×
10.10.2015
216.013.814e

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ДОБРОТНОСТИ РЕЗОНАНСНОГО КОНТУРА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

№ охранного документа
0002564699
Дата охранного документа
10.10.2015
Аннотация: Изобретение относится к измерительной технике. Способ измерения добротности резонансного контура заключается в возбуждении колебаний за счет положительной обратной связи в контуре, стабилизации этих колебаний за счет введения отрицательной обратной связи по их амплитуде с помощью схемы автоматического регулирования усиления с источником опорного сигнала. Добротность Q определяют по формуле Q=KU/U, где U - величина задаваемого напряжения опорного сигнала, а К - постоянная величина. Устройство содержит цепь положительной обратной связи, выполненную в виде последовательно включенных усилителя и устройства сдвига фазы, цепь отрицательной обратной связи, содержащую источник опорного сигнала и последовательно включенные детектор, дифференциальный усилитель и умножитель. Источник опорного сигнала соединен со входом дифференциального усилителя, второй вход умножителя соединен с выходом устройства сдвига фазы, вход детектора соединен с выходом устройства сдвига фазы. Устройство также содержит вычислительный блок, реализующий функцию K/V, где V - величина входного сигнала вычислительного блока. При этом вход вычислительного блока соединен с выходом дифференциального усилителя. Технический результат - повышение точности измерений. 2 н.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано при исследовании резонаторов различного типа, в частности микромеханических и пьезоэлектрических, а также микромеханических резонансных подвесов.

Резонаторы (резонансные контуры, резонансные цепи) различного типа широко применяются в различных областях техники. Одним из основных параметров, характеризующим резонаторы, является добротность.

Аналоги изобретения

Практически все применяемые методы определения добротности, как отмечается в работе [1], являются динамическими, связанными с изменением частоты сигнала, подаваемого на вход резонансного звена, и амплитуды выходного сигнала этого звена.

Например, в работе [2] описан способ измерения добротности резонатора, основанный на возбуждении в нем в полосе частот пропускания колебаний с линейно изменяющейся частотой и последующим определением добротности.

В работе [3] описан способ определения добротности, предусматривающий изменение частоты возбуждающего воздействия с заданной скоростью.

Способ измерения добротности, также предусматривающий свипирование подаваемого на резонатор сигнала, приведен в работе [4].

Недостатком описанных в указанных выше источниках способов является невозможность измерения добротности резонатора при его работе в контуре возбуждения колебаний на его резонансной частоте, что является наиболее часто используемым применением резонаторов.

Пример измерения добротности микромеханического резонатора приведены в работе [5]. В этой работе в резонаторе, образованном микромеханическими элементами, электродами возбуждения и измерительным электродом (соответственно именуемыми в работе - resonator beams, stimulus electrodes, response electrode) за счет положительной обратной связи, как показано на фиг. 2 этой работы, через усилитель с ограничением по выходу возбуждаются колебания на резонансной частоте, при этом амплитуда сигнала, поступающего на электроды возбуждения, остается постоянной. Измерение амплитуды выходного сигнала Авых с помощью стандартного мультиметра, показанного на фиг. 4, в этом случае позволяет определить добротность Q резонатора, которая оказывается пропорциональна Авых.

Пример измерения добротности микромеханического резонатора приведен в работе [6]. В этой работе добротность резонансного контура определяется с помощью анализатора цепей (фиг. 12) или измерителя амплитуды (фиг. 14).

В работе [7] приведена блок-схема (фиг. 4b) устройства возбуждения колебаний в резонаторе, которым является торсионный подвес инерционной массы микромеханического гироскопа по оси первичных колебаний. Показано, что в этой структуре, несмотря на значительные изменения добротности Q (Q изменяется более чем в два раза, как показано на фиг. 6), амплитуда колебаний резонатора остается практически постоянной (изменения не превышают 1-1,5%, фиг. 10). Можно отметить, что авторы проводили измерение добротности традиционным способом с использованием анализатора спектра (см. фиг. 4а).

