×
20.09.2015
216.013.7d00

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ ОЦЕНКИ ПОВРЕЖДЕНИЯ ПОДШИПНИКОВ КАЧЕНИЯ, В ЧАСТНОСТИ, В ЭЛЕКТРИЧЕСКИХ МАШИНАХ, ПИТАЕМЫХ ЧЕРЕЗ ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ ПЕРЕМЕННОГО ТОКА

Вид РИД

Изобретение

№ охранного документа
0002563597
Дата охранного документа
20.09.2015
Аннотация: Изобретения относятся к измерительной технике, в частности к устройствам для оценки повреждения подшипника качения электрической машины. При реализации заявленного способа электрическая машина, содержащая контролируемый подшипник качения, электрически подключена к инвертору с промежуточным контуром напряжения, а указанный подшипник качения имеет, соответственно, смазочный зазор между внутренним кольцом подшипника и телом качения и внешним кольцом подшипника и телом качения. При этом для оценки повреждений осуществляется регистрация энергии электрического события разряда в смазочном зазоре подшипника качения, регистрация частоты событий разряда и оценка событий разряда посредством корреляции частоты и энергии. Устройство содержит электрическую машину, содержащую контролируемый подшипник качения, которая электрически подключена к инвертору с промежуточным контуром напряжения, а указанный подшипник качения имеет, соответственно, смазочный зазор между внутренним кольцом подшипника и телом качения, и внешним кольцом подшипника и телом качения. Также оно содержит средства для регистрации энергии электрического события разряда в смазочном зазоре подшипника качения, средства для поиска совпадающего события выше одного гигагерца, средства для регистрации частоты событий разряда и устройство оценки зарегистрированных данных частоты и энергетического содержания. Технический результат заключается в повышении точности оценки ресурса подшипников. 4 н. и 11 з.п. ф-лы, 5 ил.

В электрических машинах, в частности в двигателях с питанием от преобразователя частоты переменного тока (инвертора), возникают паразитные эффекты, которые, в том числе приводят к протеканию тока через подшипники соответствующего двигателя.

В случае больших двигателей, которые подключены непосредственно к синусоидальной электрической сети, прежде всего возникают токи подшипников, причиной которых является несимметричность электрического контура, допуска на изготовление и анизотропия материалов. Асимметричное распределение магнитного потока в двигателе индуцирует напряжение в валу электрической машины, которое приводит к низкочастотному протеканию тока через подшипники. Эти токи циркулируют в замкнутом контуре: вал - подшипник - экран подшипника - корпус.

Прерывание этого протекания тока реализуется посредством изоляции подшипника.

В электрических машинах с электрическим питанием через инвертор, в частности инвертор с промежуточным контуром напряжения, формируется выходное напряжение посредством регулируемого включения промежуточного контура постоянного напряжения, которое затем прикладывается к выходу инвертора. Смена положительного и отрицательного потенциала в быстрой последовательности приводит в двухпозиционном инверторе к характеристике напряжения, сумма трезхфазного напряжения которого не равна нулю и обозначается как так называемое синфазное напряжение.

Каждое из этих «крутых» действий переключения напряжения обуславливает высокочастотные возбуждения, которые приводят к высокочастотным высшим гармоникам с результирующими токами, которые через паразитные пути возвращаются к источнику, то есть в промежуточный контур инвертора.

Эти токи могут в подшипниках, особенно в подшипниках качения, вызвать изменения дорожки качения. При сильных изменениях дорожки качения подшипники качения обуславливают прежде всего шум при перекатывании. Позже подшипник с повреждениями, вызванными усталостью, выходит из строя, что может привести к отказу двигателя или даже к его разрушению.

Таким образом, соответствующие подшипники должны заменяться до достижения желательного срока службы, что вызывает незапланированные расходы.

