×
20.10.2015
216.013.832f

Результат интеллектуальной деятельности: КОМПОЗИЦИОННЫЙ СЛОИСТЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к авиастроительной промышленности, в частности к слоистым металлополимерным композиционным материалам, и касается композиционного слоистого материала и способа его получения. Материал содержит, по меньшей мере, два слоя алюминиевого сплава, причем каждый алюминиевый слой выполнен с анодированной поверхностью и, по меньшей мере, один чередующийся со слоями алюминиевого сплава слой углепластика, включающий эпоксидное связующее и углеродные волокна. Между слоем алюминиевого сплава и слоем углепластика расположен антикоррозионный слой, выполненный с возможностью защиты от электрохимической коррозии, включающий наполнитель и вышеуказанное связующее. Изобретение обеспечивает создание композиционного слоистого материала с повышенной антикоррозионной стойкостью и высокими механическими характеристиками, с модулем упругости не менее, чем у алюминиевого сплава и высокой межслойной адгезией. 2 н. и 4 з.п. ф-лы, 1 табл., 5 пр.

Изобретение относится к авиастроительной промышленности, в частности к слоистым металлополимерным композиционным материалам и способам их получения. Его используют в изделиях конструкционного назначения, например для обшивки фюзеляжа, створок, люков и рулей управления и стабилизаторов транспортных и пассажирских самолетов с целью уменьшения массы конструкций и увеличения срока эксплуатации при увеличении надежности и безопасности эксплуатации конструкции.

Создание материалов, позволяющих существенно снизить массу, повысить ресурс и безопасность эксплуатации конструкций - важная и постоянно актуальная проблема для авиационной техники. Возможности традиционных методов совершенствования свойств авиационных материалов имеют определенные пределы. Так, для металлических сплавов при увеличении прочности за счет оптимизации состава и структуры не происходит существенного повышения выносливости и стойкости к усталостному разрушению. Рост прочности обычно сопровождается повышением чувствительности к концентраторам напряжений, что может служить причиной преждевременного разрушения конструкции.

Известны металлополимерные композиционные слоистые материалы, состоящие из слоев алюминиевого сплава и слоев полимерных композитов на основе стеклянных, арамидных или углеродных волокон. Эти материалы имеют повышенные механические свойства по сравнению с листами алюминиевого сплава, а также обладают высокой трещиностойкостью при усталостном разрушении. В настоящее время за рубежом такие материалы применяются в конструкции самолетов гражданской авиации, в частности в конструкции самолетов фирмы Airbus (А-380, А-350). Наиболее часто за рубежом используются слоистые металлополимерные композиционные материалы «алюминий-стеклопластик» под маркой GLARE, в Российской Федерации его аналогом являются материалы, выпускаемые под маркой СИАЛ. Слоистый материал СИАЛ содержит слои алюминиевого сплава и слои стеклопластика, армированного стеклянными волокнами (Патент РФ №2185964, опубликованный 27.07.2002 г. ). Главным преимуществом СИАЛ и GLARE является низкая скорость развития и распространения трещин. Недостатком является низкое значение модуля упругости (60-70 ГПа), которое не превышает значения модуля упругости алюминиевого сплава.

Известен композиционный слоистый материал АЛОР, который предназначен для изготовления элементов конструкции авиационной техники, например для изготовления силовых деталей планера. Материал содержит слои алюминиевого сплава и слои органопластика, армированного высокопрочными арамидными волокнами (Патент РФ №2185963, опубликованный 27.07.2002). Недостатком слоистого материала АЛОР является его склонность к поглощению влаги из-за способности арамидных волокон поглощать воду. Поскольку влага является катализатором коррозионных процессов, это способствует снижению коррозионной стойкости слоистого материала.

Известен слоистый композиционный материал «алюминий-углепластик», изготавливаемый за несколько технологических этапов. Сначала изготавливают слои углепластика, затем производят подготовку поверхности алюминиевого сплава анодированием в фосфорной кислоте и на последнем этапе совмещают слои алюминия и углепластика с помощью клея (Патент KR №20010053778, опубликованный 02.07.2001 г. ). Недостатком данного материала является наличие в нем высоких термических остаточных напряжений из-за различия коэффициентов линейного термического расширения слоев металла и углепластика, что снижает механические и усталостные характеристики материала. Кроме того, в таком композите присутствуют дополнительные границы раздела между углепластиком и клеем, что является слабым звеном и уменьшает надежность материала.