Ближайшие аналоги (прототипы) предлагаемого изобретения

В качестве прототипа предлагаемого способа выбран способ измерения добротности, описанный в работе [5]. Способ-прототип заключается в следующем: в резонансного контуре за счет положительной обратной связи возбуждаются колебания на резонансной частоте, стабилизация амплитуды колебаний на входе резонансного контура осуществляется за счет применения в цепи обратной связи усилителя с ограничением выходного сигнала, а добротность определяется путем измерения амплитуды колебаний на выходе резонансного контура. Недостатком способа-прототипа является то, что при изменении добротности происходит изменение амплитуды колебаний на выходе резонатора, тогда как в ряде применений необходимо, чтобы амплитуда колебаний оставалась постоянной. Примером такого применения являются микромеханические гироскопы, в которых амплитуда первичных колебаний должна быть постоянной. В качестве прототипа предложенного устройства выбрано устройство, приведенное в работе [7], блок-схема которого приведена на фиг. 4b. В работе [7] приведена блок-схема (фиг. 4b) устройства возбуждения колебаний в резонаторе, которым является торсионный подвес инерционной массы микромеханического гироскопа по оси первичных колебаний. Показано, что в этой структуре, несмотря на значительные изменения добротности Q (Q изменяется более чем в два раза, как показано на фиг. 6), амплитуда колебаний резонатора остается практически постоянной (изменения не превышают 1-1,5%, фиг. 10). При этом проведение измерения добротности осуществляется традиционным способом с использованием анализатора спектра (см. фиг. 4а). Устройство-прототип содержит резонансный контур, элементами которого является торсионный подвес пробной массы (ПМ), силовые и измерительные электроды, расположенные по оси подвеса ПМ, при этом входом резонансного контура являются силовые электроды, а его выходом - измерительные электроды, цепи положительной и обратной связи, включающие в себя преобразователь емкость-напряжение, вход которого соединен с выходом резонансного контура, блок автоматического регулирования усиления (АРУ) и выходной усилитель, выход которого соединен со входом резонансного контура. Для измерения добротности резонансного контура эта схема переводится в разомкнутый режим работы и выход резонатора соединяется со входом анализатора спектра (как это показано на фиг. 4а работы [7]). Недостатком этого устройства является то, что оно не позволяет измерять добротность во время работы резонатора в режиме автоколебаний с постоянной амплитудой выходного сигнала резонатора известными способами и тем самым обеспечить возможность, например, диагностирования исправности работы путем оценки степени вакуумирования по величине добротности и/или компенсации температуры или ее измерение. Измерение же добротности путем определения отношения сигналов на выходе и входе резонансного сопряжена с определенными сложностью и погрешностью, которые обусловлены тем, что при больших величинах добротности входной сигнал резонатора на резонансной частоте является сигналом переменного тока, имеет малую величину, измерение которой представляет сложную задачу.

Задачей изобретения является повышение точности измерения добротности в режиме работы резонатора при постоянной амплитуде колебаний резонатора. Достигаемый технический результат - возможность измерения добротности Q в реальном времени как при постоянной, так и при изменяемой амплитуде колебаний резонатора и повышение точности измерения Q.

Преимуществом предлагаемого способа измерения добротности является возможность его использования для компенсации влияния температуры (или других внешних факторов) на устройства с резонаторами в случаях, когда эти устройства должны работать при постоянных амплитудах выходного сигнала резонатора, так как добротность зависит от этих внешних факторов. Измерение добротности подвеса инерционной массы, как предлагается в устройстве, позволит диагностировать в микромеханическом гироскопе изменение вакуума в полости, где расположены подвижные элементы конструкции, и проводить, таким образом, диагностику отказа резонатора.

