×
10.10.2015
216.013.811b

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ НИОБИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области порошковой металлургии, а именно к получению высокотемпературных композиционных материалов на основе ниобия с оксидным упрочнением. Порошки для приготовления матрицы перемешивают и подвергают механическому легированию в защитной атмосфере с образованием массива гранул из частиц порошка. Механическое легирование проводят в защитной атмосфере в течение 40-60 часов. В полученный массив гранул добавляют монокристаллические волокна α-AlO и проводят двустороннее прессование полученной смеси при температуре 1400-1430°C и давлении 28-35 МПа не менее 3-х минут. Обеспечивается повышение предела прочности композиционного материала на основе ниобия, при этом материал имеет плотность, составляющую не менее 95% от теоретической. 3 з.п. ф-лы, 3 пр.

Настоящее изобретение относится к области порошковой металлургии, а именно: к технологиям получения высокотемпературных композиционных материалов на основе ниобия с оксидным упрочнением. Изобретение может быть использовано для изготовления деталей и узлов неохлаждаемых турбин авиационно-космической техники, работающей при температурах около 1400-1600°C.

Увеличение мощности, кпд, экологичности и экономичности современных газовых турбин, используемых в качестве авиационных двигателей, энергетических установок и газоперекачивающих агрегатов, возможно только за счет повышения температуры рабочего газа на входе в турбину. Для этого требуется повысить предельные рабочие температуры, при которых возможна эффективная эксплуатация деталей горячего тракта, до 1400-1600°C. Поскольку такие температуры лежат за пределами работоспособности современных сложнолегированных жаропрочных сплавов на основе никеля, им на смену должны прийти новые материалы с более жаропрочной матрицей. Наиболее перспективными в этом отношении являются интерметаллиды и естественные композиты на их основе в виде направленных эвтектик, например, с ниобиевой матрицей, упрочненной интерметаллидами силицида ниобия. К преимуществам таких материалов относятся меньшая на 20% плотность по сравнению с традиционно применяемыми жаропрочными сплавами, отсутствие дефицитных легирующих элементов и более высокая температура плавления. Лопатки из подобного композиционного материала могут длительно работать при температурах приблизительно на 250-350°C выше, чем аналогичные детали из использующихся в настоящее время никелевых жаропрочных суперсплавов.

Известен способ получения тугоплавких композиционных материалов с металлической или интерметаллидной матрицей, армированной керамическими частицами, включающий приготовление исходной заготовки из порошковой смеси механическим легированием, помещение заготовки в емкость, нагрев емкости до температуры начала экзотермической реакции путем погружения ее донной части в расплав металла и последующую кристаллизацию путем дальнейшего погружения емкости в расплав металла (RU 2263089 С1, 27.10.2005).

Недостатком этого способа является то, что выделяющегося в процессе экзотермической реакции тепла недостаточно для изготовления композиционных материалов на основе интерметаллида ниобия.

Известен способ двустороннего прессования порошка в производственной линии, содержащей формовочную камеру, расположенную между первой прижимной плитой, по крайней мере, с одной мастер-моделью и второй прижимной плитой, выполненной с возможностью вращения, по крайней мере, с одной мастер-моделью, причем упомянутые пластины выполнены с возможностью встречного движения друг относительно друга. Способ включает предварительное однонаправленное сжатие формовочного материала за счет движения одной из плит, сжатие двумя плитами совместно, поворот второй плиты, позволяющий переместить заготовку за пределы формовочной камеры, и выталкивание изделия первой плитой дальше по производственной линии (US 5647424 А, 15.07.1997).

Недостатком данного способа является то, что он не предусматривает возможность укладки волокна в заданном направлении в матрицу, что во время прессовки может привести к его поломке. Кроме того, ввиду высокой температуры изготовленные формы, вплотную движущиеся по производственной линии, в случае недостаточной прессовки могут слипаться между собой.

Наиболее близким аналогом заявленного способа является способ получения композиционного материала, в котором исходную порошковую смесь для получения композиционного материала перемешивают, подвергают механическому легированию в защитной атмосфере, после чего проводят горячее изостатическое прессование (ГИП) порошковой смеси. Полученный материал имеет равномерную структуру, высокую относительную плотность при высоком выходе годного и минимальных энергетических затратах (RU 2393060 С1, 27.06.2010).

