×
20.09.2015
216.013.7cdd

Результат интеллектуальной деятельности: МАГНИТОЖИДКОСТНОЕ УПЛОТНЕНИЕ ВАЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к уплотнительной технике и может быть использовано для герметизации подвижных друг относительно друга деталей. Магнитожидкостное уплотнение вала содержит корпус из немагнитного материала, внутри которого расположена кольцевая магнитная система, состоящая из кольцевого постоянного магнита, двух полюсных приставок, имеющих кольцевые магнитопроводящие монолитные основания, у которых на поверхности, обращенной к валу, установлены щетки, и магнитной жидкости в зазоре между валом и концами щетинок. Кольцевой постоянный магнит установлен между двух полюсных приставок, причем к его внутренней и внешней сторонам примыкают две кольцевые немагнитные втулки, при этом кольцевой постоянный магнит своим северным полюсом примыкает к боковой стороне одной полюсной приставки, а южным к боковой стороне другой полюсной приставки, а между сторонами внешней немагнитной втулки и корпусом образована кольцевая заправочная емкость, сообщенная с полостью зазора продольными каналами, выполненными в монолитных полюсных приставках, при этом на внутреннюю поверхность продольных каналов нанесено немагнитное покрытие. Изобретение расширяет функциональные возможности магнитожидкостного уплотнения и увеличивает удерживаемый перепад давлений. 1 з.п. ф-лы, 2 ил.

Магнитожидкостное уплотнение (МЖУ) вала относится к уплотнительной технике и может быть использовано для герметизации подвижных друг относительно друга деталей в машиностроении, авиадвигателестроении и других областях техники.

Известны магнитожидкостные уплотнения вала (патенты №2353840, 2315218, 2296900, 2403476, 2403477), которые состоят из корпуса, в котором установлен магнит с примыкающими к нему полюсными приставками. На поверхности полюсных приставок, обращенных к валу, расположены зубцы. Каждый зазор между зубцом и валом заполнен магнитной жидкостью.

Постоянный магнит в уплотнении служит источником магнитного поля. Создаваемый им магнитный поток полюсными приставками подводится к зазору между полюсными приставками и вращающим валом. Зубцы полюсов перераспределяют рабочий магнитный поток в зазоре, и поле становится резко неоднородным. Магнитная жидкость втягивается под зубцы, где поле имеет максимальную напряженность и образует герметичные пробки с повышенным внутренним давлением.

В магнитожидкостном уплотнении (патент №2403477) обе полюсные приставки выполнены составными и имеют кольцевой разрез на уровне наружной поверхности немагнитной втулки, при этом наружные части полюсных приставок и магнит заключены в гильзу и образуют съемную магнитную систему, а на внутренних частях полюсных приставок сделаны заправочные отверстия с заглушками. Съемная гильза выполнена в двух вариантах из магнитопроводящего и немагнитного материалов. Гильза из магнитопроводящего материала закорачивает через себя магнитный поток и обеспечивает съем магнитной системы. Для перевода уплотнения в рабочее состояние магнитопроводящую гильзу необходимо заменить на гильзу из немагнитного материала.

Для обеспечения соосности уплотнения внутренние части полюсных приставок жестко соединены между собой через немагнитную втулку и с корпусом подшипникового узла.

Недостатками данного магнитожидкостного уплотнения являются:

- при малом зазоре в случае увеличения биений вала более 0,05 мм произойдет касание зубцами полюсных приставок поверхности вала, которое может вызвать аварийную ситуацию;

- конструктивно не обеспечена работа уплотнения при больших скоростях вращения вала.