В случае двигателей, встроенных в установки, за счет внешних измерений принимается решение об электрической нагрузке подшипников. При этом пытаются путем измерения токов заземления, токов вала и напряжений вала выполнять описание состояния подшипника. Однако это описание состояния является крайне неточным. Поэтому в целях безопасности подшипники заменяются задолго до собственно их отказа.

Исходя из этого, задачей изобретения является создать более точный способ по сравнению с нынешними измерениями шума и сравнительными измерениями, чтобы иметь возможность более точно оценить остаточный срок службы подшипника.

Решение поставленной задачи достигается способом для оценки повреждения подшипника качения электрической машины, которая электрически подключена к инвертору, в частности к инвертору с промежуточным контуром напряжения,

причем это повреждение вызывается токами подшипника, в особенности высокочастотными токами подшипника,

причем подшипник качения имеет, соответственно, смазочный зазор между внутренним кольцом подшипника и телом качения и внешним кольцом подшипника и телом качения посредством следующих этапов:

- регистрация энергии электрического события разряда в смазочном зазоре подшипника качения,

- регистрация частоты событий разряда,

- оценка событий разряда посредством корреляции частоты и энергии.

Решение поставленной задачи обеспечивается также посредством устройства для оценки повреждения подшипника качения динамоэлектрической машины, которая электрически подключена к инвертору, в частности к инвертору с промежуточным контуром напряжения,

причем это повреждение вызывается токами подшипника, в особенности высокочастотными токами подшипника,

причем подшипник качения имеет, соответственно, смазочный зазор между внутренним кольцом подшипника и телом качения и внешним кольцом подшипника и телом качения, содержащего:

- средство для регистрации энергетического содержания события разряда в смазочном зазоре,

- средство для регистрации частоты события разряда,

- устройство оценки, которое оценивает зарегистрированные данные частоты и энергетического содержания.

В соответствии с изобретением за счет непосредственной регистрации возникающей в смазочном зазоре передачи энергии становится возможной точная оценка повреждения или остаточного срока службы подшипника, которая также классифицируется посредством соответствующих методов оценки.

Разность напряжений приводит к разрядам электрической дуги и, тем самым, к протеканию тока через смазочную пленку подшипников и, следовательно, к расплавлениям материала или к испарениям материала в дорожках качения подшипников. Равномерная структура расплавления не представляет при этом, как правило, никакой проблемы в отношении срока службы дорожек качения подшипников. Только если материал дорожки качения при прохождении тока частично испаряется, то это приводит к опасному рифлеобразованию. Это рифлеобразование отличается характеристической структурой выступов и впадин, ориентированной перпендикулярно направлению качения тела качения.

При этом для испарения материала требуется заметно более высокая энергия по сравнению с той, которая необходима для расплавления материала для идентичного объема материала.

Подобный учет энергии до сих пор не проводился.

При достаточно высоком напряжении на подшипнике электрической машины происходит превышение напряжения пробоя смазочной пленки, что приводит к электрической дуге между подшипниками качения и внутренним или внешним кольцом. В зависимости от энергии, преобразуемой в смазочном зазоре, это может привести к расплавлениям в дорожке качения тела качения или даже к испарениям материала на теле качения или внешнем или внутреннем кольце.

Испарения материала являются предпосылкой для образования опасной структуры рифлей.

Оба процесса расплавлений материала и испарений материала предполагают, однако, определенную минимальную энергию, которая выводится из термодинамических расчетов. Для этого при событии разряда непосредственно измеряются или электрический ток через подшипник, и/или электрическое напряжение на подшипнике. Путем определения соответствующей мгновенной мощности Р = U*I события разряда и суммирования этих мгновенных мощностей путем интегрирования по времени определяется преобразованная в смазочном зазоре электрическая энергия. При этом время является характеристической константой времени, с которой происходит событие.

Если эта энергия больше, чем минимальная энергия для испарения материала, то это может привести к образованию рифлей. Тем самым можно теперь из преобразования энергии в смазочной пленке оценить, имеет ли подшипник тенденцию к образованию рифлей.