Известно технологическое решение в области слоистых металлополимерных композиционных материалах «алюминий-углепластик» (Австралия, Технологический Ин-т г. Мельбурна. Авторы: G. Freischmidt и др. доклад 1998 г. ), в котором представлены результаты испытаний металлополимерного композита «алюминий-углепластик»: плотность - 2,2 г/см3, прочность при растяжении - 803 МПа, а модуль упругости -75,7 ГПа.

Наиболее близким аналогом по составу к заявляемому изобретению технологическое решение по слоистому композиционному материалу, который представляет собой чередующиеся с углепластиком слои алюминиевого сплава, которые имеют анодированную поверхность, полученную в хромовой кислоте. Материал имеет следующие свойства: модуль при растяжении - 72 ГПа, плотность - 2,3 г/см3 (Бразилия, Ins. de Aeronautica е Espaco, г. Сан-Пауло. Авторы: Е.С. Botelho и др. Composites part В: engineering, v. 37 № 2-3, pp. 255-263, 2006).

Недостатком материала-прототипа является пониженная коррозионная стойкость из-за вероятности возникновения гальванической коррозии вследствие различия химических потенциалов алюминиевого сплава и углепластика. Кроме того, процесс анодирования поверхности алюминиевого сплава в хромовой кислоте является экологически небезопасным, так как использование Сr6 вредит окружающей среде и обладает канцерогенным эффектом.

Наличие на металле защитного анодно-окисного покрытия не является препятствием для возникновения электрического тока при контакте углепластика и алюминиевого сплава. Наиболее опасным с точки зрения электрохимической коррозии является контакт алюминиевых сплавов с углепластиками, разность потенциалов с которыми достигает 1,5 В, при этом в большей степени уязвимы места контакта плоскостей из углепластика и алюминиевых сплавов и места постановки крепежа. Вода, которая поглощается полимерным композиционным материалом за счет адсорбции атмосферной влаги, также способствует возникновению коррозионных процессов. Для обеспечения коррозионной стойкости алюминиевого сплава в составе композита «алюминий-углепластик» в течение длительного хранения и эксплуатации, в процессе которых материал может подвергаться отрицательному воздействию климатических условий и различных коррозионных сред, необходимо исключить возможность возникновения электрохимического взаимодействия между листами алюминиевого сплава и слоями углепластика. Для обеспечения коррозионной стойкости использован разделительный антикоррозионный слой из стеклопластика на основе стеклянной ткани и связующего.

Техническим результатом предложенного изобретения является создание композиционного слоистого материала с повышенной антикоррозионной стойкостью и высокими механическими характеристиками, с модулем упругости не менее, чем у алюминиевого сплава, и высокой межслойной адгезией.

Для достижения технического результата предложен состав композиционного слоистого материала и способ его получения, а именно композиционный слоистый материал, содержащий, по меньшей мере, два слоя алюминиевого сплава, причем каждый алюминиевый слой выполнен с анодированной поверхностью и, по меньшей мере, один чередующийся со слоями алюминиевого сплава слой углепластика, включающий эпоксидное связующее и углеродные волокна, при этом между слоем алюминиевого сплава и слоем углепластика расположен антикоррозионный слой, выполненный с возможностью защиты от электрохимической коррозии, включающий наполнитель, выполненный из стеклоткани, и вышеуказанное эпоксидное связующее.

Композиционный слоистый материал может содержать слои алюминиевого сплава, выполненные из высокопрочного алюминиевого сплава.

Композиционный слоистый материал может содержать углеродные волокна, которые являются высокопрочными (карбонизированные волокна с температурой термообработки до 1500°C) или высокомодульными (графитизированные волокна с температурой термообработки до 2800°C).

Композиционный слоистый материал может содержать объемное содержание эпоксидного связующего в слое углепластика 35-45%.

Композиционный слоистый материал может иметь анодированную поверхность алюминиевого сплава, полученную путем анодирования в комбинированном электролите с наполнением в танине.

Способ получения композиционного слоистого материала заключается в том, что пропитывают эпоксидным связующим углеродные волокна и антикоррозионный слои, формируют заготовку композиционного слоистого материала путем послойной выкладки слоев алюминия, углепластика и антикоррозионного слоев, а затем осуществляется автоклавное формование или прессование указанной заготовки за один цикл прессования или автоклавного формования.

