×
27.09.2015
216.013.802a

Результат интеллектуальной деятельности: УЛУЧШЕНИЕ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ АДСОРБЦИОННОГО РАЗДЕЛЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002564407
Дата охранного документа
27.09.2015
Аннотация: Изобретение относится к вариантам способа регулирования расхода одного или нескольких циркулирующих потоков и сохранения энергии при его/их перекачке. В свою очередь один из вариантов предусматривает использование в способе отделения при постоянном давлении адсорбированного соединения из потока сырья, который содержит два или больше химических соединений, путем адсорбционного разделения в псевдодвижущемся слое, находящемся в одной или нескольких камерах с несколькими слоями адсорбента, которые имеют множество точек доступа, где каждый поток сырья и поток десорбента вводятся внутрь, а поток экстракта, который содержит указанное адсорбированное соединение, и поток рафината каждый индивидуально выводятся из одной или нескольких камер с адсорбентом в ходе цикла переработки через сдвигающиеся индивидуальные точки доступа. При этом по меньшей мере один циркулирующий поток включает варьирующие доли сырья, десорбента, экстракта и рафината, циркулирующих через одну или несколько камер с адсорбентом под действием перекачки с расходом, который варьируется в ходе цикла переработки по меньшей мере на 10%. Способ включает приведение в действие одного или нескольких насосов, которые циркулируют один или несколько циркулирующих потоков, за счет соединения по меньшей мере одного насоса со средством привода с переменной скоростью, и дополнительно включающий манипулирование скоростью насоса, приведенного в действие приводом с переменной скоростью, используя алгоритм прогнозного контроля нагрузки. Причем указанный алгоритм прогнозного контроля нагрузки предсказывает с опережением изменения в расходе до получения реальных данных о расходе в процессе перехода слоя в одной или нескольких камерах с несколькими слоями адсорбента в связи с индексированием поворотного затвора, используемого для сдвигания индивидуальных точек доступа, для предварительной установки скорости насоса, приводимого в действие приводом с переменной скоростью. Использование настоящего изобретения позволяет экономить энергию. 3 н. и 15 з.п. ф-лы, 1 пр., 3 ил.

В этой заявке испрашивается приоритет по заявке США №13/292713, которая была подана 9 ноября 2011.

Область техники, к которой относится изобретение

Настоящее изобретение относится к экономии энергии в процессах, в которых требуется значительное количество энергии для перекачки жидкости. Более конкретно, изобретение относится к экономии энергии в процессах адсорбционного разделения углеводородов.

Уровень техники

Настоящее изобретение применяется в контексте процессов нефтяной и нефтехимической промышленности, в которых потребляется значительное количество энергии для перекачки жидкости. Примерами указанного применения являются перекачка жидкого сырья при повышенном давлении и процессы рециркуляции, в которых циркулируют относительно большие объемы жидкости. Изобретение является уместным при переменном расходе перекачки, в результате чего снижается эффективность потребления энергии, и является особенно уместным, когда диапазон изменения параметра является важным фактором.

Одной конкретной областью применения являются непрерывные процессы разделения при селективной адсорбции экстракта из смеси, содержащей рафинат и/или другой побочный продукт. Такие процессы широко применяются для разделения углеводородов, например при выделении пара-ксилола и/или мета-ксилола из смеси ароматических углеводородов C8, нормальных парафиновых углеводородов из смеси парафиновых углеводородов, или конкретных олефинов из смеси олефиновых и парафиновых углеводородов. Обычно в этих процессах используется твердый адсорбент, который предпочтительно удерживает экстракт с целью отделения экстракта от остальной смеси.

Твердый адсорбент часто находится в виде псевдодвижущегося слоя, где слой твердого адсорбента поддерживается стационарным, причем местоположения, в которых различные потоки входят в слой и выходят из него, периодически сдвигаются. Сам слой адсорбента обычно представляет собой последовательность неподвижных подслоев.