Недостаток прототипа заключается в том, что для материала, армированного волокнами, очень сложно подобрать давление прессования. Если задать малое давление, материал останется пористым. Если давление хотя бы немного превысит допустимое, в виду того, что оно действует на материал со всех сторон, волокна начинают ломаться.

Техническим результатом заявленного способа является получение композиционного материала на основе ниобия с повышенным пределом прочности, а также практической плотностью, равной не менее 95% от теоретической.

Технический результат достигается в способе получения композиционного материала на основе ниобия, в котором порошки для приготовления матрицы указанного материала перемешивают и подвергают механическому легированию в защитной атмосфере с образованием массива гранул из частиц порошка, при этом механическое легирование проводят в защитной атмосфере в течение 40-60 часов, в полученный массив гранул добавляют монокристаллические волокна α-Al2O3 и проводят двустороннее прессование полученной смеси при температуре 1400-1430°C и давлении 28-35 МПа не менее 3-х минут.

В качестве защитной атмосферы можно использовать аргон.

Двустороннее прессование смеси массива гранул и монокристаллических волокон α-Al2O3 можно проводить в пресс-форме, на которую предварительно наносят смазывающий материал.

В качестве смазывающего материала предпочтительно использовать нитрид бора, который при высоких температурах сохраняет инертность к композиционным материалам на основе ниобия и к материалам большинства пресс-форм.

Способ осуществляют следующим образом.

Исходные порошки ниобия и других элементов перемешивают и проводят с ними механическое легирование в защитной атмосфере инертного газа в течение 40-60 часов. Для этого порошки засыпают в установку для размола и смешивания, представляющую собой вращающийся вал с насыпанными в нее металлическими шарами. При вращении за счет трения шары начинают нагреваться и, следовательно, находящиеся между ними частицы порошка под действием температуры и трения подвергаются взаимному механическому легированию, то есть атомы одного металла диффундируют в частицы порошка другого металла. В качестве инертного газа лучше всего использовать аргон, поскольку его плотность близка к плотности атмосферы, то есть, с одной стороны, он является безопасным для человека в отличие от газов с высокой плотностью, а с другой, из-за низкой степени летучести его потери во время технологического процесса будут минимальны.

Время механического легирования 40-60 часов выбрано из расчета на то, что при меньшем времени в материале остаются твердые растворы элементарных порошков, а при большем времени частицы порошков измельчаются и в силу большого трения могут загореться. Наличие твердых растворов элементарных порошков снижает прочностные характеристики материала.

После механического легирования приготовленные композиционные гранулы засыпают в пресс-форму, на которую предварительно желательно нанести смазывающий материал, предпочтительно, нитрид бора.

При высоких температурах порядка 1300-1500°C материалы на основе ниобия являются очень химически активными. В таких условиях ниобий может образовывать различные соединения с материалом пресс-формы, что значительно затруднит процесс изготовления композиционного материала и ухудшит его качество. Наряду с этим нитрид бора при высоких температурах способен сохранять инертность одновременно к композиционному материалу на основе ниобия и материалу пресс-формы, таким образом являясь барьерным покрытием между ними.

В массиве гранул размещают пакет монокристаллических волокон α-Al2O3 и проводят их горячее двухстороннее прессование в вакууме при температуре 1400-1430°C и давлении 28-35 МПа не менее 3-х минут. Монокристаллические волокна α-Al2O3 обладают высокими прочностными характеристиками при высоких температурах и низкой плотностью, что позволяет использовать их в качестве уплотнителя для композиционных материалов на основе ниобия, работающих при температурах выше 1200°C.

Изменением объемного содержания волокон можно контролировать соотношение пластичности и предела прочности материала, что необходимо при создании деталей и узлов неохлаждаемых турбин авиационно-космической техники, работающих при различных нагрузках и диапазоне температур от 1400 до 1600°C.