Поставленная задача решается тем, что при измерении добротности резонансного контура, заключающемся в возбуждении колебаний за счет положительной обратной связи в контуре, стабилизации этих колебаний на выходе резонансного контура за счет введения отрицательной обратной связи по их амплитуде с помощью схемы автоматического регулирования усиления с источником опорного сигнала, добротность Q определяют путем измерения величины сигнала на выходе звена отрицательной обратной связи Uoc и расчета по формуле:

Q=K/Uoc, где К - коэффициент, причем К - постоянная величина.

Поставленная задача решается также тем, что дополнительно измеряют величину опорного сигнала, а добротность определяют по формуле:

Q=KUA/Uoc, где UA - величина опорного сигнала.

В устройстве, реализующем предложенный способ, поставленная задача решается тем, что в этом устройстве измерения добротности резонансного контура, содержащем цепь положительной обратной связи, выполненную в виде последовательно включенных усилителя и устройства сдвига фазы, цепь отрицательной обратной связи, содержащую источник опорного сигнала и последовательно включенных детектора, дифференциального усилителя и умножителя, при этом источник опорного сигнала соединен со входом дифференциального усилителя, второй вход умножителя соединен с выходом устройства сдвига фазы, вход детектора соединен с выходом устройства сдвига фазы, в него введен вычислительный блок, реализующий функцию K/Vвх (где К - постоянная величина, Vвх - величина входного сигнала блока), при этом вход вычислительного блока соединен с выходом дифференциального усилителя.

По сравнению с прототипом, в предложенном устройстве достигается возможность измерения добротности Q при постоянной амплитуде колебаний резонатора, при этом, вместо измерения амплитуды сигнала на резонансной частоте на входе резонатора, в соответствии с предложенным способом, для определения добротности Q измеряют сигнал на выходе звена отрицательной обратной связи, который является сигналом постоянного тока, что позволяет измерять его с более высокой точностью, чем малые сигналы переменного тока.

Кроме того, при измерении величины опорного сигнала появляется возможность измерять добротность и в случаях, когда амплитуда колебаний резонатора изменяется в процессе работы последнего при изменении величины опорного сигнала.

В устройстве, реализующем предложенный способ измерения добротности, обеспечивается возможность при постоянной амплитуде колебаний резонатора определять добротность резонатора и на основе этих измерений получать в реальном времени оценку температуры или/и степени вакуумирования полости, в которой находится резонатор в случае, когда он выполняется как высокодобротный (Q>10000) микромеханический резонатор.

Заявляемое устройство поясняется чертежами.

На фиг. 1 показана блок-схема предложенного устройства для случая, когда резонатор выполняется как высокодобротный микромеханический резонатор, например как подвес инерционной массы по оси первичных колебаний в микромеханическом гироскопе.

На фиг. 1 приняты следующие обозначения:

1 - инерционная масса (ИМ)

2, 3 - электроды, расположенные по оси первичных колебаний

4 - преобразователь емкость-напряжение

5 - устройство сдвига фазы

6 - блок автоматического регулирования усиления (АРУ)

7 - умножитель

8 - усилитель

9 - источник опорного сигнала

10 - вычислительный блок

Величина сигнала на выходе элемента 9, сигнала на выходе блока АРУ 6 и на электроде 2 (выходе усилителя 8) обозначены соответственно Ua, Uoc, Uэ2

На фиг. 2 приведен вариант выполнения блока автоматического регулирования усиления.

На фиг. 2 приняты следующие обозначения:

элементы 5, 6, 9 - так же, что и на фиг. 1

11 - дифференциальный усилитель

12- детектор.

На фиг. 3 показана блок-схема предложенного устройства для случая, когда резонатор выполняется как высокодобротный микромеханический резонатор, а устройство сдвига фазы 5 выполнено как цифровая система фазовой автоподстройки частоты (ФАПЧ), амплитуда выходного сигнала которой остается постоянной.

Элементы этой блок-схемы обозначены так же, как и на фиг. 1.