Смещение местоположений входа и выхода жидкости в направлении потока текучей среды через слой имитирует движение твердого адсорбента в противоположном направлении. Смещение местоположений входа и выхода жидкости осуществляется с помощью устройства направления текучих сред, вообще известного как поворотный затвор, который работает в сочетании с распределителями, расположенными между подслоями адсорбента. Прокачиваемый циркуляционный поток осуществляется с помощью насосов, циркулирующих жидкость снизу вверх слоя адсорбента. Состав и объем прокачиваемого циркуляционного потока при заданном местоположении изменяется с каждым шагом затвора. Слой адсорбента может находиться в двух или более камерах, с соответствующим числом прокачиваемых циркуляционных потоков и насосов, причем обычно в таких адсорбционных установках находятся два насоса. Циркуляционные насосы, перемещающие значительные и изменяющиеся количества материала относительно одной или нескольких камер с адсорбентом, потребляют значительное количество энергии.

Дополнительные подробности относительно псевдодвижущегося слоя и его эксплуатации смотрите, например, в патенте США №US 2,985,589; относительно процесса разделения пара-ксилола - смотрите Mowry, J.R. в Справочнике процессов нефтепереработки (Handbook of Petroleum Refining Processes); под ред. Meyers, R.A.; McGraw-Hill: Нью Йорк, 1986; с. от 8-79 до 8-99.

Раскрытие изобретения

Целью настоящего изобретения является обеспечение экономии энергии при перекачке жидкостей с переменной скоростью в процессах нефтяной и нефтехимической промышленности. Особенно эффективным является применение изобретения для устранения высокого потребления энергии перекачки в процессе адсорбции с псевдодвижущимся слоем.

Широкий вариант осуществления изобретения включает в себя способ регулирования расхода одного или нескольких циркулирующих потоков и сохранения энергии при его/их перекачке в способе отделения при постоянном давлении адсорбированного соединения из потока сырья, который содержит два или больше химических соединений, путем адсорбционного разделения в псевдодвижущемся слое, находящемся в одной или нескольких камерах с несколькими слоями адсорбента, которые имеют множество точек доступа, где каждый поток сырья и поток десорбента вводится внутрь, а каждый поток экстракта, который содержит адсорбированное соединение, и поток рафината индивидуально выводятся из одной или нескольких камер с адсорбентом в ходе цикла переработки через сдвигающиеся индивидуальные точки доступа, где по меньшей мере один циркулирующий поток содержит варьирующиеся доли сырья, десорбента, экстракта и рафината, циркулирующих через одну или несколько камер с адсорбентом, под действием перекачки с расходом, который варьируется в ходе цикла переработки по меньшей мере на 10%, включающий приведение в действие одного или нескольких насосов, которые циркулируют один или несколько циркулирующих потоков, за счет соединения по меньшей мере одного насоса со средством привода с переменной скоростью.

Более конкретный вариант осуществления представляет собой способ регулирования расхода одного или нескольких циркулирующих потоков и сохранения энергии при его/их перекачке в способе выделения пара-ксилола из смеси ароматических углеводородов С8 при постоянном давлении путем адсорбционного разделения в псевдодвижущемся слое, находящемся в одной или нескольких камерах с множеством слоев адсорбента, имеющих множество точек доступа, где каждый поток ароматических углеводородов С8 и поток десорбента вводятся внутрь, а каждый поток экстракта, который содержит пара-ксилол, и поток рафината индивидуально выводится из одной или нескольких камер с адсорбентом в ходе цикла переработки через сдвигающиеся индивидуальные точки доступа; причем по меньшей мере один циркулирующий поток содержит варьирующиеся доли смешанных C8-ароматических углеводородов, десорбента, пара-ксилола и рафината, циркулирующих через одну или несколько камер с адсорбентом путем перекачки с расходом, который варьируется в ходе цикла переработки по меньшей мере на 10%, включающий приведение в действие одного или нескольких насосов, которые циркулируют циркулирующие потоки, за счет соединения по меньшей мере одного насоса со средством привода с переменной скоростью.