Температурный интервал 1400-1430°C выбран из расчета на то, что при более высокой температуре материал на основе интерметаллида ниобия начинает растекаться, а при более низкой остается высокая степень его пористости.

Давление 28-35 МПа выбрано из расчета на то, что при более низком давлении остается высокая степень пористости материала, а при более высоком наблюдается расслоение материала, что говорит об избыточно приложенном давлении прессования.

Продолжительность прессования должна быть не менее 3-х минут, поскольку при меньшем времени остается высокая степень пористости материала.

Данный способ позволяет получить материал с плотностью, равной 95-100% от теоретической, за счет того, что у матриц на основе ниобия при температурах более 1300°C наблюдается снижение сопротивления высокотемпературной ползучести. За счет этого происходит более плотное заполнение каркаса из волокон матричным материалом.

Пример 1

Получали пластину размером 65×65×10 мм, состоящую из композиционного материала состава Nb-16Si-33Ti (ат.%), армированного волокнами Al2O3.

Исходные порошки ниобия, кремния и титана смешали в соотношении, соответствующему заданному составу, и загрузили в высокоэнергетическую установку для размола и смешивания (аттритор), в котором порошок подвергали механическому легированию по следующему режиму: время обработки 50 часов, защитная атмосфера - аргон.

Необходимая масса порошковой смеси для образца размером 65×65×10 мм без наличия волокон составила 6,5·6,5·1·7=295 г.

Заданный размер слоя волокон составлял 60×60 мм при диаметре каждого волокна d=250 мкм.

Масса волокон составила 3,6 г.

Из необходимой массы порошковой смеси для образца без наличия волокон вычитали массу волокон и получили необходимую массу порошковой смеси для получаемого образца 295-3,6=291,4 г.

Затем полученные после механического легирования гранулы с уложенными волокнами подвергли горячему двухстороннему прессованию при температуре 1410°C, давлении 30 МПа в течение 3-х минут.

Теоретическая плотность материала, вычисленная по табличным данным, составила 7,21 г/см3. Методом гидростатического взвешивания образца в этиловом спирте по объему вытесненной жидкости определялась практическая плотность, которая составила 6,9 г/см3, то есть 95,7% от теоретической. Объемное содержание волокон составило 23%.

Предел прочности измеряли методом трехточечного изгиба. Он составил 652 МПа.

Пример 2

Получали пластину размером 65×65×10 мм, состоящую из композиционного материала состава Nb-16Si-33Ti (ат.%), армированного волокнами Al2O3.

Исходные порошки ниобия, кремния и титана смешали и полученную порошковую смесь подвергли механическому легированию в высокоэнергетической установке для размола и смешивания (аттриторе) по следующему режиму: время обработки 55 часов, защитная атмосфера - аргон.

Необходимая масса порошковой смеси для образца размером 65×65×10 мм без наличия волокон составила 6,5·6,5·1·7=295 г.

Заданный размер слоя волокон составил 65×65 мм при диаметре каждого волокна d=250 мкм.

Масса волокон составила 4,23 г.

Из необходимой массы порошковой смеси для образца без наличия волокон вычитали массу волокон и получили необходимую массу порошковой смеси для получаемого образца 295-3,6=290,77 г.

Затем полученные после механического легирования гранулы подвергли горячему двухстороннему прессованию при температуре 1420°C, давлении 30 МПа в течение 3-х минут. Теоретическая плотность материала составляла 7,21 г/см3.

Практическая плотность составила 6,95 г/см3, то есть 96,4% от теоретической. Объемное содержание волокон 26%.

Предел прочности составил 653 МПа.

Пример 3

Получили пластину размером 65×65×10 мм, состоящую из композиционного материала состава Nb-16Si-24Ti-4Hf-6Cr-3Al (ат.%), армированного волокнами Al2O3.

Для ее получения использовали элементарные порошки Nb, Si, Ti, Hf, Cr и Al. Исходную порошковую смесь подвергли механическому легированию в высокоэнергетической установке для размола и смешивания (аттриторе) по следующему режиму: время обработки 50 часов, защитная атмосфера - аргон. Необходимая масса порошковой смеси для образца размером 65×65×10 мм без наличия волокон составила 6,5·6,5·1·7,2=304,2 г.