Предлагаемый способ осуществляется следующим образом:

Для измерения добротности резонатора, реализованного как торсионный подвес инерционной массы 1, находящейся между группой электродов, одна часть из которых выполняет функции измерительных электродов для определения смещения инерционной массы 1 от центрального положения и обозначена как электрод 3 на фиг. 1, а вторая группа (обозначена как электрод 2 на фиг. 1) выполняет функции задатчика силы или момента и предназначена соответственно для формирования силы или момента, воздействующего на массу 1 при поступлении на него напряжения, в нем возбуждаются колебания за счет положительной обратной связи, реализуемой с помощью элементов 4, 5, 8. Амплитуда этих колебаний задается источником опорного сигнала 9 и поддерживается постоянной за счет элементов 6, 7.

Отметим, что количество электродов, расположенных по оси первичных колебаний может быть больше, как правило, используется не менее двух измерительных и двух силовых электродов. Однако количество электродов, используемых в резонаторе, не влияет на суть изобретения.

Сигнал на электроде 2 может быть представлен выражением:

Uэ2=K7K8U5Uoc,

где соответственно обозначены К7, К8 - коэффициент передачи элементов 7, 8, U5, Uoc - напряжения на выходе элементов 5 и 6. Размерность коэффициент передачи умножителя 7 (К7) [В-1].

Отметим, что зачастую электроды 2, 3 имеют гребенчатую структуру, их работа подробно описана в литературе, посвященной микромеханическим гироскопам (см., например, [8]).

Для случая гребенчатых электродов имеет место линейная зависимость изменения емкости от перемещения массы 1 и силы от напряжения на электроде (Uэ2).

Поэтому, обозначив коэффициенты передачи перемещения массы 1 в изменение емкости как Кпс, напряжения в силу как Kue, а передаточную функцию резонатора как W(p)/C, где С - жесткость подвеса ИМ, получим выражение:

K7K8U5UocKпсW(p)C-1KcvKueK5=U5 (1)

Поскольку в структуре на фиг. 1 при сдвиге фазы в элементе 5, равном 90°, колебания возникают на резонансной частоте резонатора, при которой | W(p) |=Q, обозначив произведение коэффициентов K7K8KпсC-1KcvKueK5 как L-1, получим, что

W(p)=L/Uoc (2)

Q=L/Uoc (3)

При реализации звеном 10 функции L/Uoc (где L - постоянная величина) получим на его выходе величину, пропорциональную Q.

Для блок-схемы на фиг. 3 можно составить уравнение:

K7K8U5UocKпcQC-1KcvKueUa (4)

Обозначив произведение коэффициентов K7K8KпcC-1KcvKue как К-1, получим, что

Q=KUa/Uoc (5)

Поскольку задаваемая величина Ua известна, заменяя величину L в выражении (3) на K=L/Ua,

получим выражение (5) для вычисления Q, т.е. выражение (5) применимо для расчета Q в обоих случаях.

Устройство для реализации предложенного способа приведено на фиг. 1.

Здесь электрод, расположенный по оси первичных колебаний и выполняющий функции измерительного электрода (элемент 3), соединен со входом преобразователя емкость-напряжение 4, выход преобразователя емкость-напряжение соединен со входом устройства сдвига фазы 5. Выход элемента 5 соединен с одним из входов блока АРУ 6 и умножителя 7, другой вход которого соединен с выходом элемента 6, вход которого соединен с источником опорного сигнала 9. Выход элемента 7 соединен со входом усилителя 8, выход которого соединен с электродом, расположенным по оси первичных колебаний и выполняющим функции силового электрода (элемент 2). Выход блока АРУ 6 соединен со входом вычислительного блока 10.