Еще более конкретным вариантом осуществления является способ регулирования расхода одного или нескольких циркулирующих потоков и сохранения энергии при его/их перекачке в процессе выделения пара-ксилола из смеси C8-ароматических углеводородов при постоянном давлении путем адсорбционного разделения в псевдодвижущемся слое, находящемся в одной или нескольких камерах с множеством слоев адсорбента, имеющих множество точек доступа, где каждый поток C8-ароматических углеводородов и поток десорбента вводится внутрь, и каждый поток экстракта, который содержит пара-ксилол, и поток рафината индивидуально выводятся из одной или нескольких камер с адсорбентом в ходе цикла переработки через сдвигающиеся индивидуальные точки доступа, причем по меньшей мере один циркулирующий поток содержит варьирующиеся доли смешанных ароматических углеводородов С8, десорбента, пара-ксилола и рафината, которые циркулируют через одну или несколько камер с адсорбентом путем перекачки с расходом, который варьируется в ходе цикла переработки по меньшей мере на 10%, включающий приведение в действие одного или нескольких насосов, которые циркулируют циркулирующие потоки, за счет соединения по меньшей мере одного насоса со средством привода с переменной скоростью; и регулирование согласования по времени насоса и клапана с использованием алгоритма прогнозного контроля нагрузки, чтобы манипулировать скоростью насоса, приведенного в действие приводом с переменной скоростью, и корректировать положение контроля, действующего одновременно с индексированием поворотного затвора, чтобы получить соответствующие расходы текучей среды внутри камеры.

Краткое описание чертежей

Фигура 1 представляет собой схематическое изображение традиционного способа адсорбции с псевдодвижущимся слоем для выделения пара-ксилола из смеси ароматических углеводородов C8.

На фигуре 2 приведено схематическое изображение способа на фигуре 1, где показано местоположение устройства сохранения энергии настоящего изобретения.

Фигура 3 представляет собой схематическое изображение способа на фигуре 1, где показано альтернативное расположение устройства сохранения энергии настоящего изобретения.

Осуществление изобретения

Как указано выше, настоящее изобретение обеспечивает экономию энергии, что особенно применимо для перекачки жидкостей с переменным расходом в процессах нефтяной и нефтехимической промышленности. Когда расход потока перекачиваемой жидкости изменяется в ходе цикла переработки по меньшей мере на 10%, и особенно на 25% или больше, перепад давления и связанные с этим потери энергии на клапане регулирования потока могут оказывать значительное влияние на стоимость переработки. Энергию можно сэкономить путем использования средства привода с переменной скоростью для насосов, циркулирующих поток жидкости в цикле переработки.

Настоящее изобретение можно эффективно применять в одном или нескольких циклах переработки в процессах разделения. Изобретение особенно эффективно при адсорбционном разделении, в котором большие объемы жидкости циркулируют с переменным расходом при постоянном давлении через адсорбционные колонны в пределах процесса. Регулирующие клапаны для управления потоками указанных жидкостей испытывают значительные перепады давления, особенно при относительно малых расходах. Цикл переработки представляет собой систему при постоянном давлении, которое измеряется у основания колонн с адсорбентом, в том смысле, что давление преднамеренно не изменяется в ходе цикла переработки, хотя случайно могут происходить небольшие вариации давления от 0,2 до 0,5, и предпочтительно от 0,1 до 0,2 МПа, по техническим требованиям способа.