Заданный размер слоя волокон составлял 60×60 мм при диаметре каждого волокна d=250 мкм.

Масса волокон составила 3,6 г.

Из необходимой массы порошковой смеси для образца без наличия волокон вычитали массу волокон и получили необходимую массу порошковой смеси для получаемого образца 304,2-3,6=300,6 г.

Затем полученные после механического легирования гранулы подвергли горячему двухстороннему прессованию при температуре 1410°C, давлении 33 МПа в течение 3-х минут. Теоретическая плотность материала составила 7,31 г/см3.

Практическая плотность составила 6,98 г/см3, то есть 95,5% от теоретической. Объемное содержание волокон составляло 23%.

Предел прочности - 655 МПа.

Как показали полученные данные, предложенный способ обеспечивает получение композиционных материалов на основе ниобия с высокой прочностью, а также плотностью, равной не менее 95% от теоретической.

Источник поступления информации: Роспатент

Показаны записи 331-340 из 369.
06.06.2019
№219.017.7447

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для деталей горячего тракта газотурбинных двигателей и установок. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод 0,005-0,18, хром 13-15,...
Тип: Изобретение
Номер охранного документа: 0002690623
Дата охранного документа: 04.06.2019
09.06.2019
№219.017.76b2

Теплостойкий пеногерметик

Описывается теплостойкий пеногерметик, включающий полиорганосилоксановый каучук, оксид цинка, олигогидридсилоксан, аминосоединение и катализатор вулканизации, отличающийся тем, что в качестве полиорганосилоксанового каучука он содержит полидиметилметилфенилсилоксандиол, в качестве...
Тип: Изобретение
Номер охранного документа: 0002263130
Дата охранного документа: 27.10.2005
09.06.2019
№219.017.76ed

Препрег и изделие, выполненное из него

Изобретение относится к области высокопрочных композиционных материалов на основе волокнистых наполнителей и полимерных связующих, которые могут быть использованы в авиационной промышленности, в машино-, судостроении и других областях техники. Описывается препрег, включающий полимерное...
Тип: Изобретение
Номер охранного документа: 0002264295
Дата охранного документа: 20.11.2005
09.06.2019
№219.017.781e

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с монокристаллической структурой, таким как рабочие лопатки газотурбинных двигателей авиационной промышленности....
Тип: Изобретение
Номер охранного документа: 0002256716
Дата охранного документа: 20.07.2005
09.06.2019
№219.017.7824

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к созданию титановых сплавов, предназначенных для изготовления стрингеров, нервюр, шпангоутов, фюзеляжа, крыльев, двигателей самолета, а также для использования в качестве свариваемых материалов. Предложен сплав на основе титана и изделие,...
Тип: Изобретение
Номер охранного документа: 0002256713
Дата охранного документа: 20.07.2005
09.06.2019
№219.017.7826

Жаропрочный свариваемый сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным свариваемым сплавам на основе никеля, предназначены для изготовления корпусов, кожухов, теплозащитных экранов и других сварных узлов и деталей, работающих при температурах до 900°С. Предложен жаропрочный свариваемый сплав на...
Тип: Изобретение
Номер охранного документа: 0002256717
Дата охранного документа: 20.07.2005
09.06.2019
№219.017.7932

Защитное технологическое покрытие для сталей и сплавов

Изобретение относится к защитным покрытиям от окисления при технологических нагревах в процессе получения высококачественных деталей и полуфабрикатов из сталей и сплавов. Технический результат изобретения заключается в повышении температуроустойчивости и теплоизоляционных свойств защитного...
Тип: Изобретение
Номер охранного документа: 0002345963
Дата охранного документа: 10.02.2009
09.06.2019
№219.017.796c

Способ получения литейных жаропрочных сплавов на никелевой основе

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на никелевой основе с применением различного вида отходов, и может быть использовано при получении шихтовых заготовок для литья изделий. Обеспечивается снижение в сплаве содержания вредных примесей,...
Тип: Изобретение
Номер охранного документа: 0002392338
Дата охранного документа: 20.06.2010
09.06.2019
№219.017.79c6

