×
20.10.2015
216.013.830a

Результат интеллектуальной деятельности: СПОСОБ ТЕПЛОВАКУУМНЫХ ИСПЫТАНИЙ КОСМИЧЕСКИХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области космической техники. Устройство для тепловакуумных испытаний содержит стационарный цилиндрический криогенный экран, расположенный в вакуумной камере, пространственно позиционируемый экран (ППКЭ) с размероизменяемым кронштейном и приводом трехмерной дислокации. Способ тепловакуумных испытаний характеризуется наличием дистанционно перемещаемого ППКЭ с пространственно изменяемой геометрией формы. ППКЭ обеспечивает вариантное, дифференцированное криостатирование отдельных элементов и узлов КА. Техническим результатом изобретения является повышение скорости выхода испытательной установки на режим, достижение более низких температур для локальных участков испытываемого аппарата. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области космической техники и может быть использовано при наземных тепловакуумных испытаниях космических аппаратов (далее по тексту - КА) или их узлов и моделирования тепловых режимов в условиях космоса.

Тепловакуумные испытания КА широко используются для моделирования космических условий полета или условий пребывания на поверхностях, не имеющих атмосферу небесных тел (Луна, астероиды) (Колесников А.В., лекции по курсу «Испытания конструкций и систем космических аппаратов», МАИ, 2007).

Задача таких испытаний - проверка работоспособности аппаратуры и узлов в реальных космических условиях, определение теплофизических параметров отдельных частей и элементов КА, определение прочностных характеристик и уточнение математических моделей систем терморегулирования (Афанасьев, Экспериментальная отработка космических аппаратов, МАИ, 1999).

Методы и средства тепловакуумных испытаний разрабатываются и совершенствуются давно. Из достигнутого уровня техники известен способ испытания КА в цилиндрической вакуумной камере с создаваемым вакуумными насосами вакуумом порядка 10-6 мм рт.ст. и с охлаждаемыми жидким азотом до температуры минус 193°C стенками. Солнечное облучение имитируется излучателем (имитатором внешних тепловых потоков).

Важным обстоятельством, которое следует учитывать при проведении тепловых испытаний в вакуумных камерах с полным моделированием условий безграничного абсолютного вакуума, является обеспечение высокой степени черноты поверхности камеры, а жесткие требования к точности соблюдения тепловых режимов требуют специальной технологии охлаждения камер сжиженными газами (Вопросы теплообмена в космосе. Фаворский О.Н., Каданер Я.С. «Высшая школа», 1967 г., стр.141, рис.3.37).

Известен стенд для тепловых испытаний космических объектов (патент РФ 2172709, B64G 7/00, приоритет от 23.09.1999) с регулируемыми температурными полями, содержащий: вакуумную камеру с космическим объектом, установленным внутри нее; имитатор внешних тепловых потоков, состоящий из нескольких автономных секций нагревателей с регулируемой мощностью; устройство охлаждения стенок вакуумной камеры; систему вакуумирования, отличающийся тем, что в каждая секция имитатора внешних тепловых потоков, расположенная в камере, отделена друг от друга теплопоглощающими экранами, выполненными из экрановакуумной теплоизоляции (ЭВТИ), наружная поверхность которой имеет степень черноты ε≥0,9, что обеспечивает практически полное поглощение всех боковых тепловых излучений от нагревателей и конструкции фермы, тем самым обеспечивается моделирование регулируемого плоскопараллельного потока излучения, т.н. «плюсовой» режим испытаний.

Устройство охлаждения космических объектов в известном стенде выполнено в виде стационарно расположенных внутри вакуумной камеры криогенных экранов, во внутренние полости которых подают жидкий азот, охлаждающий экраны до температуры минус 186±3°C. При этом, исходя из физических характеристик жидкого азота, обеспечивается безвариантное захолаживание КА посредством передачи тепла в вакууме от объектов к экранам.

Задача, на решение которой направлено предлагаемое изобретение - повышение качества охлаждения до заданных температур аппаратуры и узлов испытуемого КА, расширение возможностей: экспериментальной стендовой отработки отдельных частей и элементов КА при тепловакуумных испытаниях в части обеспечения вариантности их криостатирования (поддержания температуры на поверхности КА в заданном диапазоне). Под качеством охлаждения здесь понимается комплексный критерий, характеризуемый скоростью выхода стенда на температурный режим, уровнем достигаемой температуры, равномерностью процесса криостатирования.