Использование антикоррозионных слоев с тем же эпоксидным связующим, что и в слое углепластика, позволяет создать градиентный переход между материалами различной химической природы и обладающими различными модулями упругости (алюминиевыми и углепластиковыми слоями). Благодаря этому создаются условия для обеспечения совместной работы слоев алюминиевого сплава и углепластика при механическом нагружении и уменьшения межслойных напряжений. Кроме создания градиентного перехода от углепластика к алюминиевому сплаву антикоррозионный слой выполняет задачу обеспечения надежной защиты алюминиевых слоев от электрохимической коррозии, предотвращая непосредственный контакт алюминиевого сплава и углепластика. В составе антикоррозионного слоя использовано тоже эпоксидное связующее, что и в слоях углепластиков, - это упрощает технологический процесс изготовления композита, благоприятно влияет на свойства слоистого композиционного материла, такие как адгезия между слоями и механические характеристики.

Использование в качестве подготовки поверхности анодно-окисного покрытия, наносимого в комбинированном электролите с наполнением в танине, обеспечивает экологическую безопасность технологического процесса и обеспечивает высокие адгезионные характеристики при создании слоистого металлополимерного композиционного материала «алюминий-углепластик».

Для изготовления заявляемого металлополимерного композиционного материала используется метод совместного формования пакета, состоящего из слоев алюминиевого сплава, слоев пропитанных эпоксидным связующим углеродного наполнителя и слоев, пропитанных эпоксидным связующим стеклянного наполнителя. Изготовление материала за одну технологическую операцию позволяет получать более монолитный и стабильный материал с менее дефектной структурой.

Примеры осуществления

Пример 1

Композиционный слоистый материал состоит: из трех листов алюминиевого сплава Д16-АТ (ОСТ 1.90166-75) толщиной 0,3 мм, двух слоев углепластика толщиной 0,5 мм из углеродного волокна в виде однонаправленной ткани с поверхностной плотностью 136 г/м2 с четырьмя разделительными слоями стеклопластика толщиной 0,02 мм и эпоксидного расплавного связующего. Пакет композиционного слоистого материала собирается следующем образом. На слой алюминиевого сплава Д16-АТ выкладываются слой препрега разделительного слоя и препрега армирующего наполнителя, которые накрываются еще одним разделительным слоем и слоем алюминиевого сплава. На второй слой алюминиевого сплава Д16-АТ также выкладываются слой препрега разделительного слоя и препрега армирующего наполнителя, которые накрываются еще одним разделительным слоем и слоем алюминиевого сплава. Материал получают методом прямого прессования или автоклавного формования. Изученный пример осуществления изобретения показал высокие механические характеристики: прочность при растяжении входит в диапазон 1000÷1100 МПа, модуль упругости при растяжении входит в диапазон 90÷100 ГПа, скорость роста трещин усталости dl/dN мкм/цикл (ΔΚ=31 МПа м1/2) равна 0,03. Все вышеуказанные значения механических характеристик реализуются при плотности 2,2 г/см3.

Пример 2

Композиционный слоистый материал состоит: из трех листов алюминиевого сплава Д16-АТ (ОСТ 1.90166-75) толщиной 0,3 мм, двух слоев углепластика толщиной 0,44 мм из углеродного волокна в виде равнопрочной ткани с поверхностной плотностью 240 г/м с четырьмя разделительными слоями стеклопластика толщиной 0,06 и эпоксидного расплавного связующего. Пакет композиционного слоистого материала собирается следующем образом. На слой алюминиевого сплава Д16-АТ выкладываются слой препрега разделительного слоя и препрега армирующего наполнителя, которые накрываются еще одним разделительным слоем и слоем алюминиевого сплава. На второй слой алюминиевого сплава Д16-АТ также выкладываются слой препрега разделительного слоя и препрега армирующего наполнителя, которые накрываются еще одним разделительным слоем и слоем алюминиевого сплава. Материал получают методом прямого прессования или автоклавного формования. Изученный пример осуществления изобретения показал высокие механические характеристики: прочность при растяжении входит в диапазон 400÷500 МПа, модуль упругости при растяжении входит в диапазон 40÷55 ГПа, скорость роста трещин усталости dl/dN мкм/цикл (ΔΚ=31 МПа м1/2) равна 0,05. Все вышеуказанные значения механических характеристик реализуются при плотности 2,2 г/см3.