На фигуре 1 продемонстрирован уровень техники в контексте способа извлечения пара-ксилола из смешанных ароматических углеводородов C8, с использованием твердого адсорбента в состоянии псевдодвижущегося слоя. Указанный слой твердого адсорбента находится в неподвижном состоянии и может содержаться в двух или более камерах 10 и 20. Сам слой адсорбента обычно представляет собой последовательность неподвижных подслоев. Местоположения, в которых различные потоки входят в слой и выходят из него, периодически перемещаются по точкам А доступа. Сдвиг положения ввода и вывода жидкости в направлении потока текучей среды через слой имитирует движение твердого адсорбента в противоположном направлении. Сдвиг положения ввода и вывода жидкости осуществляется с помощью устройства 30 направления текучей среды, обычно известного как поворотный затвор, который работает в сочетании с распределителями, расположенными между подслоями адсорбента. Поворотный затвор осуществляет перемещение положений ввода и вывода к определенным распределителям с помощью точек А доступа, расположенных между подслоями адсорбента. Спустя определенный период времени, названный временем шага, поворотный затвор продвигается вперед на один индекс и перенаправляет вводы и выводы жидкости в распределители, которые непосредственно примыкают и находятся ниже по потоку от ранее использованных распределителей.

Основные вводы и выводы жидкости из системы адсорбента состоят из четырех потоков: сырья F, экстракта Е, рафината R и десорбента D. Каждый поток входит или выходит из системы адсорбента при конкретном расходе, причем каждое значение расхода регулируется независимо. При извлечении пара-ксилола из смеси ароматических углеводородов C8, сырье содержит смесь ксилолов и этилбензола, наряду с небольшим количеством неароматических углеводородов. Десорбент, введенный в систему адсорбента, содержит жидкость, которая способна замещать компоненты сырья в адсорбенте. Экстракт, который выводится из системы адсорбента, содержит отделенный пара-ксилол, который селективно адсорбирован адсорбентом, наряду с десорбентом. Рафинат, который выводится из системы адсорбента, содержит другие изомеры ксилола, этилбензол и неароматические углеводороды, которые менее селективно адсорбируются адсорбентом, наряду с десорбентом. Кроме того, могут присутствовать промывочные потоки Р, которые очищают распределители от посторонних материалов до переключения точек доступа. Эти потоки поступают из слоев 10 и 20 адсорбента во фракционные колонны 40 и 50 для извлечения соответственно рафинатного продукта RP и экстрактного продукта ЕР, с рециркуляцией десорбента D в камеры с адсорбентом.

Циркулирующие потоки, показанные позициями 11 и 21, перекачиваются насосами 12 и 22 соответственно, которые циркулируют жидкость с физического дна одной камеры со слоем адсорбента с целью повторного ввода на физический верх другой камеры со слоем адсорбента. Состав циркулирующего потока, который содержит сырье, десорбент, экстракт и рафинат, изменяется с каждым шагом затвора. Поскольку через слой адсорбента проходят четыре основных потока, значительно варьирует не только состав, но также и объем комбинированного потока, входящего и выходящего из слоя адсорбента; эта вариация обычно составляет, например, 60% при извлечении пара-ксилола из смеси ароматических углеводородов C8. Поток, который переносит эффлюент 11 с физического дна первой камеры 10 через насос 12 с целью повторного ввода на физический верх второй камеры 20, рассматривается как проталкиваемый циркулирующий поток, причем расход этого потока обычно регулируется регулятором 13 давления с помощью клапана 14. Поток, который переносит эффлюент 21 с физического дна второй камеры 20 с целью повторного ввода на физический верх первой камеры 10, рассматривается как прокачиваемый циркулирующий поток и обычно регулируется регулятором 23 расхода и клапаном 24.

На фигурах 2 и 3 показано размещение средств привода с переменной скоростью согласно изобретению в непрерывном процессе адсорбции в связи с процессом, иллюстрированным на фигуре 1. Адсорбционные камеры 100 и 200 соответствуют камерам 10 и 20 на фигуре 1, поворотный затвор 300 соответствует затвору 30, фракционные колонны 400 и 500 соответствуют колоннам 40 и 50 на фигуре 1. Потоки F, Е, R и D имеют такие же обозначения, как на фигуре 1. Циркулирующие потоки 110 и 210 соответствуют циркулирующим потокам 11 и 21 на фигуре 1.