В этом аспекте в части заявленного способа авторами рассматривался известный способ тепловакуумных испытаний КА в вакуумной камере с имитацией внешних воздействий с осуществлением пространственного позиционирования объекта испытаний, заключающийся в размещении аппарата в вакуумной камере, вакуумировании камеры, захолаживании КА и облучении его наружных поверхностей тепловым потоком.

При этом направление указанного теплового потока в вакуумной камере постоянно, устройство для охлаждения камеры размещено стационарно, а изменение ориентации аппарата (вариантность) осуществляется посредством установки испытываемого объекта на трехстепенной поворотный стенд, обеспечивающий необходимые изменения положения объекта относительно имитатора внешних тепловых потоков и «космического холода» (см. О.Б. Андрейчук, Н.Н. Малахов. Тепловые испытания космических аппаратов. «Машиностроение», 1982, рис.3.28).

Однако техническое решение, связанное с изменением пространственной ориентации КА, размещаемого в вакуумной камере, имеет ряд существенных недостатков:

- при произвольных разворотах конструкция аппарата под действием силы тяжести подвергается значительным деформациям, величина которых соизмерима или превышает термодеформации, характерные для натурных условий эксплуатации КА, следовательно, последние не могут быть определены при тепловакуумной отработке КА.

- при испытании крупногабаритных КА рабочий объем вакуумной камеры часто не позволяет проводить необходимые развороты КА.

При выборе аналогов для заявленного устройства рассматривалось устройство: криогенный экран для термооптической вакуумной установки (патент SU 1839880, B64G 7/00, приоритет от 12.07.1982). В указанном устройстве экран выполнен в виде двух герметично соединенных между собой по торцевым кромкам тонкостенных зигованных оболочек с образованием между ними зазора для свободной циркуляции хладагента. При этом вакуумная установка снабжена двумя коаксиально расположенными криогенными экранами, у которых наружный экран охлаждается жидким азотом, а внутренний экран жидким гелием. При включении установки сначала производят захолаживание наружного экрана жидким азотом до заданной температуры от минус 173°C до минус 193°C и вакуумирование камеры, а затем осуществляют захолаживание внутреннего экрана жидким гелием до температуры порядка минус 270°C.

Авторами также рассматривалось устройство для глубокого охлаждения испытуемых КА или их узлов на испытательных стендах или в вакуумных камерах (патент 2469927 RU, 2011, НПО им. С.А. Лавочкина).

Устройство выполнено в виде криогенных экранов, во внутренние полости которых, одновременно с вакуумированием камеры, подают сжиженные газы (азот, гелий), охлаждающие криоэкраны до заданных значений низких температур.

Причем в известном криогенном экране, содержащем металлический радиатор с каналами для циркуляции хладоагентов, новым является то, что радиатор выполнен в виде плоской панели, на поверхности которой жестко закреплены две параллельно расположенные трубки с каналами для циркуляции хладоагентов, при этом одна из трубок подключена к источнику жидкого азота, а другая - к источнику жидкого гелия, что позволяет с помощью одного экрана обеспечивать несколько температурных режимов для захолаживания КА или их узлов на испытательных стендах или в вакуумных камерах и возможность в процессе одного испытания создавать различный температурный режим в разных локальных зонах испытательных установок для приближения условий испытаний КА к натурным условиям.

При этом, поскольку в вакуумной камере, как правило, устанавливают несколько экранов, то можно, например, в одном сеансе испытаний одни экраны захолаживать только жидким азотом, а другие сначала жидким азотом, а потом жидким гелием, а в следующем сеансе испытаний захолаживать жидким гелием уже другие экраны.

Конструкции рассматриваемых аналогов устройства существенно расширяют диапазон отрицательных температур при имитации натурных условий в процессе испытаний КА, однако, например, решение задач уточнения математических моделей систем терморегулирования КА, требующее точности в обеспечении дифференцированного теплового режима в локальных зонах испытательных установок, в случае стационарного расположения криопанелей в камере может быть достигнуто лишь с помощью сложного аппарата управления температурными полями, создаваемыми радиаторами с циркулирующими в них криоагентами, при этом стационарные криогенные экраны нечувствительны к геометрии поверхности КА, т.к. расположены на неравномерном удалении от нее.