Пример 3

Композиционный слоистый материал состоит: из трех листов алюминиевого сплава В95-АТ2 (опытный образец) толщиной 0,3 мм, двух слоев углепластика толщиной 0,5 мм из углеродного волокна в виде однонаправленной ткани с поверхностной плотностью 136 г/м2 с четырьмя разделительными слоями стеклопластика толщиной 0,02 и эпоксидного расплавного связующего. Пакет композиционного слоистого материала собирается следующем образом. На слой алюминиевого сплава В95-АТ2 выкладываются слой препрега разделительного слоя и препрега армирующего наполнителя, которые накрываются еще одним разделительным слоем и слоем алюминиевого сплава. На второй слой алюминиевого сплава В95-АТ2 также выкладываются слой препрега разделительного слоя и препрега армирующего наполнителя, которые накрываются еще одним разделительным слоем и слоем алюминиевого сплава. Материал получают методом прямого прессования или автоклавного формования. Изученный пример осуществления изобретения показал высокие механические характеристики: прочность при растяжении входит в диапазон 100÷1100 МПа, модуль упругости при растяжении входит в диапазон 90÷100 ГПа, скорость роста трещин усталости dl/dN мкм/цикл (ΔΚ=31 МПа м1/2) равна 0,03. Все вышеуказанные значения механических характеристик реализуются при плотности 2,2 г/см3.

Пример 4

Композиционный слоистый материал состоит: из трех листов алюминиевого сплава В95-АТ2 (опытный образец) толщиной 0,3 мм, двух слоев углепластика толщиной 0,44 мм из углеродного волокна в виде равнопрочной ткани с поверхностной плотностью 240 г/м2 с четырьмя разделительными слоями стеклопластика толщиной 0,06 и эпоксидного расплавного связующего. Пакет композиционного слоистого материала собирается следующем образом. На слой алюминиевого сплава В95-АТ2 выкладываются слой препрега разделительного слоя и препрега армирующего наполнителя, которые накрываются еще одним разделительным слоем и слоем алюминиевого сплава. На второй слой алюминиевого сплава В95-АТ2 также выкладываются слой препрега разделительного слоя и препрега армирующего наполнителя, которые накрываются еще одним разделительным слоем и слоем алюминиевого сплава. Материал получают методом прямого прессования или автоклавного формования. Изученный пример осуществления изобретения показал высокие механические характеристики: прочность при растяжении входит в диапазон 400÷600 МПа, модуль упругости при растяжении входит в диапазон 40÷60 ГПа, скорость роста трещин усталости dl/dN мкм/цикл (ΔΚ=31 МПа м1/2) равна 0,05. Все вышеуказанные значения механических характеристик реализуются при плотности 2,2 г/см3.

Пример 5

Композиционный слоистый материал состоит: из двух листов алюминиевого сплава Д16-АТ (ГОСТ 4784-84) толщиной 1 мм, одного слоя углепластика толщиной 0,14 мм из углеродного волокна в виде однонаправленной ткани с поверхностной плотностью 136 г/м2 с двумя разделительными слоями стеклопластика толщиной 0,02 и эпоксидного расплавного связующего. Пакет композиционного слоистого материала собирается следующем образом. На слой алюминиевого сплава Д16-АТ выкладываются слой препрега разделительного слоя и препрега армирующего наполнителя, которые накрываются еще одним разделительным слоем и слоем алюминиевого сплава. Материал получают методом прямого прессования или автоклавного формования. Изученный пример осуществления изобретения показал высокие механические характеристики: прочность при растяжении входит в диапазон 400÷500 МПа, модуль упругости при растяжении входит в диапазон 65÷70 ГПа.

У всех примеров изобретения отсутствовали какие-либо признаки поражения слоев алюминия электрохимической коррозией. В качестве алюминиевого слоя могут быть использованы другие алюминиевые сплавы (например, сплавы 1163, 1420 и др.).

В таблице 1 приведены составы заявляемого слоистого композиционного материала по примерам 1-5.

Указанное изделие может производиться доступными методами и на имеющемся оборудовании.