Кроме того, можно из производственного опыта, конкретные значения которого сохранены в банке данных, вывести критический полный объем испарения, приходящийся на рифлю, начиная с которого подшипник выходит из строя. Тем самым можно из частоты этих критических событий вычислить интервал времени до возможного отказа подшипника.

За счет соответствующего изобретению метода для измерения или контроля электрических параметров токов подшипника могут теперь регистрироваться характеристики протекания импульсных процессов разряда, которые обуславливают необратимые изменения в зоне дорожек качения подшипников, тел качения и/или действующих в смазочных зазорах смазочных материалов.

За счет соответствующего изобретению подхода в отношении измерения тока подшипника и соответствующей оценки становится возможным определить связанные с процессами разряда локально переносимые энергии или временной ход локальных плотностей мощности.

В принципе, имеются, в зависимости от локальных плотностей мощности, по меньшей мере следующие возможности группирования воздействия события прохождения тока на компоненты подшипника качения на различные классы.

Локальная плотность мощности протекания тока настолько мала, что это не приводит ни к влиянию на поверхности дорожки качения, ни к влиянию на смазочный материал, например, в непосредственном металлическом контакте тел качения, тем самым имеет месте некритичный случай функционирования.

Локальная плотность мощности протекания тока, то есть разряд или перемещение твердого тела за счет тока обуславливает уже термическое изменение смазочного материала, однако без изменения поверхности дорожки качении. Тем самым имеет место предварительная стадия перед критическим состоянием подшипника. В частности, в случае подшипников с непрерывной смазкой, и при несоблюдении предусмотренных сроков смазки из этого может возникнуть крайне критическое состояние.

Но, в конечном счете, этот случай является еще относительно некритичным для режима работы электрической машины.

Локальная плотность мощности протекания тока является достаточной, чтобы обусловить локальное расплавление поверхностей дорожки качения и изменить смазочный материал подшипника качения. Тем самым имеет место уже критичное состояние.

Локальная плотность мощности протекания тока настолько высока, что поверхность дорожки качения сначала локально расплавляется, а затем испаряется, и смазочный материал к тому же изменяется. При этом получаются оценки для известных сталей подшипников, что при событиях прохождения тока, которые имеют плотность энергии примерно на порядок выше той, которая требуется только для локального расплавления поверхности, начинается испарение соответствующей зоны поверхности.

Структуры рифлей обуславливаются дополнительными механическими влияниями, такими как начальные повреждения дорожки качения, которые в принципе нельзя исключить, прежде всего за счет процессов разряда, их энергий, в частности, локальные плотности мощности приводят к локальным расплавлениям, которые, однако, достигают также высокой доли энергий испарения соответствующих зон поверхности.

Для расплавления в кольцах подшипника, а также в поверхностях тел качения должны выполняться два критерия. Энергия события тока подшипника или локальная плотность мощности должна быть достаточно высокой или превышать определенное значение. Кроме того, импульс не может превышать определенной максимальной длительности, так как иначе тепло может отводиться или стекать уже в материале и, таким образом, не приводить к расплавлению или даже к испарению металлов дорожки качения.

Результат различных измерений показывает, что является возможным проверять или измерять условия независимо друг от друга. Для этого является особенно предпочтительным регистрировать событие разряда в двух различных частотных диапазонах. В качестве меры для энергетического содержания события может определяться в однозначном и до многозначного мегагерцового диапазона время спада напряжения на подшипнике. Из отношения С*dU/dt получается высота тока подшипника. Если теперь отыскивают совпадающее событие в микроволновом диапазоне выше одного гигагерца, то подобное событие показывает, что следует исходить из события тока подшипника, опасного для подшипника.

Подразделение этих обеих частотных полос является особенно выгодным, так как при ограниченной ширине полосы в базовой полосе в несколько мегагерц невозможно обязательно сделать заключение о вредоносности. С другой стороны, излучение микроволн подвергается экстремальным колебаниям. Из-за этих неточностей измерения в микроволновом диапазоне определение энергии импульса здесь невозможно и поэтому должно осуществляться в другом частотном диапазоне, то есть в мегагерцовом диапазоне.