Для устранения указанных энергетических потерь в настоящем изобретении регулирующие клапаны заменены насосами и приводами с переменной скоростью, которые показаны на фигурах 2 и 3. На этих фигурах воспроизведены иллюстрации слоев 10 и 20 адсорбента и поворотного затвора 30 на фигуре 1 с соответствующими слоями 100 и 200 адсорбента и поворотным затвором 300, а также соответствующие фракционные колонны 400 и 500; описание которых соответствуют описанию на фигуре 1 и исключены с целью краткости описания.

Расходы прокачиваемых циркулирующих потоков 110 и 210 из слоев 100 и 200 адсорбента являются такими, как указано в соответствующих измерителях 112 и 212 расхода, которые могут быть турбинными счетчиками, внешними датчиками или любыми другими устройствами из уровня техники, которые могут обеспечить такие значения расходов. Циркуляционные насосы 111 и 211 расположены таким же образом, как насосы 12 и 22 на фигуре 1, однако на фигуре 2 и на фигуре 3 насосы приводятся в действие приводами с переменной скоростью при расходе, указанном расходомерами 112 и 212 и регулирующими системами 113 и 213. Приводы могут быть выполнены, например, в виде непосредственного привода, или мотор-редуктора с цепной передачей, или любого соединения, оптимального для эксплуатации насоса, и предпочтительно является непосредственным приводом для центробежного насоса. Приводы могут представлять собой моторы, скорость которых может регулироваться путем изменения одного или нескольких параметров, выбранных из частоты или напряжения питания мотора; предпочтительно, асинхронные электродвигатели соединяются с центробежными насосами, причем их скорость регулируется путем изменения частоты переменного тока питания. В качестве альтернативы приводы могут представлять собой известные из уровня техники плавно регулируемые паровые турбины.

Фигура 3 отличается от фигуры 2 в отношении контрольно-измерительной аппаратуры и клапанного средства, соединенного с регуляторами 113 и 213. На фигуре 3 регулирующие расход клапаны (CV) 214 и 224, вместо индикаторов потока, соединены с регуляторами 113 и 213; когда возрастают расходы, сначала увеличивается скорость насоса, закрывается CV и затем в переходный период суммарного потока CV открывается, и когда расход уменьшается, сначала закрывается CV, и после наступления переходного периода суммарного потока скорость насоса снижается, чтобы открыть клапан. Указанное использование регулирующих клапанов, в сочетании с приводами с переменной скоростью и прогнозным регулированием нагрузки, уменьшает размер приводов и обеспечивает плавный переходный период при вариации расхода.

Предпочтительно, приводы с переменной скоростью регулируются с целью сохранения энергии с помощью специализированной системы, которая может содержать программируемые логические регуляторы (PLC), аппаратные и программные средства компьютера, настольные компьютеры, универсальные ЭВМ, серверы, клиенты, интегральные схемы, или другие подходящие устройства, или в виде отдельных элементов, или как единое устройство в одном местоположении системы или вне системы. Система регулирования настоящего изобретения обеспечивает плавное течение циркулирующих потоков в процессе адсорбции предпочтительно за счет алгоритма прогнозного контроля нагрузки, который использует не только измеренные данные о расходе, но также и известные параметры процесса адсорбции и внутренние математические зависимости. Применяемый алгоритм удобно можно называть алгоритмом области регулирования переходного процесса (ZTC). Объем циркулирующего потока изменяется известным образом по мере того, как "зоны" ввода и вывода движутся через слой адсорбента, который определяется указанными положениями поворотного затвора с целью достижения соответствующих значений расхода в слое адсорбента. Особенно значительные изменения расходов происходят в процессе перехода рафината между камерами 100 и 200. Эти изменения программируются в алгоритме с корректировками значений скорости приводов и/или регулирующих клапанов, предсказывая с опережением изменения, до получения реальных данных о расходе; то есть алгоритм воспринимает положения регулятора в процессах перехода слоя в связи с индексированием поворотного затвора и, следовательно, осуществляет предварительную установку скорости мотора с переменной скоростью и необязательного регулирующего клапана в связи с индексированием поворотного затвора для сглаживания колебаний. Кроме того, алгоритм может воспринимать точность предварительной установки и корректировать последующую установку. Таким образом, устройство контролирует согласование по времени изменений скорости насоса и необязательного клапана с использованием алгоритма прогнозного контроля нагрузки, чтобы манипулировать скоростью насоса, приведенного в действие приводом с переменной скоростью, и корректировать положение контроля, действующего одновременно с индексированием поворотного затвора, чтобы получить соответствующие расходы текучей среды внутри камеры.