В магнитожидкостном уплотнении (патент РФ №2451225) в качестве концентраторов магнитного поля вместо зубцов используются кольцевые пакеты щеток, и обеспечивается автоматическое восполнение потерь магнитной жидкости в зазорах. Оно позволяет герметизировать большой зазор δ, который будет закрываться кольцевыми щетками, в пространствах между которыми находится магнитная жидкость, и магнитной жидкостью, находящейся между концами щеток и поверхностью вала. В этом случае вал как бы плавает в тончайшем слое магнитной жидкости, не касаясь проволок щеток. Такое уплотнение будет иметь минимальное трение между ротором и статором, но при этом обеспечит высокую степень уплотнения.

К нему не предъявляются жесткие требования по обеспечению соосности. В случае возникновения больших биений вала не возникнет заклинивания, так как магнитная жидкость и пружинистые проволочки уплотнения будут демпфировать ударные воздействия вала.

В таком уплотнении снижаются ограничения на скорость вращения вала. И хотя при очень больших скоростях магнитная жидкость нагревается, а за счет центробежных сил ее небольшие капельки могут выталкиваться из зазора, на их место автоматически будут поступать новые порции магнитной жидкости, находящейся между проволочками щеточных пакетов. Автоматизацию обеспечивает такое свойство магнитной жидкости как ее конвективное движение под действием эффекта термомагнитной конвекции, в соответствии с которым за счет магнитных сил более холодные порции магнитной жидкости перемещаются в сторону нагретых.

На магнитную жидкость, находящуюся в заправочной емкости и в полости зазора, действует сила тяжести, магнитная сила, удерживающая ее в зазоре и конвективная сила. Конвективная сила и магнитная сила всегда направлены навстречу друг другу, а направление силы тяжести по отношению к двум другим силам зависит от положения вала. При горизонтальном положении кольцевого вала в различных его точках направление силы тяжести относительно конвективной и удерживающей силы различное. В верхней части вала направление силы тяжести магнитной жидкости совпадает с направлением конвективной силы и направлено навстречу удерживающей силе. В нижней части вала наоборот сила тяжести совпадает с направлением удерживающей силы и направлена навстречу конвективной силе.

Недостатками такого уплотнения являются:

- не обеспечивается высокая эффективность компенсации ушедшей из зазора магнитной жидкости из-за различного направления силы тяжести по отношению к направлению удерживающей и конвективной силам в верхней и нижней частях кольцевого вала;

- неэффективна конструкция магнитной щетки и канала подачи магнитной жидкости к зазору;

- не используется охлаждение магнитной системы для повышения удерживающего перепада и срока службы уплотнения;

По большинству существенных признаков данное уплотнение взято в качестве прототипа.

Целями предлагаемого изобретения являются:

- расширение функциональных возможностей и области применения МЖУ;

- повышение ресурса и срока службы уплотнения;

- увеличение удерживаемого перепада давлений;

Для выполнения поставленных целей предлагаемое магнитожидкостное уплотнение построено:

- с использованием новой компоновки магнитной системы, при которой постоянный магнит установлен между полюсными приставками, а с его внутренней и внешней сторон расположены кольцевые немагнитные втулки, разделяющие кольцевые полюсные приставки и исключающие контакт магнита с магнитной жидкостью;

- с созданием кольцевой заправочной емкости между сторонами внешней немагнитной втулки и корпусом;

- кольцевое замкнутое пространство между полостью зазора и заправочной емкостью, соединенных с помощью поперечных относительно оси вала каналов в монолитных полюсных приставках, обеспечивает создание динамического затвора путем постоянного нахождения движущейся магнитной жидкости в зазоре при больших скоростях вращения вала;

- с низким коэффициентом трения внутри заправочной емкости за счет нанесения на ее внутреннюю поверхность гидрофобного покрытия;

- с исключением возникновения шунтирующего магнитного потока путем установки внешней кольцевой втулки и нанесения немагнитного покрытия на внутренние поверхности поперечных каналов в монолитных полюсных приставках;

- с нанесением термозащитного покрытия на верхнюю крышку и дно корпуса, исключающие потери холода внутри уплотнения;

- в вертикальном исполнении.