Источник поступления информации: Роспатент

Показаны записи 291-300 из 367.
19.04.2019
№219.017.2dc6

Способ получения литых трубных изделий из сплавов на основе никеля и/или кобальта

Изобретение относится к области металлургической промышленности. Способ включает плавление шихтовых материалов и заливку расплава в предварительно нагретую литейную форму, осуществляемые в двухкамерной вакуумно-индукционной печи. Заливку литейной формы расплавом осуществляют со скоростью 20-50...
Тип: Изобретение
Номер охранного документа: 0002344019
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dce

Способ получения алюминидного покрытия на поверхности изделия из жаропрочного сплава

Изобретение относится к металлургии и может быть использовано в авиационном и энергетическом турбиностроении для защиты лопаток турбин от высокотемпературного окисления и сульфидной коррозии. Размещают изделие и сплав на основе алюминия в зоне обработки. Создают вакуум в зоне обработки, подают...
Тип: Изобретение
Номер охранного документа: 0002348739
Дата охранного документа: 10.03.2009
19.04.2019
№219.017.2de0

Способ защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к способам получения алюминидных покрытий, и может быть использовано в авиационном и энергетическом турбиностроении для защиты от высокотемпературного окисления внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных...
Тип: Изобретение
Номер охранного документа: 0002349678
Дата охранного документа: 20.03.2009
19.04.2019
№219.017.2de1

Состав для получения покрытия

Изобретение относится к области машиностроения и металлургии и может использоваться в авиационном и энергетическом турбостроении для защиты деталей из сталей, никелевых и титановых сплавов от солевой и фреттинг-коррозии и контактного износа. Состав для получения покрытия на деталях,...
Тип: Изобретение
Номер охранного документа: 0002349681
Дата охранного документа: 20.03.2009
19.04.2019
№219.017.2e20

Керамический композиционный материал

Изобретение относится к керамическим композиционным материалам и может быть использовано в авиационной технике и машиностроении при изготовлении теплонагруженных деталей газотурбинных установок и двигателей газо-, нефтеперекачивающих, энергетических и транспортных систем и др., эксплуатируемых...
Тип: Изобретение
Номер охранного документа: 0002397969
Дата охранного документа: 27.08.2010
19.04.2019
№219.017.2e2a

Припой на основе никеля

Изобретение может найти применение при изготовлении деталей из деформированных и литых жаропрочных никелевых сплавов, в частности, для горячего тракта газотурбинных двигателей, таких как направляющие аппараты компрессоров и сопловые аппараты турбин. Припой имеет следующий состав, мас.%: Cr...
Тип: Изобретение
Номер охранного документа: 0002393074
Дата охранного документа: 27.06.2010
19.04.2019
№219.017.2e2f

Способ получения отливок

Изобретение относится к литейному производству. Способ включает заливку расплава в форму с последующим его охлаждением, предварительную механическую обработку отливок. Для создания разрежения отливку подвергают вакуумной обработке в автоклаве. Затем отливку под давлением 0,1-0,8 МПа пропитывают...
Тип: Изобретение
Номер охранного документа: 0002393053
Дата охранного документа: 27.06.2010
19.04.2019
№219.017.2e73

Композиционный материал и изделие, выполненное из него

Изобретение относится к композиционным материалам, а именно к композиционным материалам на основе стекломатриц, армированных углеродными волокнистыми наполнителями, используемым для изготовления теплонагруженных деталей, например бандажных колец, применяющихся в авиационной, космической технике...
Тип: Изобретение
Номер охранного документа: 0002310628
Дата охранного документа: 20.11.2007
19.04.2019
№219.017.2ebd

Способ нанесения цинковых покрытий

Изобретение относится к области электрохимического нанесения покрытий, в частности к локальному осаждению цинковых покрытий на токопроводящую поверхность деталей, например, для ремонта поврежденных цинковых покрытий. Способ включает электролитическое натирание поверхности анодом, к которому...
Тип: Изобретение
Номер охранного документа: 0002389828
Дата охранного документа: 20.05.2010
19.04.2019
№219.017.2ed9

Способ получения пористого истираемого материала из металлических волокон

Изобретение относится к области машиностроения, а именно к способам получения истираемых материалов из металлических волокон, и может быть использовано при изготовлении уплотнений проточной части компрессора и турбины газотурбинного двигателя, в газонефтеперекачивающих установках для...
Тип: Изобретение
Номер охранного документа: 0002382828
Дата охранного документа: 27.02.2010
Показаны записи 291-300 из 336.
27.04.2019
№219.017.3ca1

Теплостойкое термореактивное связующее для полимерной оснастки из полимерных композиционных материалов