Авторами проанализирован вариант тепловакуумных испытаний КА с использованием стенда (патент 2302983 RU, 2005, РКК Энергия), содержащего вакуумную камеру цилиндрической формы с системой вакуумирования, криогенный экран, расположенный вокруг КА, имитатор внешних тепловых потоков и систему управления режимами испытаний.

Для управления режимами испытаний в указанный стенд введены датчик давления, задатчик давления, исключающий конвективный теплообмен в вакуумной камере, датчик температуры, задатчик температуры холодного космоса, две схемы сравнения, схема совпадения, блок регуляторов напряжения, при этом вакуумная камера соединена с датчиком давления, а датчик температуры установлен на криогенном экране, выходы датчика давления и задатчика давления, исключающего конвективный теплообмен в вакуумной камере подключены к входам одной из схем сравнения, а выходы датчика температуры и задатчика температуры «холодного космоса» подключены ко второй схеме сравнения, выходы обеих схем сравнения подключены к входам схемы совпадения, выход которой соединен с системой управления включением блока регуляторов напряжения, выходы которого подключены к секциям имитатора внешних тепловых потоков.

Стенд работает следующим образом: камеру вакуумируют до значения давления, исключающего конвективный теплообмен, одновременно захолаживают криогенный экран до температуры минус 186°C, а с помощью системы управления формируют и изменяют тепловой поток вокруг неподвижного КА. Данный стенд и способ его работы приняты за прототип заявленного изобретения (способа и устройства его осуществления в совокупности).

Общими недостатками всех приведенных выше способов и устройств в части решения задачи, поставленной авторами настоящего изобретения, являются:

1. Неудовлетворительная равномерность охлаждения поверхности КА. Это обусловлено неравномерностью распределения теплоемкостных элементов поверхности КА, связанной с наличием на поверхности элементов сложной геометрии (антенн, излучателей, узлов двигательной установки).

2. Невозможность обеспечения качественного криостатирования отдельных локальных участков или деталей КА, находящихся, например, в местах, загораживаемых элементами конструкции технологической оснастки, размещаемой в вакуумной камере (стойки, площадка для размещения КА).

3. Значительное время выхода криовакуумных установок (особенно крупногабаритных) на режим испытаний. В связи с развитыми по контуру камеры поверхностями криогенных экранов удельные тепловые потоки имеют низкие значения.

Предлагаемое авторами изобретение, сохраняя достоинства аналогов и прототипа (наличие системы управления, имитатора внешних тепловых потоков), лишено указанных недостатков.

Поставленная задача решается за счет того, что согласно предлагаемому способу тепловакуумных испытаний КА, неподвижно закрепленного внутри вакуумной камеры, производят вакуумирование камеры до давления, исключающего конвективный теплообмен и захолаживание стационарно расположенного вокруг КА криогенного экрана до заданной температуры с помощью системы управления режимом испытаний, при этом перед включением в работу секций имитатора внешних тепловых потоков предлагается производить захолаживание до заданной температуры и дополнительного пространственно позиционируемого криогенного экрана (ППКЭ), имеющего пространственно изменяемую форму, который дистанционно перемещают к внешнему контуру КА на определенное расстояние и, тем самым, сокращая время выхода стенда на заданные режимы испытаний, обеспечивают дифференцированное захолаживание частей и элементов КА, поддерживая заданный температурный режим в разных локальных зонах объекта испытаний согласно задачам экспериментальной отработки КА, при этом захолаживать стационарный и позиционируемый экраны предлагается при помощи криоагентов с разной температурой кипения, например: азота и гелия, а после или до режима захолаживания производят включение имитатора внешних тепловых потоков и в дальнейшем «плюсовой» режим проводят попеременно с включением ППКЭ.