Конструктивно в уплотнении предусматривается создание в зазоре МЖУ статического и динамического затворов автоматически возникающих в зависимости от скорости вращения вала.

Заявленное магнитожидкостное уплотнение вала содержит корпус из немагнитного материала, внутри которого расположена кольцевая магнитная система, включающая кольцевой постоянный магнит, две полюсные приставки, имеющие кольцевые магнитопроводящие монолитные основания, у которых на поверхности, обращенной к валу, установлены щетки, и магнитную жидкость в зазоре между валом и концами щетинок, при этом согласно настоящему изобретению кольцевой постоянный магнит установлен между двух полюсных приставок, причем к его внутренней и внешней сторонам примыкают две кольцевые немагнитные втулки, при этом кольцевой постоянный магнит своим северным полюсом примыкает к боковой стороне одной полюсной приставки, а южным к боковой стороне другой полюсной приставки, а между сторонами внешней немагнитной втулки и корпусом образована кольцевая заправочная емкость, сообщенная с полостью зазора поперечными относительно оси вала каналами, выполненными в монолитных полюсных приставках, при этом на внутреннюю поверхность поперечных каналов нанесено немагнитное покрытие.

В частном случае реализации заявленного изобретения на внутреннюю поверхность кольцевой заправочной емкости и поперечных каналов может быть нанесено гидрофобное покрытие.

Предлагаемое магнитожидкостное уплотнение целесообразно использовать для вертикального положения вала, при котором направление силы тяжести магнитной жидкости по отношению к магнитной и удерживающей силам во всех точках вала одинаковое.

На Фиг. 1 представлен продольный разрез магнитожидкостного уплотнения, на Фиг. 2 - его поперечный разрез.

Магнитожидкостное уплотнение состоит из съемной крышки корпуса 1, немагнитного корпуса 2, в котором установлены две полюсные приставки 3, имеющие кольцевые монолитные магнитные основания, у которых на поверхности, обращенной к валу 5, созданы щетки. Между двух полюсных приставок расположен постоянный магнит 8, являющийся источником магнитного поля. К внутренней и внешней сторонам магнита примыкают соответственно немагнитные втулки 7 и 12, исключающие контакт магнита с магнитной жидкостью. Магнит своим северным полюсом примыкает к боковой стороне одной полюсной приставки, а южным к боковой стороне другой полюсной приставки. Магнитный поток от северного полюса магнита 8 через верхнюю полюсную приставку, ее магнитопроводящие щетки, магнитную жидкость зазора 4, магнитную втулку вала 6, щетки и основание второй полюсной приставки замыкается на южный полюс магнита.

Каждая кольцевая полюсная приставка имеет монолитное основание, на котором по технологии электрохимической обработки созданы проволочки диаметром 0,2-0,3 мм с расстояниями между ними 0,5-0,6 мм, образующие сплошную кольцевую щетку. Для обеспечения эффективного производства и монтажа щеточных полюсных приставок, каждая из них разделена на шесть секций, а в каждой секции выполнено девять поперечных относительно оси вала каналов 9.

Кончики проволочек щетки являются концентраторами напряженности магнитного поля и радиально направлены в сторону вала, образуя между магнитной втулкой вала 6 и концами щеток минимальный зазор 0,2 мм, который заполняется магнитной жидкостью.

Между сторонами внешней немагнитной втулки и корпусом создана кольцевая заправочная емкость 10, соединенная с полостью зазора с помощью поперечных относительно оси вала каналов 9 в монолитных полюсных приставках. На внутреннюю поверхность поперечных каналов 9 в монолитных полюсных приставках нанесено немагнитное покрытие.