Способ получения высокотемпературного волокна на основе оксида алюминия

Изобретение относится к области теплозащитных материалов. Технический результат изобретения заключается в сокращении технологического цикла, повышении контролируемости процесса доведения волокнообразующего раствора до требуемой вязкости и стабильности химического состава и свойств получаемого...
Тип: Изобретение
Номер охранного документа: 0002395475
Дата охранного документа: 27.07.2010
09.06.2019
№219.017.79e6

Защитное технологическое покрытие для сталей и сплавов

Изобретение относится к защитным технологическим покрытиям для защиты сталей и сплавов от окисления при технологических нагревах и при термомеханической обработке давлением в процессе получения деталей. Технический результат изобретения заключается в понижении сцепления покрытия к сталям и...
Тип: Изобретение
Номер охранного документа: 0002312827
Дата охранного документа: 20.12.2007
Показаны записи 331-340 из 340.
17.04.2020
№220.018.1532

Способ нанесения антикоррозионного покрытия

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитных гальванических покрытий с последующей термообработкой. Способ включает обезжиривание детали, травление детали и последовательное нанесение слоев системы цинк-олово-цинк-олово с последующей...
Тип: Изобретение
Номер охранного документа: 0002718794
Дата охранного документа: 14.04.2020
21.05.2020
№220.018.1f5a

Жаропрочный деформируемый сплав на основе никеля с низким температурным коэффициентом линейного расширения и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным деформируемым сплавам на основе никеля с низким коэффициентом линейного расширения. Жаропрочный деформируемый сплав на основе никеля, содержащий, мас. %: углерод 0,02-0,08, кобальт 18,0-25,0, железо 20,0-35,0, хром 0,3-1,2,...
Тип: Изобретение
Номер охранного документа: 0002721261
Дата охранного документа: 18.05.2020
27.06.2020
№220.018.2bca

Высокопрочная коррозионно-стойкая сталь

Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям, выплавляемым в вакуумно-индукционной печи с последующим электрошлаковым переплавом для введения азота под давлением, используемым для изготовления подшипников качения. Сталь содержит компоненты в...
Тип: Изобретение
Номер охранного документа: 0002724766
Дата охранного документа: 25.06.2020
12.04.2023
№223.018.426b

Теплостойкий плёночный клей

Настоящее изобретение относится к теплостойкому пленочному клею. Теплостойкий пленочный клей содержит армирующий наполнитель с нанесенной на него полимерной основой. Полимерная основа представляет собой имидообразующую смесь, включающую по меньшей мере один диалкоксиэфир тетракарбоновой...
Тип: Изобретение
Номер охранного документа: 0002760127
Дата охранного документа: 22.11.2021
11.05.2023
№223.018.53e2

Способ получения высокочистого мелкодисперсного металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния

Изобретение относится к порошковой металлургии, а именно к получению металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния, предназначенного для изготовления деталей газотурбинных двигателей методом аддитивного производства. Способ...
Тип: Изобретение
Номер охранного документа: 0002795434
Дата охранного документа: 03.05.2023
15.05.2023
№223.018.57be

Сплав на основе кобальта

Изобретение относится к области порошковой металлургии, а именно к сплавам на основе кобальта, предназначенным для изготовления деталей ГТД с рабочими температурами не менее 1100°С методом аддитивного производства из металлического порошка. Сплав на основе кобальта для изготовления деталей...
Тип: Изобретение
Номер охранного документа: 0002767961
Дата охранного документа: 22.03.2022
15.05.2023
№223.018.57e7

Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления

Изобретение относится к производству деталей малоразмерного газотурбинного двигателя (МГТД) с тягой до 150 кгс из металлопорошковых композиций сплавов марок никелевых ВЖ159, кобальтовых ВЛК1, алюминиевых АК9ч методом селективного лазерного сплавления. Способ включает создание электронной...
Тип: Изобретение
Номер охранного документа: 0002767968
Дата охранного документа: 22.03.2022
16.05.2023
№223.018.607b

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607c

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607d

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
+ добавить свой РИД