Во всех соответствующих изобретению регистрациях, разумеется, необходимо учитывать теорему о дискретном представлении (теорему Котельникова), чтобы получить убедительные результаты.

Регистрация в гигагерцовом диапазоне осуществляется предпочтительно через антенны.

Однако решающей является точечным образом действующая (кратерообразная) энергия, которая должна протекать лишь в течение короткого временного интервала, типично в диапазоне нескольких сотен пикосекунд, чтобы энергия за счет теплопроводности не стекала в настолько большой объем, что более не вызываются повреждения. Этот типично короткий временной интервал является существенным ключевым параметром для рифлеобразования на компонентах подшипника, таких как тело качения, внутреннее кольцо подшипника и внешнее кольцо подшипника.

Точечным образом действующая (кратерообразная) энергия, приходящаяся на единицу времени, является энергией, которая высвобождается в течение определенного короткого временного интервала в подшипнике за счет разряда. Временной интервал определяется на основе диаметра Dk кратера и скорости V звука.

Типичными значениями являются:

Поэтому точечным образом действующая энергия определяется следующим образом:

Для регистрации точечным образом действующей энергии необходимо, с одной стороны, измерение тока или измерение напряжения или одновременное измерение тока и напряжения. Вместе с вышеприведенным измерением подобных событий в микроволновом диапазоне, то есть выше одного ГГц, подобные события разряда могут точно определяться по времени и по их энергетическому содержанию.

Для измерения тока необходима дополнительная изоляция на подшипнике с шунтированием мостом, с одновременной установкой пригодного для высокочастотного диапазона перекрытия, посредством которого может измеряться протекание тока.

Также возможно связанное с этим одновременное измерение напряжения на подшипнике и, тем самым, вычисление мощности. Эта мощность соответствует энергии, переносимой во временном интервале.

Другая возможность получить точечным образом действующую (кратерообразную) энергию обеспечивается посредством энергии разряда и емкости на подшипнике согласно следующему математическому соотношению:

UGleich: синфазное напряжение на клеммах электродвигателя,

ULager: напряжение на подшипнике электродвигателя (напряжение на подшипнике) ,

t: время,

BVR: отношение напряжений на подшипнике, отношение ULager к UGleich,

CLager: емкость на подшипнике двигателя,

f: функция, которая должна быть определена на основе эквивалентной схемы,

f1: обратная функция по отношению к f,

WKE: точечным образом действующая (кратерообразная) энергия.

Напряжение на подшипнике двигателя измеряется посредством специального датчика напряжения, например, с аналоговой схемой или вычисляется посредством числовой обработки сигналов. Посредством упомянутого соотношения можно теперь сделать вывод относительно точечным образом действующей энергии.

Представление и оценка распределения энергии осуществляется, например, на диаграмме, при этом амплитуда энергии наносится для измеренного напряжения. Результаты при непрерывном измерении при работе динамоэлектрической машины являются множеством точек измерения в форме облака энергии, которое описывает энергетическую нагрузку подшипника. Посредством этого метода представления могут, прежде всего, распознаваться критические энергетические разряды.

События в другой форме выполнения представляются также на 3-D диаграмме. Третья размерность представляет, в частности, частоту появления в так называемом «ложном цветовом представлении» (например, чем более красное, тем более частое).

С помощью далее подключенной логики, которая предусматривает задаваемые зависимые от материала граничные значения, также является возможным их визуализировать для конечного пользователя по типу ампельной системы и, тем самым, как системы сигнализации. С помощью измерения соответствующего времени нахождения на одном энергетическом уровне подшипника можно в течение долговременных оценок сделать выводы о возможном сроке службы подшипника.