Уплотнение содержит систему охлаждения, состоящую из теплообменника и термоэлектрических модулей 13, соединенных с источником питания 14, при этом корпус выполнен из теплопроводного материала, а термоэлектрические модули холодной стороной контактируют с корпусом, а горячей с теплообменником. Для исключения потерь холода на верхнюю крышку 1 и кольцевое дно корпуса наносится термозащитное покрытие. В нижней части корпуса выполнена кольцевая полость 11, сообщенная с зазором, для сбора возможных протечек магнитной жидкости.

Крепление крышки корпуса 1 к корпусу 2 осуществляется винтами 15. После снятия крышки 1 полость 10 заполняется магнитной жидкостью, которая через поперечные каналы 9 обеих полюсных приставок поступает в зазор.

При небольших скоростях вращения вала на кончиках щетинок, где напряженность магнитного поля максимальная, возникают пробки из магнитной жидкости, создающие в зазоре сплошной монолитный ковер пробок. При нарушении целостности ковра из магнитных пробок в результате биения вала или действия каких-то других причин в возникающие в ковре щели, устремится магнитная жидкость, осуществляя герметизацию ковра пробок.

При длительном вращении вала и при больших скоростях его вращения за счет вязкостного трения слоев магнитной жидкости в зазоре выделяется тепловая энергия. Вся энергия вязкостной диссипации идет на нагрев магнитной жидкости и внутреннего объема уплотнения.

Увеличение температуры снижает характеристики магнита, магнитной жидкости и магнитопроводов и тем самым приводит к снижению такой основной характеристики уплотнения, как удерживаемый перепад давления. При температурах свыше 250°C магнитная жидкость полностью теряет свои свойства, в результате чего происходит пробой уплотнения.

Улучшение характеристик магнитной жидкости и в первую очередь доведение ее теплостойкости до 250°C не решает проблему работоспособности МЖУ при температуре выше 300°C, скорости вращения поверхности вала более 20 м/с и больших биениях вала.

Эта проблема решается при использовании в уплотнении новой организации бесконтактной щелевой герметизации вала путем создания гидродинамического затвора в рабочем зазоре.

В существующих магнитожидкостных уплотнениях стремятся стабилизировать положение магнитной жидкости в зазоре между концентраторами напряженности магнитного поля и валом. Предлагаемое уплотнение, кроме того, при больших скоростях вращения вала обеспечивает создание затвора в рабочем зазоре с помощью постоянно движущейся магнитной жидкости. Для этого организуется автоматическая кольцевая циркуляция магнитной жидкости между двумя щеточными приставками, рабочим зазором и заправочной полостью. При этом скорость движения магнитной жидкости должна быть такой, чтобы за время ее движения в зазоре она не потеряла своей устойчивости, а при попадании в заправочную полость за счет охлаждения восстанавливала свои магнитные свойства.

Скорость вращения вала не у всех устройств постоянная. У некоторых она в течение работы устройства может изменяться в широких пределах от небольших значений до величин, при которых возникает осевое движение магнитной жидкости в зазоре. Поэтому необходимо в рабочем зазоре магнитожидкостного уплотнения обеспечить с помощью магнитной жидкости как статический, так и динамический затвор.

Анализ сил, действующих на магнитную жидкость в зазоре, показывает, что полюсные приставки, примыкающие к разным полюсам, имеют противоположные направления векторов напряженности магнитного поля в зазоре, а следовательно, и направления магнитных сил.

Градиент температуры магнитной жидкости образуется за счет разности ее температур в рабочем зазоре и в заправочной полости. В зазоре за счет вязкостного трения слоев магнитной жидкости она нагревается, а в заправочной полости осуществляется ее охлаждение. Градиенты температур в обеих полюсных приставках имеют одинаковые направления. В результате на одной полюсной приставке направление вектора напряженности и вектора температурного градиента совпадают, а на другой они имеют встречное направление.