Устройство работает следующим образом. С помощью элементов 1-5 и 7, 8 в предлагаемом устройстве сформирована положительная обратная связь со сдвигом фазы на резонансной частоте резонатора, равным -180°. С помощью элементов 6, 7, 8 и 1-5 в предлагаемом устройстве сформирована отрицательная обратная связь, которая обеспечивает постоянство контурного усиления по положительной связи, равного единице при амплитуде колебаний, пропорциональной сигналу источника 9, что обеспечивает условия для возникновения и поддержания постоянной амплитуды колебаний резонатора на его резонансной частоте. При высоком коэффициенте передачи блоков, входящих в блок 6, амплитуда колебаний резонатора остается постоянной при достаточно больших изменениях добротности резонатора. При этом величина сигнала Uoc увеличивается, если добротность Q снижается, и наоборот. Вычисление значения Q осуществляется блоком 10 в соответствии с выражением (3).

На фиг. 2. показан пример реализации блока 6, который включает в себя дифференциальный усилитель 11 и демодулятор 12, соединенный с его входом. Демодулятор 12 преобразует сигнал переменного тока в сигнал постоянного тока, величина которого пропорциональна или равна (в зависимости от реализации демодулятора) амплитуде входного сигнала. Разность сигналов от элементов 9 и 12 усиливается элементом 11. Для повышения коэффициента передачи и обеспечения устойчивости контура стабилизации амплитуды в предлагаемом устройстве в состав элемента 11 могут входить корректирующие звенья.

Возможность реализации способа и устройства и достижение технического результата были подтверждены результатами моделирования и экспериментальной проверки работы микромеханического резонатора.

Список литературы

1. Ключников С.Н. Методы определения добротности резонансных систем // Ползуновский вестник, 2011, №3/1, с. 42-43.

2. Патент РФ №2312368.

3. Патент РФ №2264605.

4. Патент РФ №2059209.

5. М A. Hopcroft et al, TEMPERATURE COMPENSATION OF A MEMS RESONATOR USING QUALITY FACTOR AS A THERMOMETER, MEMS, 2006, pp. 222-225.

6. Bongsang Kim et al (Temperature Dependence of Quality Factor in MEMS Resonators JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 17, № 3, JUNE 2008, pp. 755-766.

7. Dunzhu Xia, Shuling Chen, Shourong Wang and Hongsheng Li. Microgyroscope Temperature Effects and Compensation-Control Methods // Sensors, 2009, №9, pp. 8349-8376.

8. Распопов В.Я. Микромеханические приборы // Учебное пособие. - Тула: Тульский государственный университет, 2002.


СПОСОБ ИЗМЕРЕНИЯ ДОБРОТНОСТИ РЕЗОНАНСНОГО КОНТУРА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ИЗМЕРЕНИЯ ДОБРОТНОСТИ РЕЗОНАНСНОГО КОНТУРА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ ИЗМЕРЕНИЯ ДОБРОТНОСТИ РЕЗОНАНСНОГО КОНТУРА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
Источник поступления информации: Роспатент

Показаны записи 161-170 из 368.
20.12.2015
№216.013.9b83

Способ изготовления индиевых микроконтактов

Изобретение относится к технологии получения индиевых микроконтактов для соединения больших интегральных схем (БИС) и фотодиодных матриц, выполненных на основе полупроводниковых материалов. Способ изготовления индиевых микроконтактов согласно изобретению включает напыление слоя индия на...
Тип: Изобретение
Номер охранного документа: 0002571436
Дата охранного документа: 20.12.2015
27.12.2015
№216.013.9ded

Магнитный и электромагнитный экран

Изобретение относится к устройству для экранирования от магнитных полей промышленной частоты и электромагнитных полей радиочастотного диапазона и может применяться для обеспечения электромагнитной совместимости технических средств и электромагнитной безопасности биологических объектов в...
Тип: Изобретение
Номер охранного документа: 0002572059
Дата охранного документа: 27.12.2015
27.12.2015
№216.013.9e63