Предпочтительным образом подшипники или подшипниковые щиты уже оснащены требуемыми измерительными выводами для напряжения и/или тока и/или регистрации в ГГц диапазоне. При встраивании подобных подшипников или подшипниковых щитов в электрические машины можно таким образом устройство оценки с соответствующим ему объемом памяти и возможностями анализа просто позиционировать в или на электрической машине, не требуя реализации отдельной пригодной для ВЧ измерительной структуры.

Измерительные выводы можно, таким образом, реализовывать пригодными для высокочастотного применения и проверять уже при изготовлении подшипников или подшипниковых щитов, так что ошибки измерения при работе электрической машины могут быть минимизированы ввиду «навесной измерительной структуры».

Также можно через соответствующие этому пути передачи (проводные или беспроводные) передавать результаты измерений или оценки некоторого значения.

Изобретение и его предпочтительные выполнения представлены на чертежах, где показано следующее:

Фиг.1 - принципиальная конфигурация установки,

Фиг.2 - ВЧ эквивалентная схема электродвигателя,

Фиг.3 - эквивалентная схема подшипника,

Фиг.4 - диаграмма и

Фиг.5 - другая диаграмма для оценки.

Фиг.1 показывает в принципиальном представлении структуру динамоэлектрической вращающейся машины с окружающими деталями установки. Более конкретно, инвертор 1 через соединительные линии 7 подключен к динамоэлектрической машине, которая находится внутри корпуса 10 двигателя и имеет статор 11 и ротор 12, который через подшипник 14 и вал 13 через муфту приводит нагрузочную машину 8 или приводится ею.

Электрическое соединение между инвертором 1 и динамоэлектрической машиной посредством соединительного кабеля 7 имеет кабельный экран 6, который имеет соответствующее соединение 5 с заземлением инвертора 1 или корпуса 10 двигателя. Как инвертор 1, так и нагрузочная машина 8 через заземление 12 или 4 соединены с землей 3. Также электрическая машина, в частности, через не показанное подробно основание корпуса 10 двигателя электрически соединена с заземлением установки.

Выходное напряжение инвертора 1, в частности, выполненного как преобразователь частоты переменного тока с промежуточным контуром напряжения, прикладывается через регулируемое переключение промежуточного контура постоянного напряжения на выходе. Смена положительного и отрицательного потенциала в быстрой последовательности приводит в двухпозиционном преобразователе частоты переменного тока к характеристике изменения напряжения, для которого сумма трехфазного напряжения не равна нулю, и получается так называемое синфазное напряжение.

Подшипник 14, в частности подшипник качения, имеет между внешним кольцом подшипника и внутренним кольцом подшипника несколько равномерно распределенных тел качения. Внешнее кольцо подшипника обычно позиционировано в подшипниковом щите, в то время как внутреннее кольцо подшипника размещено непосредственно на валу. В особенности, между кольцами подшипника и телами качения находится смазочная пленка толщиной в несколько десятков микрометров. Существуют, таким образом, два смазочных зазора.

На смазочном зазоре подшипника 14 емкостной делитель напряжения по Фиг.2 обуславливает полное отображение синфазного напряжения, которое отличается от последнего по величине на коэффициент напряжения на подшипнике (BVR). При этом BVR является отношением напряжения на подшипнике к синфазному напряжению на клеммах электродвигателя.

Gwh - статорная обмотка и корпус,

Gwr - статорная обмотка и статорное железо,

Grh - роторное железо и корпус,

Cb - смазочная пленка подшипниковой опоры,

Zn - нелинейный импеданс смазочной пленки при пробое (электрическая дуга),

Rb - омическое сопротивление подшипниковой опоры.

Приложенное между клеммами двигателя и корпусом напряжение должно измеряться в соответствии с коэффициентом деления BVR на подшипнике, как это представлено, например, на Фиг.3. Емкость смазочной пленки подшипниковой опоры Cb через емкость роторной обмотки и роторное железо заряжается посредством зарядного тока 21 емкости смазочной пленки, если смазочная пленка изолирована и ротор 12 не заземлен. Коэффициент BVR является мерой для высоты этого заряда. Если напряжение на подшипнике превышает напряжение пробоя смазочной пленки подшипника, то это приводит к электрическому пробою смазочной пленки.