Устройство (стенд) для тепловакуумных испытаний КА, реализующее предлагаемый способ, содержит (как и в прототипе) вакуумную камеру цилиндрической формы с системой вакуумирования, по внутреннему контуру камеры установлен стационарный криогенный экран, имеется имитатор внешних тепловых потоков и система управления режимом захолаживания (режимами испытаний), при этом новым является то, что в вакуумной камере размещен подключенный к автономному источнику подачи криоагента пространственно позиционируемый с помощью размероизменяемого кронштейна и привода, закрепленного на стенке камеры, дополнительный криогенный экран с пространственно изменяемой геометрией формы.

Изобретение поясняется чертежами, которые не охватывают весь объем технического решения, а являются лишь иллюстрирующими материалами частного случая выполнения.

На чертеже (фиг.1) представлена схема размещения стационарного криогенного экрана и ППКЭ в вакуумной камере в составе устройства для тепловакуумных испытаний КА. При этом само устройство (стенд) для тепловакуумных испытаний КА содержит корпус вакуумной камеры 1, в который помещают испытываемый КА 2. По внутреннему контуру камеры размещен стационарный криогенный экран 3. В вакуумной камере 1 размещен имитатор внешних тепловых потоков 4. В камере также размещен ППКЭ 5, пространственно позиционируемый с помощью размероизменяемого кронштейна 6 и привода 7, закрепленного на стенке камеры через предназначенные для этого отверстия в криогенном экране. Имеется вакуумный насос 8 и система управления режимами испытаний (СУРИ) 9. В качестве СУРИ используется программное оборудование с набором программ.

На чертеже (фиг.2) представлена схема определения эффективности размещения ППКЭ на различных расстояниях от контура испытываемого КА.

На чертеже (фиг.3а и фиг.3б) представлены варианты пространственного изменения геометрии формы ППКЭ.

Для определения эффективности размещения ППКЭ рассматриваются два одинаковых экрана э1 и э2, расположенные на расстояниях r1 и r2 от источника излучения. Излучение для экранов осуществляется в разных пространственных углах - для первого угол ′Ω1, для второго угол ′Ω2. Относительный угол наклона источника и приемника излучения (экрана) равен φ.

ППКЭ, закрепленный на кронштейне, может иметь систему поворота вокруг оси кронштейна, таким образом, приобретая шесть степеней свободы пространственной ориентации. Крепление ППКЭ и кронштейна предпочтительно имеет тепловую изоляцию теплопроводностью не более 0,6 Вт\м*K.

ППКЭ предпочтительно исполняется в виде панели (панелей) радиатора с каналами для циркуляции криоагентов.

Пространственное позиционирование ППКЭ осуществляется предпочтительно с помощью как минимум одного привода 7 трехмерной дислокации, управляемого дистанционно.

Подача криоагентов в ППКЭ осуществляется предпочтительно с помощью гибких шлангов (на чертеже не показаны).

Циркуляционный насос системы подачи криоагента в ППКЭ предпочтительно вынесен за пределы вакуумной камеры.

Определение потребных для конкретного испытания параметров ППКЭ осуществляют в соответствии со следующими соотношениями. Рассмотрим источник излучения и два криогенных экрана, расположенных на разных расстояниях от источника (фиг.2). Согласно закону Ламберта (Теория тепломассообмена под ред. Леонтьева, 1979, стр.431) количество лучистой энергии в единицу времени dQφ пропорционально величине пространственного угла dΩ, в который происходит излучение и относительному углу наклона источника и приемника φ:

где En - поверхностная плотность потока излучения по направлению к нормали излучающей поверхности, Вт/м2;

dF - площадь поглощающей поверхности экрана, м2;

φ - относительный угол наклона источника и приемника теплового излучения;

dΩ - пространственный угол для площади dF, в который происходит излучение.

При dF→0, r2>>dF пространственный угол можно заменить телесным, для которого справедливо выражение:

где r - расстояние от источника до экрана, м.

Соответственно удельный тепловой поток будет обратно пропорционален квадрату расстояния от источника до экрана, r:

Эффективность (качество охлаждения) криогенных экранов будет расти в квадратичной зависимости по мере приближения экрана к источнику. Например, для двух одинаковых экранов, расположенных на расстояниях r и 2r, эффективность первого экрана будет в четыре раза выше второго. Увеличение отводимого теплового потока при сокращении расстояния между экраном и источником способствует сокращению времени охлаждения КА, τ в следующей зависимости:

где с - удельная теплоемкость охлаждаемого тела, Дж/кг·K.

m - масса охлаждаемого тела, кг;

ΔT - разница температур охлаждаемого тела в начале и конце процесса охлаждения, K;

Q - тепловой поток, Вт/с.

