эпоксидных смол.

Характеристики структуры и свойств компонентов заявленного (примеры 1-3) и известного (примеры 4, 5) слоистых композиционных материалов на основе алюминиевых листов и слоев стеклопластика представлены в таблице 1.

Алюминиевые листы (1, 3) подвергали предварительно обезжириванию, травлению, анодному окислению в хромовой или фосфорной кислотах, далее они были покрыты адгезионным грунтом с помощью распылителя. Листы после подготовки поверхности помещали на плиту и затем выполняли послойную укладку алюминиевых листов и монослоев препрегов в соответствии с требуемой ориентацией армирующих стеклянных волокон и направлением прокатки алюминиевых листов для создания необходимой структуры композиционного материала.

Формование листов композита проводили автоклавным способом (автоклав «Шольц» с рабочим пространством ⌀ 800×2000 мм) при повышенной температуре отверждения модифицированного связующего.

Микроструктуру и регламентированные соотношения листов (1, 3) и слоев стеклопластика (2), структура и объемное содержание других компонентов в слоистых листах из полученных высокопрочных градиентных композиционных материалов оценивали на шлифах, вырезанных из разных зон, методами количественного микроструктурного анализа в оптических микроскопах.

Механические свойства исследовали на образцах, вырезанных из алюминиевых листов и слоистых градиентных композиционных материалов.

Механические свойства при растяжении (предел текучести σ0,2, модуль упругости Е) определяли на образцах с шириной рабочей части 15 мм в соответствии с ГОСТ 1497-84.

Трещиностойкость (скорость роста трещины усталости) изучали на образцах размерами 140×420 мм с исходным центральным отверстием ⌀ 4 мм и пропилом 2l0~6 мм при следующих условиях усталостного нагружения: σmax=120 МПа; R=0; f=5 Гц.

Плотность композитов определяли методом гидростатического взвешивания.

В таблице 2 показаны механические и физические свойства листов из заявленного (примеры 1-3) и известного (примеры 4, 5) слоистых композиционных материалов. Примеры 1-3 - с Al-Li внутренними высокопрочными различной толщины листами; пример 4 - с одинаковыми по толщине среднепрочными листами сплава системы Al-Li; пример 5 - с одинаковыми по толщине среднепрочными листами сплава 2024 системы Al-Cu.

Как свидетельствуют полученные и представленные в таблице 2 результаты, структура и состав предложенного высокопрочного слоистого алюмостеклопластика позволили повысить статическую прочность (до σ0,2≥400 МПа). При этом сохраняется пониженная плотность композита, высокий уровень модуля упругости, сопротивления развитию трещин усталости и обеспечивается повышенная температура эксплуатации.

Таким образом, предложенный высокопрочный, высокомодульный, легкий, трещиностойкий слоистый градиентный композиционный материал расширяет возможности производства деталей, обеспечивает повышение ресурса, надежности, весовой эффективности, жесткости, температурного диапазона эксплуатации изделий. Материал рекомендуется для изготовления листов, плит, гнутых профилей.

Слоистый высокопрочный градиентный композиционный материал на основе листов (1, 3) из двух типов градиентных высокомодульных Al-Li сплавов предпочтительно пониженной плотности и слоев стеклопластика (2) предназначен в качестве эффективного, практически реализуемого конструкционного материала для основных элементов планера самолета (обшивок, стрингеров, противопожарных перегородок фюзеляжа и крыла, панелей пола, соединительных лент и др.) и их ремонта (как стоппер трещин), а также для изделий наземного транспорта и других транспортных средств, взамен конструкционных монолитных алюминиевых сплавов и слоистых материалов серии GLARE.


ГРАДИЕНТНЫЙ МЕТАЛЛОСТЕКЛОПЛАСТИК И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО
Источник поступления информации: Роспатент

Показаны записи 331-340 из 369.
06.06.2019
№219.017.7447

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для деталей горячего тракта газотурбинных двигателей и установок. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод 0,005-0,18, хром 13-15,...
Тип: Изобретение
Номер охранного документа: 0002690623
Дата охранного документа: 04.06.2019
09.06.2019
№219.017.76b2

Теплостойкий пеногерметик

Описывается теплостойкий пеногерметик, включающий полиорганосилоксановый каучук, оксид цинка, олигогидридсилоксан, аминосоединение и катализатор вулканизации, отличающийся тем, что в качестве полиорганосилоксанового каучука он содержит полидиметилметилфенилсилоксандиол, в качестве...
Тип: Изобретение
Номер охранного документа: 0002263130
Дата охранного документа: 27.10.2005
09.06.2019
№219.017.76ed

Препрег и изделие, выполненное из него

Изобретение относится к области высокопрочных композиционных материалов на основе волокнистых наполнителей и полимерных связующих, которые могут быть использованы в авиационной промышленности, в машино-, судостроении и других областях техники. Описывается препрег, включающий полимерное...
Тип: Изобретение
Номер охранного документа: 0002264295
Дата охранного документа: 20.11.2005
09.06.2019
№219.017.781e