Напряжение 20 на изоляции смазочной пленки приводит, в зависимости от высоты напряжения, к разряду. Разряд осуществляется внутри подшипника и приводит, в зависимости от вышеупомянутых выполнений, к расплавлениям или точкам испарения в дорожках качения подшипника, то есть к микрократерам в дорожках качения тел качения.

Фиг.4 показывает на диаграмме представленную графически энергию в зависимости от диаметра расплавления, причем энергия в области I приводит к расплавлению кратера, а в области II энергия достаточна, чтобы достичь испарения металла, в частности стали, на дорожках качения или телах качения.

Фиг.5 показывает на другой диаграмме представленную графически энергию в зависимости от напряжения на подшипниках, на которой нанесены соответствующие этому импульсы. При этом представлены энергия испарения 52 и энергия расплавления 51, и отдельные точки измерения находятся в облаке 50, так что относительно отдельных точек измерения или их частоты можно сделать вывод об остаточном сроке службы подшипника.


СПОСОБ И УСТРОЙСТВО ДЛЯ ОЦЕНКИ ПОВРЕЖДЕНИЯ ПОДШИПНИКОВ КАЧЕНИЯ, В ЧАСТНОСТИ, В ЭЛЕКТРИЧЕСКИХ МАШИНАХ, ПИТАЕМЫХ ЧЕРЕЗ ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ ПЕРЕМЕННОГО ТОКА
СПОСОБ И УСТРОЙСТВО ДЛЯ ОЦЕНКИ ПОВРЕЖДЕНИЯ ПОДШИПНИКОВ КАЧЕНИЯ, В ЧАСТНОСТИ, В ЭЛЕКТРИЧЕСКИХ МАШИНАХ, ПИТАЕМЫХ ЧЕРЕЗ ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ ПЕРЕМЕННОГО ТОКА
СПОСОБ И УСТРОЙСТВО ДЛЯ ОЦЕНКИ ПОВРЕЖДЕНИЯ ПОДШИПНИКОВ КАЧЕНИЯ, В ЧАСТНОСТИ, В ЭЛЕКТРИЧЕСКИХ МАШИНАХ, ПИТАЕМЫХ ЧЕРЕЗ ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ ПЕРЕМЕННОГО ТОКА
СПОСОБ И УСТРОЙСТВО ДЛЯ ОЦЕНКИ ПОВРЕЖДЕНИЯ ПОДШИПНИКОВ КАЧЕНИЯ, В ЧАСТНОСТИ, В ЭЛЕКТРИЧЕСКИХ МАШИНАХ, ПИТАЕМЫХ ЧЕРЕЗ ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ ПЕРЕМЕННОГО ТОКА
СПОСОБ И УСТРОЙСТВО ДЛЯ ОЦЕНКИ ПОВРЕЖДЕНИЯ ПОДШИПНИКОВ КАЧЕНИЯ, В ЧАСТНОСТИ, В ЭЛЕКТРИЧЕСКИХ МАШИНАХ, ПИТАЕМЫХ ЧЕРЕЗ ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ ПЕРЕМЕННОГО ТОКА
Источник поступления информации: Роспатент

Показаны записи 591-600 из 1 428.
27.08.2016
№216.015.4dfd

Устройство сгорания с импульсным разделением топлива

Дано описание управляющего блока устройства сгорания и устройства сгорания, например, газовой турбины, который на основе по меньшей мере одного рабочего параметра определяет, находится ли устройство сгорания в заданной рабочей фазе. В ответ на это генерируется управляющий сигнал,...
Тип: Изобретение
Номер охранного документа: 0002595292
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.50ae

Способ и устройство для сжатия данных, представляющих зависящий от времени сигнал