Прокачивающие и проталкивающие циркуляционные насосы уровня техники, перемещающие значительные и переменные количества материала вокруг камер с адсорбентом, являются значительными потребителями энергии. Значительные колебания относительно больших циркулирующих комбинированных потоков приводят к существенной неэффективности использования энергии в этих циркуляционных насосах в соответствии с уровнем техники, размер которых должен быть увеличен, чтобы приспособиться к максимальному расходу. При небольшом расходе 2000 кубометров в час перепад давления на соответствующем регулирующем клапане может составлять 350 кПа, при этом рассеиваются 200 кВт энергии. Таким образом, настоящее изобретение обладает значительным потенциалом экономии энергии.

Пример

Количество растраченной энергии в связи с клапанным регулированием расходов рассчитывают для гипотетического процесса адсорбционного разделения. Средний расход циркуляции устанавливают равным 2000 м3/час, причем расход во время цикла изменяется от 119% до 75% от среднего расхода. Растрачиваются от 46,3% до 63% энергии, необходимой для насоса, при регулировании, когда изменяется расход. Для двух адсорбционных агрегатов количество растраченной энергии доходит до 9700 МВт-час в год, что соответствует 630000 долл. США при стоимости 1 кВт-ч энергии 0,065 долл.

Следует подчеркнуть, что приведенное выше описание представляет собой только иллюстрацию предпочтительного варианта осуществления и не предназначается для чрезмерного ограничения объема изобретения во всем охвате. Например, предшествующее описание можно легко экстраполировать на методику одновременного регулирования более одной характеристики. Аналогично, специалист в данной области техники понимает, как можно корректировать время шага и величины расходов. Таким образом, хотя объем описания является узким, специалист в этой области техники понимает, как экстраполировать изобретение до более широкого охвата.


УЛУЧШЕНИЕ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ АДСОРБЦИОННОГО РАЗДЕЛЕНИЯ
УЛУЧШЕНИЕ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ АДСОРБЦИОННОГО РАЗДЕЛЕНИЯ
УЛУЧШЕНИЕ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ АДСОРБЦИОННОГО РАЗДЕЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 201-210 из 309.
03.10.2018
№218.016.8d14

Способ и установка гидроочистки

Изобретение относится к способу гидроочистки нафты полного диапазона для получения продуктов с пониженным содержанием серы, который включает в себя: (a) разделение сырьевой нафты полного диапазона на множество фракций, включающих фракцию средней нафты и фракцию тяжелой нафты; (b) пропускание...
Тип: Изобретение
Номер охранного документа: 0002668274
Дата охранного документа: 28.09.2018
21.11.2018
№218.016.9f6d

Сужающиеся трубчатые каналы для реакторов

Изобретение относится к области контакта частиц с текучей средой. Устройство, направляющее текучую среду 116 в радиальный реактор 110, содержит вертикально удлиненный трубчатый канал, продолжающийся вокруг окружности наружной стенки указанного радиального реактора 110, причем расстояние,...
Тип: Изобретение
Номер охранного документа: 0002672752
Дата охранного документа: 19.11.2018
06.12.2018
№218.016.a3ea