Поверхностная плотность потока излучения в соответствии с законом Стефана-Больцмана (Теория тепломассообмена под ред. Леонтьева, 1979, стр.429), определяется температурой излучателя:

где C - коэффициент излучения, Вт\м2·K4 (для абсолютно черного тела равен постоянной Стефана-Больцмана, С=5,67×10-8 Вт\м2·K4);

Ти - температура излучателя, K.

Достигаемая в тепловом равновесии конечная температура тела определяется соотношением:

Соответственно конечная равновесная температура будет обратно пропорциональна величине пространственного угла. Позиционирование экрана вблизи испытуемого аппарата или узла позволяет достигать более низких температур и обеспечивать их заданный режим криостатирования.

Работа устройства (стенда) осуществляется следующим способом. Вакуумируют камеру до давления, исключающего конвективный теплообмен, с помощью вакуумного насоса 8. Одновременно с вакуумированием подают криоагент на стационарный криогенный экран 3 и на ППКЭ 5. Также одновременно с вакуумированием камеры 1 ППКЭ 5 перемещают к внешнему контуру испытываемого КА на расстояние r. Данное расстояние выбирают экспериментально, исходя из оптимальных температур на поверхности КА, заданных в технических условиях (ТУ) на испытания. При этом конструкция ППКЭ предпочтительно позволяет повторять конфигурацию поверхности конструкции КА в месте захолаживания за счет возможности изменения его формы, например, при помощи шарнирных узлов, при условии выполнения ППКЭ в виде набора отдельных криопанелей. Дистанционное управление положением ППКЭ позволяет создать в процессе испытаний локальные области качественного криостатирования, т.е. в определенное программой испытаний время отдельные участки испытываемого КА охлаждаются до заданного в ТУ значения температуры и обеспечивается ее поддержание в заданном диапазоне. Если программой испытаний предусмотрено моделирование «теплого случая» с учетом солнечного излучения, ППКЭ 5 отводят к внутреннему контуру камеры 1, подавая сигнал от СУРИ 9. Включают имитатор теплового потока 4. Если моделируется «холодный случай», ППКЭ 5 остается на месте до конца испытаний.

Требуемый теплоотвод обеспечивается близостью ППКЭ к контуру поверхности КА. Возможность установки экрана в заданном положении позволяет моделировать неравномерные температурные поля. Воздействие на аппарат нескольких экранов: стационарного и ППКЭ с разной температурой кипения криоагента позволяет обеспечивать вариантное криостатирование локальных частей испытываемого аппарата.

Таким образом, заявленные способ и устройство позволяют повысить скорость выхода стенда для тепловакуумных испытаний на заданный режим испытаний, достигать необходимых (например: сверхнизких, менее 4 K) температур для локальных участков испытываемого аппарата и обеспечивать их вариантное криостатирование, а также локально зонировать температурные поля на узлах и элементах КА, тем самым расширяя возможности экспериментальной отработки КА и его отдельных частей при испытаниях и максимально приближая условия испытаний КА к натурным условиям эксплуатации.


СПОСОБ ТЕПЛОВАКУУМНЫХ ИСПЫТАНИЙ КОСМИЧЕСКИХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ТЕПЛОВАКУУМНЫХ ИСПЫТАНИЙ КОСМИЧЕСКИХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ТЕПЛОВАКУУМНЫХ ИСПЫТАНИЙ КОСМИЧЕСКИХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
Источник поступления информации: Роспатент

Показаны записи 131-140 из 236.
04.04.2018
№218.016.3498

Регулируемый узел крепления

Изобретение относится к регулируемым узлам крепления конструкций с интерфейсом на стропах. Регулируемый узел крепления состоит из площадки со стропами, накладки и кронштейна, жестко фиксированных между собой с помощью крепежных элементов, а также внутреннего и внешнего кронштейнов, форма...
Тип: Изобретение
Номер охранного документа: 0002646041
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.354e