Изобретение относится к теплостойкому связующему для полимерной оснастки из полимерных композиционных материалов, которое может быть использовано в изделиях авиакосмической техники. Теплостойкое термореактивное бисмалеимидное связующее содержит, мас.% от общей массы компонентов: бисмалеимид -...
Тип: Изобретение
Номер охранного документа: 0002686036
Дата охранного документа: 23.04.2019
29.04.2019
№219.017.4540

Сплав на основе интерметаллида nial

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической и направленной столбчатой структурами, таким как, например, сопловые лопатки, блоки сопловых лопаток,...
Тип: Изобретение
Номер охранного документа: 0002405851
Дата охранного документа: 10.12.2010
08.05.2019
№219.017.48f9

Металлокерамический композиционный материал на основе интерметаллидной матрицы и способ его получения

Изобретение относится к металлургии, а именно к высокотемпературным композиционным материалам на основе интерметаллидной матрицы для обеспечения двигателей повышенной мощности и ресурса. Металлокерамический композиционный материал с интерметаллидной матрицей на основе NiAl содержит, масс.%: Al...
Тип: Изобретение
Номер охранного документа: 0002686831
Дата охранного документа: 30.04.2019
09.05.2019
№219.017.4a54

Состав для удаления лакокрасочных покрытий с внешних металлических поверхностей

Изобретение относится к области материалов для лакокрасочной промышленности. Описан состав для удаления полимерных лакокрасочных покрытий с внешних металлических поверхностей, включающий растворитель метиленхлорид, загуститель, замедлитель испарения и разрыхлитель, который дополнительно...
Тип: Изобретение
Номер охранного документа: 0002686928
Дата охранного документа: 06.05.2019
18.05.2019
№219.017.5447

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение может быть использовано для получения деталей турбин авиационного и энергетического назначения. Устройство содержит вакуумную камеру, загрузочную шлюзовую камеру, направляющие для перемещения литейных форм, печь подогрева форм и плавильно-заливочную печь, расположенные в вакуумной...
Тип: Изобретение
Номер охранного документа: 0002267380
Дата охранного документа: 10.01.2006
18.05.2019
№219.017.5683

Полиимидное связующее для армированных пластиков, препрег на его основе и изделие, выполненное из него

Изобретение относится к области получения полиимидов, а именно к области получения полиимидного связующего для армированных пластиков. Полиимидное связующее представляет собой продукт взаимодействия диангидрида бензофенон-3,3′-4,4′-тетракарбоновой кислоты и м-фенилендиамина и модифицирующую...
Тип: Изобретение
Номер охранного документа: 0002394857
Дата охранного документа: 20.07.2010
18.05.2019
№219.017.56b8

Способ получения пористо-волокнистого металлического материала

Изобретение относится к способам получения пористых материалов из металлических волокон, а именно к способам получения волокнистых металлических материалов с высокой пористостью (до 95%) из жаростойких сплавов для звукопоглощающих конструкций горячего тракта газотурбинного двигателя на рабочие...
Тип: Изобретение
Номер охранного документа: 0002311262
Дата охранного документа: 27.11.2007
18.05.2019
№219.017.576d

Устройство для получения отливок из жаропрочных сплавов с монокристаллической структурой

Изобретение относится к области литейного производства. Устройство содержит керамическую форму, в основании которой выполнены затравочная полость с размещенной в ней монокристаллической затравкой, полость кристалловода и коническая стартовая полость, соединенная с полостью формы, образующей...
Тип: Изобретение
Номер охранного документа: 0002353471
Дата охранного документа: 27.04.2009
18.05.2019
№219.017.5826

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к созданию титановых сплавов, предназначенных для изготовления деталей и узлов авиакосмической и ракетной техники: баллонов, шпангоутов, лонжеронов, стрингеров, нервюр, деталей крепления и др. Сплав имеет следующий химический состав, мас.%: алюминий 4,3-6,8; ванадий...
Тип: Изобретение
Номер охранного документа: 0002304178
Дата охранного документа: 10.08.2007
18.05.2019
№219.017.5828

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической структурой. Изделиями могут быть сопловые лопатки, проставки соплового аппарата, крупногабаритные створки и другие детали ГТД...
Тип: Изобретение
Номер охранного документа: 0002304179
Дата охранного документа: 10.08.2007
+ добавить свой РИД