Способ рекуперации тепла от разделения углеводородов

Изобретение относится к способу разделения углеводородов с рекуперацией тепла во фракционной колонне. Поток, содержащий углеводороды, подают в первую зону разделения на головной поток и кубовый поток. По меньшей мере часть, головного потока паров пропускают в двухступенчатый компрессор...
Тип: Изобретение
Номер охранного документа: 0002674035
Дата охранного документа: 04.12.2018
06.12.2018
№218.016.a401

Способ олигомеризации легких олефинов, включая пентены

Изобретение относится к способу получения олефинов, включающему: крекинг углеводородного сырья на катализаторе FCC в зоне FCC с получением отработанного катализатора FCC и потока продуктов крекинга; получение сырьевого потока олигомеризации, содержащего углеводороды С и С, из указанного потока...
Тип: Изобретение
Номер охранного документа: 0002674024
Дата охранного документа: 04.12.2018
13.12.2018
№218.016.a676

Способы и установки для производства бутадиена

Изобретение относится к способу производства бутадиенов. Способ включает: а) пропускание сырьевого потока реактора, содержащего поток углеводородов, содержащий бутен, поток водяного пара и богатый кислородом поток, в реактор дегидрирования; b) окислительное дегидрирование сырьевого потока...
Тип: Изобретение
Номер охранного документа: 0002674664
Дата охранного документа: 12.12.2018
14.12.2018
№218.016.a6be

Ступенчатое давление в реакторах получения бутадиена для улучшения рекуперации энергии

Изобретение относится к способу получения бутадиена-1,3, в котором: сырьевой поток, содержащий бутен, разделяют на две части; в первый реактор пропускают окислитель и пар; первую часть сырьевого потока пропускают в первый реактор, работающий в первых условиях реакции, для образования выходящего...
Тип: Изобретение
Номер охранного документа: 0002674762
Дата охранного документа: 13.12.2018
19.12.2018
№218.016.a8aa

Способ увеличения выхода из зоны изомеризации

Изобретение относится к способу увеличения выхода из зоны изомеризации, который включает отделение части С циклических углеводородов от потока нафты, содержащего С углеводороды, для получения потока, обедненного по С циклическим углеводородам; отделение изоC углеводородов, изоC углеводородов и...
Тип: Изобретение
Номер охранного документа: 0002675242
Дата охранного документа: 18.12.2018
26.12.2018
№218.016.ab44

Триалкилфосфониевые ионные жидкости, способы получения и способы алкилирования с использованием триалкилфосфониевых ионных жидкостей

Изобретение относится к способу алкилирования, который может быть использован в химической промышленности. Предложенный способ включает контактирование изопарафинового сырья, имеющего от 4 до 10 атомов углерода, и олефинового сырья, имеющего от 2 до 10 атомов углерода, в присутствии...
Тип: Изобретение
Номер охранного документа: 0002675845
Дата охранного документа: 25.12.2018
20.02.2019
№219.016.c068

Кристаллическая алюмосиликатная цеолитная композиция: uzm-9

Изобретение относится к алюмосиликатному цеолиту, идентифицированному как UZM-9. Указанный цеолит имеет LTA топологию и эмпирическую формулу: , где М означает, по меньшей мере, один обмениваемый катион, выбираемый из группы, включающей щелочные и щелочноземельные металлы; R означает, по меньшей...
Тип: Изобретение
Номер охранного документа: 0002304082
Дата охранного документа: 10.08.2007
20.02.2019
№219.016.c220

Способ и устройство для получения алкилбензолов, применяемых в производстве моющих средств, с помощью трансалкилирования

Изобретение относится к комбинированному способу непрерывного получения линейных алкилбензолов, применяемых в производстве моющих средств, посредством алкилирования бензола олефинами, содержащими от 8 до 16 атомов углерода. При этом способ включает: а. непрерывную подачу бензола и смеси,...
Тип: Изобретение
Номер охранного документа: 0002453522
Дата охранного документа: 20.06.2012
Показаны записи 181-188 из 188.
25.08.2017
№217.015.c1b0