Группа изобретений относится к области обработки сигналов и может быть использована для сжатия данных D(nT), представляющих зависящий от времени сигнал A(t), содержащий зависящие от времени частичные сигналы Aj(t). Техническим результатом является уменьшение объема памяти для хранения...
Тип: Изобретение
Номер охранного документа: 0002595929
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.5134

Способ контроля контакта рельса с колесом

Изобретение относится к способу контроля контакта между колесом и рельсом железнодорожного транспортного средства. Способ контроля контакта между колесом и рельсом железнодорожного транспортного средства содержит этапы: записи вертикального и/или бокового ускорения по меньшей мере одного колеса...
Тип: Изобретение
Номер охранного документа: 0002596048
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.52e6

Рельсовое транспортное средство, снабженное перегородкой

Изобретение относится к рельсовым транспортным средствам. Рельсовое транспортное средство снабжено перегородкой (1), проходящей в поперечном направлении рельсового транспортного средства, соединенной по меньшей мере с одной боковой стенкой (2) рельсового транспортного средства. Соединение...
Тип: Изобретение
Номер охранного документа: 0002594045
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5361

Способ регулирования расхода охлаждающего средства внутри активно охлаждаемых конструктивных элементов и конструктивный элемент

Изобретение относится к способу алитирования внутренней поверхности канала (10) полого конструктивного элемента (1, 120, 130) гидравлической машины и к полому конструктивному элементу (1, 120, 130) гидравлической машины. Осуществляют нанесение покрытия диффузионным алитированием по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002593798
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5373

Противопожарное устройство

Изобретение относится к противопожарному устройству для кабельного ввода (22), через который проходит кабельный блок (16) из пожароопасного пространства (12) в подлежащее защите от пожара пространство (14), содержащему противопожарное средство (32), которое предусмотрено для защиты от...
Тип: Изобретение
Номер охранного документа: 0002593828
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.53e7

Снижение электрического сопротивления у электрической машины, имеющей обмотки, расположенные в пазах

Изобретение касается электрической машины. Обмотки машины разделены на ветви, и по меньшей мере одна ветвь имеет некоторое количество s последовательно включенных катушек. Катушки включают в себя каждая параллельно включенные отдельные провода, расположенные несколькими жгутами. Жгут одной...
Тип: Изобретение
Номер охранного документа: 0002593765
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5417

Многополюсная газоизолированная секция сборной шины

Многополюсная газоизолированная секция сборной шины имеет несколько расположенных вдоль главной оси (2) секций (5а, 5b, 5с) проводников. Секции (5а, 5b, 5с) проводников установлены по периферии изолирующего тела (6a, 6b, 6c, 10, 14). Изолирующее тело (6a, 6b, 6c, 10, 14) имеет кольцевой контур....
Тип: Изобретение
Номер охранного документа: 0002593762
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.559b

Устройство исполнительного элемента и способ установки положения линейно подвижного элемента

Изобретение относится к устройству (10) исполнительного элемента для формирования линейного перемещения, содержащему гидравлический исполнительный элемент (12), который содержит первый поршневой элемент (14) для приведения в действие исполнительного элемента и второй поршневой элемент (18) для...
Тип: Изобретение
Номер охранного документа: 0002593323
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.58ab

Электрическая машина

Изобретение относится к электротехнике, а именно к устройствам охлаждения электрических машин со съемным охладителем. На верхней стороне корпуса (1) электрической машины вблизи переднего/заднего концов (5,6) имеются отверстия (7,8) впуска воздуха, а между ними - отверстие (9) выпуска воздуха;...
Тип: Изобретение
Номер охранного документа: 0002588034
Дата охранного документа: 27.06.2016
Показаны записи 591-600 из 943.
20.05.2016
№216.015.4009

Силовой переключатель постоянного напряжения

Изобретение относится к области электротехники и может быть использовано в устройствах переключения силовых линий постоянного напряжения. Переключатель 100 постоянного напряжения содержит по меньшей мере один прерыватель 120 и коммутаторное устройство, подключенное параллельно прерывателю, при...
Тип: Изобретение
Номер охранного документа: 0002584096
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.413a