При малых скоростях вращения вала магнитная жидкость нагревается незначительно, градиент температур небольшой и ее конвекционное движение практически отсутствует. Центробежные силы также небольшие, магнитное число Фруда намного меньше единицы, поэтому течение магнитной жидкости ламинарное с линейным изменением скорости слоев по высоте зазора. Слои жидкости не перемешиваются друг с другом. В осевом направлении МЖУ магнитная жидкость не перемещается, в результате возникает статический затвор в виде ковра пробок между валом и кончиками щетинок.

При высоких скоростях вращения вала магнитная жидкость в рабочем зазоре сильно нагревается, возрастает градиент температур. В первой полюсной приставке он совпадает с направлением вектора напряженности магнитного поля, вызывая конвекционное движение к зазору магнитной жидкости, находящейся между щетинками.

Холодная магнитная жидкость под действием магнитных сил будет перемещаться к зазору, где находится область сильного магнитного поля и высоких температур. При втекании в зазор, за счет наличия сильного магнитного поля, вязкость магнитной жидкости увеличивается, что вызывает сопротивление ее движению в зазоре. Однако при скоростном вращении вала осевому винтообразному движению магнитной жидкости в зазоре будет способствовать центробежная сила.

Кроме того, если создать разные значения гидродинамических сопротивлений магнитной жидкости под щеточными полюсными приставками, то между ними возникнет разность давлений, создающая осевую силу. Разные гидродинамические сопротивления можно обеспечить, если щеточные полюсные приставки изготавливать с различными характеристиками щеток, изменяя диаметр, форму или расстояния между щетинками. Эта сила дополнительно обеспечивает осевое движение магнитной жидкости в зазоре. Она может уравновешивать значительную часть силы перепада давления и тем самым позволит МЖУ совместно с динамическим затвором выдерживать большие внешние перепады давления.

Внешняя сила перепада давления направлена навстречу движению магнитной жидкости, ставит тем самым заслон ее выходу из МЖУ и способствует направлению ее в каналы щетки второй полюсной приставки.

Кроме того, этому способствуют также направленные в одну сторону магнитная и центробежная силы. При этом конвекционная сила практически отсутствует так, как векторы градиента температур магнитной жидкости и градиента напряженности магнитного поля направлены в разные стороны.

Движение магнитной жидкости в кольцевой заправочной полости от второй полюсной приставки к первой происходит в результате возникшей разности давлений, так как за счет действия центробежной и магнитной сил давление магнитной жидкости на выходе второй полюсной приставки увеличивается, а на входе в первую полюсную приставку давление уменьшается за счет оттока магнитной жидкости к зазору.

В результате действия указанных сил осуществляется автоматическая циркуляция магнитной жидкости. Подбирая различную величину гидродинамического сопротивления полюсных приставок, увеличивая за счет охлаждения градиент температур магнитной жидкости, уменьшая динамическое сопротивление внутренней поверхности канала путем нанесения гидрофобного покрытия, можно обеспечить такую скорость движения магнитной жидкости в рабочем зазоре, при которой она не успеет потерять свою устойчивость, несмотря на большие температуры и линейные скорости вращения вала. Поступая в заправочную полость, магнитная жидкость охлаждается, в результате ее магнитные свойства восстанавливаются.

Постоянное нахождение движущейся магнитной жидкости в зазоре создает динамический затвор, который и обеспечивает надежное уплотнение вала.

Предлагается магнитожидкостное уплотнение, которое обеспечит создание динамического и статического затворов герметизации вала. При этом линейная скорость вращения вала может изменяться в течение времени работы устройства в широких пределах.

Для повышения эффективности уплотнения целесообразно снижать общую температуру внутри объема, ограниченного корпусом МЖУ.

Снижение температуры внутри объема МЖУ обеспечивает устройство охлаждения, состоящее из термоэлектрического модуля и радиатора 13, связанного с источником питания 14. При этом корпус МЖУ выполнен из немагнитного материала с хорошей теплопроводностью, а термоэлектрический модуль контактирует холодной стороной с корпусом, а горячей - с радиатором.