Высокоселективный процесс алкилирования в присутствии каталитической композиции с низким содержанием цеолита

Изобретение относится к способу алкилирования сырья. Способ включает контактирование сырья, содержащего по меньшей мере одно ароматическое соединение, способное алкилироваться, и алкилирующий агент, с первой алкилирующей каталитической композицией в условиях алкилирования. Алкилирование...
Тип: Изобретение
Номер охранного документа: 0002617422
Дата охранного документа: 25.04.2017
26.08.2017
№217.015.e031

Способ контроля количества серы на катализаторе в процессах дегидрирования легких парафинов

Изобретение относится к способу регенерации отработанного катализатора дегидрирования из реактора, включающему: подачу отработанного катализатора дегидрирования, содержащего серу на катализаторе, в аппарат отбора серы; подачу газообразного потока водорода в аппарат отбора при повышенной...
Тип: Изобретение
Номер охранного документа: 0002625302
Дата охранного документа: 13.07.2017
26.08.2017
№217.015.e1ef

Способ получения дизельного топлива

Изобретение раскрывает способ получения дизельного топлива из углеводородного потока, включающий в себя: гидроочистку основного углеводородного потока и совместно подаваемого потока углеводородного сырья, содержащего дизельное топливо, в присутствии потока водорода и катализатора...
Тип: Изобретение
Номер охранного документа: 0002625802
Дата охранного документа: 19.07.2017
29.12.2017
№217.015.f136

Способ получения дизельного топлива с помощью олигомеризации бензина

Изобретение относится к способу получения дистиллята, включающему в себя: подачу потока сырья для олигомеризации, содержащего С олефины, в зону олигомеризации; рециркуляцию потока бензина, содержащего C олефины, в указанную зону олигомеризации; олигомеризацию С олефинов с С олефинами и С...
Тип: Изобретение
Номер охранного документа: 0002638933
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.f6b6

Способ олигомеризации бензина без дополнительного облагораживания

Изобретение относится к способу получения бензина из легких олефинов, включающему: олигомеризацию С и С олефинов в олефиновом потоке сырья для олигомеризации, содержащем С и С углеводороды, над твердым фосфорнокислотным катализатором при температуре 150°С-250°C с получением потока...
Тип: Изобретение
Номер охранного документа: 0002639160
Дата охранного документа: 20.12.2017
29.12.2017
№217.015.fe4f

Рекуперация тепла из потока высокого давления

Изобретение относится к способу рекуперации тепла из потока высокого давления во время гидропереработки. Способ включает: использование горячего сепаратора для создания потока паров высокого давления; выработку как потока водяного пара среднего давления, так и потока водяного пара низкого...
Тип: Изобретение
Номер охранного документа: 0002638579
Дата охранного документа: 15.12.2017
11.03.2019
№219.016.daa9

Усовершенствованный способ выделения продукта методом адсорбции с моделированным движущимся слоем

Изобретение относится к способу выделения целевого соединения из смеси сырья, состоящей из двух или более химических соединений, адсорбционным разделением с моделированным противопотоком, в котором поток сырья и поток десорбента вводят, по крайней мере, в одну многослойную секцию адсорбента,...
Тип: Изобретение
Номер охранного документа: 0002361852
Дата охранного документа: 20.07.2009
01.09.2019
№219.017.c4de

Усовершенствованный способ получения олефинов и бтк с использованием реактора крекинга алифатических соединений

Изобретение относится к способу получения ароматических соединений, включающему в себя: риформинг потока нафты в зоне риформинга в условиях риформинга с образованием выходящего потока риформера, содержащего ароматические соединения и неароматические соединения, при этом по меньшей мере часть...
Тип: Изобретение
Номер охранного документа: 0002698722
Дата охранного документа: 29.08.2019
+ добавить свой РИД