Система etcs l2 - european train control system level 2 - автоматическая локомотивная сигнализация с автостопом

Изобретение относится к области автоматики и телемеханики на железнодорожном транспорте. Система содержит управляемый постами централизации блокировочный радиоцентр RBC на основе системы самоблокировки с расположенными между постами централизации, управляемыми с помощью устройств контроля...
Тип: Изобретение
Номер охранного документа: 0002584040
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.41b7

Впрыскивание топлива под наклоном в щелевое отверстие завихрителя

Изобретение относится к энергетике. Камера сгорания для газовой турбины, содержащая предкамеру, имеющую центральную ось, и завихритель, который установлен на предкамере. Завихритель охватывает предкамеру в окружном направлении относительно центральной оси. Завихритель содержит поверхность...
Тип: Изобретение
Номер охранного документа: 0002584385
Дата охранного документа: 20.05.2016
10.06.2016
№216.015.4792

Перо лопатки турбины и способ нанесения теплозащитного покрытия

Перо лопатки турбины содержит входную кромку, выходную кромку, наружную поверхность, включающую в себя сторону спинки пера, простирающуюся от входной кромки до выходной кромки, и сторону корыта пера, простирающуюся от входной кромки до заднего конца. Сторона корыта пера расположена напротив...
Тип: Изобретение
Номер охранного документа: 0002585668
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4888

Способ оптимизированного функционирования рельсового транспортного средства с электрическим приводом на заданном участке пути

Изобретение относится к системам управления движением поездов. Способ заключается в том, что определяют затраты на вводимую на участке пути электрическую энергию и/или нагрузку на окружающую среду при производстве вводимой на участке пути электрической энергии. При этом путь рельсовой сети...
Тип: Изобретение
Номер охранного документа: 0002587126
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.48d6

Способ и устройство для контроля тормозной системы тормозного оборудования рельсового транспортного средства

Группа изобретений относится к контролю тормозной системы тормозного оборудования с несколькими тормозными системами рельсового транспортного средства. Устройство для контроля тормозной системы тормозного оборудования включает измерительные устройства (1) для измерения замедления рельсового...
Тип: Изобретение
Номер охранного документа: 0002586911
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.48f4

Коммутационное устройство для транспортного средства с электрическим приводом и электрическое транспортное средство

Группа изобретений относится к электрическим тяговым системам транспортных средств. Коммутационное устройство содержит переключательный блок (28), который выполнен с возможностью соединения или разъединения приводного блока (14) транспортного средства с находящейся под высоким напряжением линии...
Тип: Изобретение
Номер охранного документа: 0002586810
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4923

Кабина машиниста локомотива

Изобретение относится к области автоматики на железнодорожном транспорте. Кабина машиниста локомотива включает дисплей на лобовом стекле с индикацией информации, релевантной для рельсового транспортного средства, в поле зрения машиниста локомотива, блок формирования изображения дисплея на...
Тип: Изобретение
Номер охранного документа: 0002586815
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.492c

Резонаторное устройство и способ для возбуждения резонатора

В способе возбуждения резонатора, который имеет резонансную частоту, резонатор в течение первого временного интервала возбуждается с первой частотой, которая отличается от резонансной частоты на первую разность частот. В течение второго временного интервала резонатор возбуждается с второй...
Тип: Изобретение
Номер охранного документа: 0002586410
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4936

Уплотнительный элемент для уплотнения зазора

Изобретение относится к уплотнительному элементу (1) для уплотнения зазора (5) между двумя конструктивными элементами (2а, 2b), в частности к уплотнительной системе (2с) газотурбинной установки. Элемент проходит вдоль основной линии (21) и имеет контурированное поперечное сечение в рифленой...
Тип: Изобретение
Номер охранного документа: 0002586805
Дата охранного документа: 10.06.2016
+ добавить свой РИД