Солнечно-ветровая энергетическая установка

Изобретение относится к области возобновляемых источников энергии: ветровой и солнечной энергетики. Солнечно-ветровая энергетическая установка содержит неподвижную платформу, на которой в подшипниковой опоре установлен вертикальный вращающийся вал, на верхнем конце которого жестко закреплена...
Тип: Изобретение
Номер охранного документа: 0002645891
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.390a

Способ испытаний многозвенной механической системы космического аппарата на функционирование

Изобретение относится к наземным механическим испытаниям систем космического аппарата (КА). Для испытаний используют систему обезвешивания, связанную пружинами со звеньями отрабатываемой механической системы КА (например, солнечной батареи). При обезвешивании исключают взаимовлияния звеньев,...
Тип: Изобретение
Номер охранного документа: 0002646969
Дата охранного документа: 12.03.2018
10.05.2018
№218.016.39b6

Частотно-поляризационный селектор

Изобретение относится к области антенной техники, в частности к селекторам радиоволн. Частотно-поляризационный селектор содержит первый ортомодовый преобразователь, представляющий собой крестовой разветвитель, в плечах которого установлены емкостные фильтры нижних частот. На выходе первого...
Тип: Изобретение
Номер охранного документа: 0002647203
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.39d7

Способ питания нагрузки постоянным током в автономной системе электропитания космического аппарата

Использование: в области электротехники в автономных системах электропитания (СЭП) космических аппаратов (КА). Технический результат - повышение надежности эксплуатации КА путем ограничения величины кратковременного понижения выходного напряжения системы электропитания при отказе элементов,...
Тип: Изобретение
Номер охранного документа: 0002647120
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.39de

Способ заряда литий-ионной аккумуляторной батареи

Использование: в области электротехники. Техническим результатом является повышение эффективности использования литий-ионной аккумуляторной батареи при длительной ее эксплуатации. Согласно способу при проведении заряда литий-ионной аккумуляторной батареи из n последовательно соединенных...
Тип: Изобретение
Номер охранного документа: 0002647128
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.3bc3

Способ сборки космического аппарата

Изобретение относится к космической технике и может быть использовано при создании космических аппаратов (КА) различного назначения. В способе сборки КА на оснастку в форме трубы устанавливают опорные панели в плоскостях XOY, на опорные панели устанавливают с закреплением приборные панели,...
Тип: Изобретение
Номер охранного документа: 0002647404
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3bdb

Способ электрических проверок космического аппарата

Изобретение относится к наземным электрическим проверкам космических аппаратов (КА) при их изготовлении. В процессе проверок КА (1) используют: имитаторы ИБС (2) солнечных и имитаторы ИАБ (3) аккумуляторных батарей. В ИБС (2) и ИАБ (3) встроены ЭВМ, соответственно: (2-1) и (3-1). Количество...
Тип: Изобретение
Номер охранного документа: 0002647806
Дата охранного документа: 19.03.2018
10.05.2018
№218.016.3c2b

Способ электрических проверок космического аппарата

Изобретение относится к способу электрических проверок космического аппарата (КА). Для электрической проверки производят включение и выключение КА, подключение и отключение наземных имитаторов бортовых источников электропитания, автоматизированную выдачу команд управления, допусковое...
Тип: Изобретение
Номер охранного документа: 0002647808
Дата охранного документа: 19.03.2018
10.05.2018
№218.016.3cfb

Способ пайки волноводных трактов

Изобретение может быть использовано при изготовлении волноводных трактов. В процессе индукционного нагрева проводят дистанционное измерение температуры, по меньшей мере, в одной из точек поверхности трубы волновода и, по меньшей мере, в одной из точек фланца волновода с использованием...
Тип: Изобретение
Номер охранного документа: 0002647964
Дата охранного документа: 21.03.2018
Показаны записи 131-140 из 151.
10.05.2018
№218.016.3e63

Способ контроля качества системы терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА). Способ контроля качества СТР КА включает слив требуемой дозы теплоносителя в процессе заправки СТР теплоносителем и в дальнейшем периодический контроль наличия требуемой массы теплоносителя в жидкостном...
Тип: Изобретение
Номер охранного документа: 0002648519
Дата охранного документа: 26.03.2018
10.05.2018
№218.016.4b00