Вибропоглощающее устройство

Изобретение относится к области машиностроения. Устройство содержит прижимной лист, имеющий не менее двух групп условных прямоугольных участков между соседними креплениями. Прижимной лист выполнен с толщиной от 0,05 до 0,5 толщины демпфируемой конструкции. Каждая группа содержит участки...
Тип: Изобретение
Номер охранного документа: 0002572177
Дата охранного документа: 27.12.2015
20.01.2016
№216.013.a222

Устройство для обеспечения поперечной остойчивости гибкого ограждения амфибийных судов на воздушной подушке различных типоразмеров

Изобретение относится к амфибийным судам на воздушной подушке с гибкими ограждениями. Устройство для обеспечения поперечной остойчивости гибкого ограждения, называемое «жабры», устанавливается на продольном гибком киле, размещающемся внутри воздушной подушки и состоящем из монолитного элемента...
Тип: Изобретение
Номер охранного документа: 0002573148
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a3d8

Система передачи данных по многолучевому каналу связи

Изобретение относится к технике связи и может использоваться для передачи сигналов в морской среде по гидроакустическому каналу связи. Технический результат состоит в повышении помехоустойчивости и достоверности передачи данных в условиях распространения сигнала в многолучевом канале связи...
Тип: Изобретение
Номер охранного документа: 0002573586
Дата охранного документа: 20.01.2016
10.03.2016
№216.014.c00b

Электрохимический способ получения трис(2-хлорэтил)фосфата

Изобретение относится к электрохимическому способу получения трис(2-хлорэтил)фосфата из красного фосфора. Способ характеризуется тем, что процесс электролиза проводят в непрерывном режиме путем постоянной подачи порошкообразного красного фосфора и смеси этиленхлоргидрина, воды и...
Тип: Изобретение
Номер охранного документа: 0002576663
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.c7a8

Способ определения прочности льда в ледовом опытовом бассейне

Изобретение относится к области судостроения, а более конкретно - к ледовым опытовым бассейнам для проведения испытаний моделей судов и инженерных сооружений, касается вопроса определения прочности льда в ледовом опытовом бассейне. Способ определения прочности льда в ледовом опытовом бассейне...
Тип: Изобретение
Номер охранного документа: 0002578772
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c7fc

Подводная лодка с гидравлическими торпедными аппаратами

Изобретение относится к области подводного кораблестроения, а именно к устройству подводных лодок. Подводная лодка с гидравлическими торпедными аппаратами содержит прочный корпус, легкий корпус с волнорезными щитами, стреляющее устройство и торпедопогрузочное устройство, при этом торпедные...
Тип: Изобретение
Номер охранного документа: 0002578923
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c80b

Судно с воздушной каверной на днище и устройством для защиты от попадания воздуха на гребной винт

Изобретение относится к области судостроения и касается конструирования водоизмещающего судна с воздушной каверной на днище и гребным винтом, расположенным в диаметральной плоскости судна. Предложено самоходное судна с выемкой на днище, предназначенной для образования единой воздушной каверны,...
Тип: Изобретение
Номер охранного документа: 0002578896
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c898

Устройство активного гашения гидродинамического шума в системах трубопроводов

Изобретение относится к области виброакустической защиты, касается вопросов снижения и распространения гидродинамического шума в судовых и корабельных трубопроводах. Устройство функционирует как система активного гашения гидродинамического шума и представляет собой участок трубопровода с двумя...
Тип: Изобретение
Номер охранного документа: 0002578792
Дата охранного документа: 27.03.2016
Показаны записи 161-170 из 285.
10.09.2015
№216.013.79fc

Двухплатформенный комплекс плавучих средств для строительства, ремонта и обследования морских трубопроводов и сооружений в ледовых условиях

Изобретение относится к области судостроения, а более конкретно - к судам для выполнения подводно-технических работ. Предложен двухплатформенный комплекс плавучих средств для строительства, ремонта и обследования морских трубопроводов и сооружений в ледовых условиях, включающий судно ледового...
Тип: Изобретение
Номер охранного документа: 0002562817
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.79fe