Устройство охлаждения МЖУ работает следующим образом. При включении источника питания 14 через термоэлектрический модуль 13 протекает ток, в результате на холодных спаях происходит выделение холода, который передается за счет хорошей теплопроводности корпуса во внутренний объем МЖУ. Тепло, выделяемое на горячих спаях модуля 13, отводится радиатором в обдуваемое наружное пространство.

При таком техническом решении в зазоре всегда будет находиться магнитная жидкость с хорошими магнитными свойствами, даже при колебаниях скорости вращения вала в широких пределах. В результате обеспечиваются высокие эксплуатационные характеристики уплотнения.

Техническая реализация предлагаемого магнитожидкостного уплотнения не представляет серьезных трудностей, так как различные магнитожидкостные уплотнения давно разрабатываются и используются в нашей стране и за рубежом.


МАГНИТОЖИДКОСТНОЕ УПЛОТНЕНИЕ ВАЛА
МАГНИТОЖИДКОСТНОЕ УПЛОТНЕНИЕ ВАЛА
Источник поступления информации: Роспатент

Показаны записи 301-304 из 304.
20.01.2018
№218.016.1b72

Механизм передачи крутящего момента агрегатам турбореактивного двигателя (трд), центральная коническая передача (цкп) трд, главная коническая шестерённая пара цкп трд, корпус цкп трд, ведущее зубчатое коническое колесо цкп, ведомое зубчатое коническое колесо цкп, узел цкп трд

Группа изобретений относится к области авиадвигателестроения. Единый механизм передачи крутящего момента агрегатам двухвального, двухконтурного авиационного ТРД, имеющего газодинамически связанные между собой соосные валы РВД и РНД, включает соединенные с РВД с возможностью передачи агрегатам...
Тип: Изобретение
Номер охранного документа: 0002636626
Дата охранного документа: 24.11.2017
20.01.2018
№218.016.1e3e

Маслосистема газотурбинного двигателя маневренного самолета

Изобретение относится к области авиационного двигателестроения и касается масляной системы газотурбинного двигателя маневренного самолета. Перепускной клапан установлен за топливомасляным теплообменником, а выход из перепускного клапана сообщен трубопроводом с внутренней полостью...
Тип: Изобретение
Номер охранного документа: 0002640900
Дата охранного документа: 12.01.2018
17.02.2018
№218.016.2a88

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы РВД и РНД модуля газогенератора и вал ротора...
Тип: Изобретение
Номер охранного документа: 0002642955
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.2ead

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы роторов высокого давления (РВД) и роторов...
Тип: Изобретение
Номер охранного документа: 0002644497
Дата охранного документа: 12.02.2018
Показаны записи 351-360 из 388.
29.05.2019
№219.017.6a11

Способ управления газотурбинным двигателем с форсажной камерой сгорания и система для его осуществления

Группа изобретений относится к области авиационного двигателестроения. Управление газотурбинным двигателем (ГТД) с форсажной камерой сгорания (ФКС) осуществляется по одному из трех контуров управления, на каждом из контуров задается индивидуальная программа управления, которая корректируется по...
Тип: Изобретение
Номер охранного документа: 0002466287
Дата охранного документа: 10.11.2012
09.06.2019
№219.017.769d

Масляная система авиационного газотурбинного двигателя

Масляная система авиационного газотурбинного двигателя относится к области авиадвигателестроения, преимущественно к маслосистеме авиационного газотурбинного двигателя для маневренных самолетов, и позволяет замедлить снижение уровня масла в маслобаке авиационного газотурбинного двигателя...
Тип: Изобретение
Номер охранного документа: 0002273746
Дата охранного документа: 10.04.2006
13.06.2019
№219.017.80c2