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с монокристаллической структурой, таким как рабочие лопатки газотурбинных двигателей авиационной промышленности....
Тип: Изобретение
Номер охранного документа: 0002256716
Дата охранного документа: 20.07.2005
09.06.2019
№219.017.7824

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к созданию титановых сплавов, предназначенных для изготовления стрингеров, нервюр, шпангоутов, фюзеляжа, крыльев, двигателей самолета, а также для использования в качестве свариваемых материалов. Предложен сплав на основе титана и изделие,...
Тип: Изобретение
Номер охранного документа: 0002256713
Дата охранного документа: 20.07.2005
09.06.2019
№219.017.7826

Жаропрочный свариваемый сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным свариваемым сплавам на основе никеля, предназначены для изготовления корпусов, кожухов, теплозащитных экранов и других сварных узлов и деталей, работающих при температурах до 900°С. Предложен жаропрочный свариваемый сплав на...
Тип: Изобретение
Номер охранного документа: 0002256717
Дата охранного документа: 20.07.2005
09.06.2019
№219.017.7932

Защитное технологическое покрытие для сталей и сплавов

Изобретение относится к защитным покрытиям от окисления при технологических нагревах в процессе получения высококачественных деталей и полуфабрикатов из сталей и сплавов. Технический результат изобретения заключается в повышении температуроустойчивости и теплоизоляционных свойств защитного...
Тип: Изобретение
Номер охранного документа: 0002345963
Дата охранного документа: 10.02.2009
09.06.2019
№219.017.796c

Способ получения литейных жаропрочных сплавов на никелевой основе

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на никелевой основе с применением различного вида отходов, и может быть использовано при получении шихтовых заготовок для литья изделий. Обеспечивается снижение в сплаве содержания вредных примесей,...
Тип: Изобретение
Номер охранного документа: 0002392338
Дата охранного документа: 20.06.2010
09.06.2019
№219.017.79c6

Способ получения высокотемпературного волокна на основе оксида алюминия

Изобретение относится к области теплозащитных материалов. Технический результат изобретения заключается в сокращении технологического цикла, повышении контролируемости процесса доведения волокнообразующего раствора до требуемой вязкости и стабильности химического состава и свойств получаемого...
Тип: Изобретение
Номер охранного документа: 0002395475
Дата охранного документа: 27.07.2010
09.06.2019
№219.017.79e6

Защитное технологическое покрытие для сталей и сплавов

Изобретение относится к защитным технологическим покрытиям для защиты сталей и сплавов от окисления при технологических нагревах и при термомеханической обработке давлением в процессе получения деталей. Технический результат изобретения заключается в понижении сцепления покрытия к сталям и...
Тип: Изобретение
Номер охранного документа: 0002312827
Дата охранного документа: 20.12.2007
Показаны записи 331-339 из 339.
11.05.2023
№223.018.53e2

Способ получения высокочистого мелкодисперсного металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния

Изобретение относится к порошковой металлургии, а именно к получению металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния, предназначенного для изготовления деталей газотурбинных двигателей методом аддитивного производства. Способ...
Тип: Изобретение
Номер охранного документа: 0002795434
Дата охранного документа: 03.05.2023
15.05.2023
№223.018.57be

Сплав на основе кобальта

Изобретение относится к области порошковой металлургии, а именно к сплавам на основе кобальта, предназначенным для изготовления деталей ГТД с рабочими температурами не менее 1100°С методом аддитивного производства из металлического порошка. Сплав на основе кобальта для изготовления деталей...
Тип: Изобретение
Номер охранного документа: 0002767961
Дата охранного документа: 22.03.2022
15.05.2023
№223.018.57e7

Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления

Изобретение относится к производству деталей малоразмерного газотурбинного двигателя (МГТД) с тягой до 150 кгс из металлопорошковых композиций сплавов марок никелевых ВЖ159, кобальтовых ВЛК1, алюминиевых АК9ч методом селективного лазерного сплавления. Способ включает создание электронной...
Тип: Изобретение
Номер охранного документа: 0002767968
Дата охранного документа: 22.03.2022
16.05.2023
№223.018.607b

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607c

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607d

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
20.05.2023
№223.018.67af

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным жаропрочным сплавам на основе никеля, предназначенным для литья деталей горячего тракта газотурбинных двигателей и установок, например соплового аппарата турбин, работающих в газовой среде при высоких напряжениях и температурах до...
Тип: Изобретение
Номер охранного документа: 0002794496
Дата охранного документа: 19.04.2023
21.05.2023
№223.018.695c

Жаропрочный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным сплавам на основе никеля, предназначенным для изготовления деталей газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 750°С. Жаропрочный литейный сплав на основе никеля содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002794497
Дата охранного документа: 19.04.2023
21.05.2023
№223.018.695e

Жаропрочный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным сплавам на основе никеля, предназначенным для изготовления деталей газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 750°С. Жаропрочный литейный сплав на основе никеля содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002794497
Дата охранного документа: 19.04.2023
+ добавить свой РИД