Устройство вибрационной и шумовой защиты судовых трубопроводов

Изобретение относится к области судостроения и касается вопросов создания систем вибрационной и шумовой защиты корпуса судна и судовых помещений от внутренних источников. Устройство вибрационной и шумовой защиты судовых трубопроводов представляет собой амортизирующую подвеску. Расположенный...
Тип: Изобретение
Номер охранного документа: 0002562819
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7ab9

Электровоспламенитель

Изобретение относится к области электрических средств воспламенения и предназначено для автономного воспламенения взрывчатых веществ, пиротехнических композиций и т.п., например, в фейерверках, или в составе электрических средств инициирования и пироавтоматики. Электровоспламенитель содержит...
Тип: Изобретение
Номер охранного документа: 0002563006
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7ad1

Устройство управления инжектором

Изобретение относится к области транспорта и может быть использовано в легковых и грузовых автомобилях, строительной и сельскохозяйственной технике, тепловозах и судах промышленного и военного назначения. Техническим результатом является повышение надежности работы, уменьшение...
Тип: Изобретение
Номер охранного документа: 0002563038
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7ade

Электромеханическая форсунка для аккумуляторной топливной системы двигателя внутреннего сгорания

Изобретение относится к области двигателестроения, а именно к системам питания двигателей внутреннего сгорания. Электромеханическая форсунка двигателя с впрыскиванием топлива в цилиндр, имеющая гидравлическую разгрузку запорной иглы от сил давления топлива с помощью разгружающего плунжера, что...
Тип: Изобретение
Номер охранного документа: 0002563051
Дата охранного документа: 20.09.2015
20.10.2015
№216.013.8313

Способ снижения радиолокационной заметности летательного аппарата

Изобретение относится к защитным устройствам летательного аппарата. Способ снижения радиолокационной заметности летательного аппарата заключается в размещении антенны головки самонаведения в герметичной полости радиопрозрачного обтекателя, заполнении полости плазмообразующей газовой смесью...
Тип: Изобретение
Номер охранного документа: 0002565158
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.879d

Способ управления комбинированной силовой установкой гибридного транспортного средства

Изобретение относится к гибридным транспортным средствам. Способ управления комбинированной силовой установкой гибридного транспортного средства заключается в том, что в навигационную систему транспортного средства вводят данные о проходимом маршруте в 3D-формате и по сигналам навигационной...
Тип: Изобретение
Номер охранного документа: 0002566320
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.88a9

Способ изготовления блоков термоизоляционной герметичной стенки емкости нового типа из полимерных композиционных материалов для сжиженного природного газа

Изобретение относится к области судостроения и касается создания блоков термоизоляционной герметичной стенки из полимерных композиционных материалов (ПКМ) емкостей нового типа, используемых для перевозки жидких грузов и сжиженных газов. Изготовление блока производится за один технологический...
Тип: Изобретение
Номер охранного документа: 0002566588
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.88be

Способ исследования и совершенствования аэрогидродинамических компоновок экранопланов

Изобретение относится к экспериментальной аэродинамике, в частности к проведению исследований в аэродинамической трубе аэродинамических характеристик экранопланов, и может быть использовано для совершенствования аэрогидродинамических компоновок экранопланов. Способ заключается в моделировании...
Тип: Изобретение
Номер охранного документа: 0002566609
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.897a

Якорное устройство судна

Изобретение относится к области судостроения и касается вопроса использования нетрадиционной компоновки якорного устройства. Предложено якорное устройство судна, включающее якорный механизм, расположенный на внутренней палубе, по меньшей мере один якорь с трендом и лапами, связанный с якорным...
Тип: Изобретение
Номер охранного документа: 0002566797
Дата охранного документа: 27.10.2015
+ добавить свой РИД