Центробежно-шестеренный насос

Изобретение относится к насосам, применяемым в маслосистемах авиационных газотурбинных двигателей для подачи и откачки масла. Центробежно-шестеренный насос содержит шестерни 2, размещенные в расточках корпуса 1 и установленные на валах 3, расположенных в опорных подшипниках 4, каналы 9,...
Тип: Изобретение
Номер охранного документа: 0002691269
Дата охранного документа: 11.06.2019
13.06.2019
№219.017.80db

Способ регулирования авиационного турбореактивного двигателя

Способ регулирования авиационного двухроторного турбореактивного двигателя относится к области авиационного двигателестроения, а именно к системам регулирования, чувствительным к параметрам двигателя и окружающей среды, и позволяет повысить тяговые характеристики двигателя за счет оптимизации...
Тип: Изобретение
Номер охранного документа: 0002691287
Дата охранного документа: 11.06.2019
13.06.2019
№219.017.8179

Сопловый аппарат турбины низкого давления (тнд) газотурбинного двигателя (гтд) (варианты) и лопатка соплового аппарата тнд (варианты)

Группа изобретений относится к области авиадвигателестроения. Сопловый аппарат ТНД двигателя содержит сопловые блоки, смонтированные между наружным и внутренним силовыми кольцами, соединенными полыми силовыми спицами. Каждый из сопловых блоков собран из трех жестко соединенных лопаток,...
Тип: Изобретение
Номер охранного документа: 0002691203
Дата охранного документа: 11.06.2019
13.06.2019
№219.017.818d

Способ охлаждения соплового аппарата турбины низкого давления (тнд) газотурбинного двигателя и сопловый аппарат тнд, охлаждаемый этим способом, способ охлаждения лопатки соплового аппарата тнд и лопатка соплового аппарата тнд, охлаждаемая этим способом

Группа изобретений относится к области авиадвигателестроения. Сопловый аппарат ТНД включает сопловый венец, образованный из сопловых блоков, собранный каждый не менее чем из трех сопловых лопаток, выполненных за одно целое с малой и большой. Сопловые блоки смонтированы между наружным и...
Тип: Изобретение
Номер охранного документа: 0002691202
Дата охранного документа: 11.06.2019
19.06.2019
№219.017.85d0

Газотурбинный двигатель

Газотурбинный двигатель содержит наружный контур и внутренний контур, имеющий камеру сгорания, компрессор, охлаждаемую турбину с, по меньшей мере, двумя ступенями, размещенным между ними сопловым аппаратом и междисковой полостью. Думисная полость образована последней ступенью компрессора,...
Тип: Изобретение
Номер охранного документа: 0002347091
Дата охранного документа: 20.02.2009
19.06.2019
№219.017.86ec

Плоское сопло турбореактивного двигателя

Изобретение относится к области авиационного двигателестроения, а именно к конструкции сопел турбореактивных двигателей. Плоское сопло содержит корпус, верхнюю и нижнюю поворотные створки, боковые неподвижные стенки, силовой цилиндр, дополнительный силовой цилиндр и поворотную раму. Один конец...
Тип: Изобретение
Номер охранного документа: 0002383760
Дата охранного документа: 10.03.2010
19.06.2019
№219.017.8960

Способ экранирования электромагнитных излучений требуемых диапазонов длин волн объекта

Изобретение относится к способам защиты летательных аппаратов и наземных транспортных средств от обнаружения, сопровождения, определения точного местонахождения и наведения оружия по исходящим от них электромагнитным излучениям. При реализации способа осуществляют диспергирование в воздух между...
Тип: Изобретение
Номер охранного документа: 0002425018
Дата охранного документа: 27.07.2011
20.06.2019
№219.017.8d4a

Ротор турбины высокого давления газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения. Ротор ТВД двигателя содержит рабочее колесо ТВД, включающее диск и лопаточный венец с системой рабочих лопаток. Лопатка ТВД включает каждая хвостовик и перо с выпукло-вогнутым профилем стенок. Диск рабочего колеса выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002691868
Дата охранного документа: 18.06.2019
+ добавить свой РИД