Блок подачи рабочего тела в реактивный двигатель космического аппарата

Изобретение относится к космической технике, а точнее к блоку подачи рабочего тела (РТ), например ксенона, в реактивный двигатель космического аппарата (КА). Блок подачи рабочего тела в реактивный двигатель космического аппарата, содержащий баллон высокого давления, заполненный РТ, например...
Тип: Изобретение
Номер охранного документа: 0002651703
Дата охранного документа: 23.04.2018
29.05.2018
№218.016.532b

Многоканальное токосъемное устройство

Изобретение относится к области электротехники, к многоканальным токосъемным устройствам миниатюрного исполнения. Многоканальное токосъемное устройство, имеющее несколько электрических цепей, состоит из корпуса и соосно-расположенного внутри него вала, на которых установлен набор чередующихся...
Тип: Изобретение
Номер охранного документа: 0002653703
Дата охранного документа: 14.05.2018
10.07.2018
№218.016.6f3d

Доплеровский измеритель скорости космического аппарата

Изобретение относится к радиотехнике и может быть использовано в системах радиосвязи для повышения точности измерения скорости движения космических аппаратов (КА). Достигаемый технический результат - повышение точности измерения скорости космического аппарата за счет уменьшения случайной...
Тип: Изобретение
Номер охранного документа: 0002660676
Дата охранного документа: 09.07.2018
19.10.2018
№218.016.942c

Способ изготовления статора электрической машины

Изобретение относится к технологии изготовления электрических машин и может быть использовано в электротехнической промышленности и приборостроении в космической технике. Задача изобретения - повышение качества изготовления статора, повышение выходных параметров электрической машины....
Тип: Изобретение
Номер охранного документа: 0002670094
Дата охранного документа: 18.10.2018
30.11.2018
№218.016.a1ef

Способ изготовления статора электрической машины

Изобретение относится к электротехнике, к технологии изготовления электрических машин, и может быть использовано в электротехнической промышленности и приборостроении. Технический результат состоит в повышении КПД электрической машины в целом путем повышения точности геометрических размеров,...
Тип: Изобретение
Номер охранного документа: 0002673450
Дата охранного документа: 27.11.2018
20.12.2018
№218.016.a941

Способ изготовления ротора электрической машины

Изобретение относится к области электротехники, а точнее к способам изготовления синхронных и шаговых электрических машин, в том числе для космических аппаратов (КА). Способ изготовления ротора электрической машины заключается в том, что переменно-полюсную магнитную систему, образованную путем...
Тип: Изобретение
Номер охранного документа: 0002675381
Дата охранного документа: 19.12.2018
23.02.2019
№219.016.c6ae

Способ работы электропривода с трехступенчатым планетарным редуктором

Изобретение относится к машиностроению и может быть использовано в качестве способа работы при реализации его в трехступенчатом планетарном редукторе. Способ реализован для примера в электроприводе с трехступенчатым планетарным редуктором, в котором передачу крутящего момента от быстроходного...
Тип: Изобретение
Номер охранного документа: 0002465496
Дата охранного документа: 27.10.2012
11.03.2019
№219.016.d891

Способ и устройство осушения воздуха для дегидрации волновода антенны

Предлагаемое изобретение относится к радиотехнике и предназначено для защиты волновода антенны от воздействия факторов окружающей среды, в частности от влаги и пыли, путем подачи в защищаемые полости осушенного воздуха под избыточным давлением. Согласно изобретению устройство содержит воздушную...
Тип: Изобретение
Номер охранного документа: 0002395138
Дата охранного документа: 20.07.2010
29.03.2019
№219.016.f816

Неосевой имитатор солнечного излучения тепловакуумной камеры

Изобретение может быть использовано при тепловакуумных испытаниях космического аппарата (КА) или его составных частей. Имитатор содержит входной иллюминатор, герметично встроенный в корпус тепловакуумной камеры, параболический коллимирующий отражатель для отражения имитируемого солнечного...
Тип: Изобретение
Номер охранного документа: 0002468342
Дата охранного документа: 27.11.2012
+ добавить свой РИД