×
20.09.2015
216.013.7ac8

СПОСОБ ПРИГОТОВЛЕНИЯ МЕМБРАН-ЭЛЕКТРОДНЫХ БЛОКОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области топливных элементов (ТЭ), в частности к мембран-электродному блоку (МЭБ) для твердополимерного топливного элемента (ТПТЭ), а также к способу его изготовления и составу. Описан способ приготовления МЭБ, характеризующийся тем, что способ состоит в распылении каталитических чернил на катод МЭБ с использованием аэрографа при повышенной температуре с последующим прессованием МЭБ между тефлоновыми дисками. Каталитические чернила имеют следующий состав: концентрация органического вещества - не выше 70 об.%; масса Pt/C катализатора - 0.3-60 мг; содержание Pt в Pt/C катализаторе - 10-60 мас.%; содержание иономерного связующего - 0,03-40 мг; содержание пористого материала - не выше 20 мг. Технический результат - возможность приготовления эффективных катодных электродов с Pt/C катализаторами и ультранизкой загрузкой платины для ТПТЭ. 9 з.п. ф-лы, 2 ил., 8 пр.
Реферат Свернуть Развернуть

Изобретение относится к области топливных элементов (ТЭ), в частности к мембран-электродному блоку (МЭБ) для твердополимерного топливного элемента (ТПТЭ), а также к способу его изготовления и составу.

На пористых электродах (анод и катод), содержащих катализаторы (в основном платиновые), закрепленных на протонпроводящей полимерной мембране, идут электрохимические реакции восстановления окислителя и окисления топлива. В результате чего энергия, запасенная в химических связях, переходит в электрическую, которая далее используется в качестве источника энергии. В качестве окислителя может использоваться кислород или воздух, а в качестве топлива может использоваться целый набор органических соединений, включающий в себя водород, метанол, этанол и др.

Топливные элементы ТЭ являются наиболее эффективными преобразователями энергии химических связей непосредственно в электрическую. Распространение ТЭ сдерживается рядом факторов, среди которых ключевую роль играет высокое содержание платины в катализаторе, стоимость которой составляет до 30% от стоимости ТЭ.

Эффективность ТЭ зависит от многих факторов. Прежде всего, от степени использования платины в катодном катализаторе, эффективности отвода продуктов реакции (вода) из реакционной зоны и подвода реагентов (топливо и окислитель) к активному компоненту по всему катодному электродному слою, степени прочности соединения электрода с мембраной, а также от эффективности протонного и электронного переноса по электродному слою.

В качестве катодных катализаторов наиболее эффективными являются высокопроцентные нанесенные платиновые катализаторы. Вследствие этого при снижении загрузки платины (с обычных 200 мкгPt/см2 до 2-10 мкгPt/см2) масса наносимого катализатора значительно снижается, что приводит к снижению толщины электродного слоя (с 10 до 2 мкм). Низкая толщина электродного слоя приводит к ухудшению отвода продуктов реакции (вода) из электродного слоя, в результате чего активный компонент либо не работает, либо работает нестабильно.

Другой проблемой является ограниченная возможность использования платиновых катализаторов, нанесенных на другие типов углеродных носителей, например углерод-углеродных носителей типа Сибунит. Вследствие морфологических характеристик таких носителей адгезия получаемого электродного слоя к протонпроводящей полимерной мембране недостаточна и прочность такого соединения низка и не позволяет использовать данные катализаторы в реакции.

Для повышения эффективности МЭБ для ТЭ к электродному слою добавляют различные материалы в целях улучшения массопереноса по слою электрода.

Известен (RU 2421849, H01M 4/88, 10.06.2011) способ изготовления каталитического материала для топливного элемента, который включает одновременное напыление графита и платины на подложку, снятие полученного композитного слоя с подложки в виде порошка, смешивание его с углеродными нанотрубками в массовом соотношении 1:(1-2), добавление к полученной твердой смеси изопропанола в количестве 0,1-0,3 мл на 1 мг твердой смеси и нафиона в количестве 1 мг на 2,3-4,0 мг твердой смеси и гомогенизирование полученного каталитического материала в ультразвуковой ванне. Недостатком этого способа является сложность приготовления и большой расход и потери дорогого платинового катализатора при напылении на подложку и последующем снятии композитного слоя в виде порошка.

Известен (RU 2456717, H01M 4/88, 20.07.2012) способ формирования каталитического слоя твердополимерного топливного элемента, включающий обработку многостенных углеродных нанотрубок газовой плазмой в среде неорганического газа или смеси неорганических газов, с последующей их обработкой концентрированной азотной кислотой, промывкой и сушкой. Полученные многостенные углеродные нанотрубки с платинированной углеродной сажей, содержащей 20-40 мас.% платины, смешанные с изопропанолом и водным раствором нафиона, взятыми в определенном соотношении, обрабатывают ультразвуком в течение 30-60 мин и напыляют ее на нагретую до температуры 70-90°C протонпроводящую мембрану на основе перфторированного сульфополимера. Недостатком этого способа является невозможность использовать низкие загрузки платины вследствие уменьшения толщины электродного слоя.

Известен (JP 2008311154, H01M 4/86, 25.12.2008)) способ повышения проводимости электродного слоя путем использования смеси Pt/C катализатора, углеродных волокон и проводящего полимера, имеющей высокую проводимость. Для повышения механической прочности МЭБ использовали смесь Pt/C катализатора и углеродных волокон с термореактивной смолой. Поскольку пустоты в слое катализатора сообщаются друг с другом путем запутывания углеродных волокон, слой катализатора имеет высокую способность к диффузии газа. Таким образом, проводимость, диффузия газа и механическая прочность слоя катализатора увеличены, такой слой может также рассматриваться как газодиффузионный, и отпадает необходимость использования отдельного газодиффузионного слоя. Недостатком этого способа является снижение протонной проводимости по слою.

Известен (RU 2208271, H01M 8/10, 10.07.2003) способ дополнительного введения в электродный слой агломератов частиц фторопласта с концентрацией агломерата на единицу объема активного слоя от 0,2 до 0,65 об.%, а также выполнение условия, когда диаметр агломератов и частиц катализатора на углеродном носителе не превышают 3 мкм. Однако при этом снижается электронная проводимость по слою.

Известен (RU 2360330 H01M 4/86, 37.06.2009) способ приготовления гидрофобного катализаторного слоя, образованного из катализатора, полученного восстановлением оксида платины; гидрофобного агента и протонопроводящего электролита, причем гидрофобный агент состоит главным образом из алкилсилоксана. Недостатком является снижение протонной проводимости по слою.

Известен (RU 2414772, H01M 4/86, 10.11.2010) способ улучшения структуры газодиффузионных электродов. Согласно изобретению газодиффузионный электрод содержит: а) по меньшей мере, одну газодиффузионную среду, б) по меньшей мере, один слой катализатора сверху указанной газодиффузионной среды, содержащий, по меньшей мере, один катализатор на носителе и в) по меньшей мере, один слой катализатора без носителя сверху слоя катализатора на носителе, указанного выше в б), причем указанный слой катализатора без носителя имеет более высокую общую загрузку катализатора. Недостатком этого способа является невозможность снижения загрузки платины в слое.

Известен (CN 102110819, B01J 23/62, 29.06.2011) способ добавления промотора катализатора в каталитический слой, состоящего из TiO2, модифицированного азотом и другими металлическими оксидами. Недостатком является снижение протонной проводимости по слою.

Наиболее близким аналогом заявленного способа является состав чернил, приведенный в работе (E.N. Gribov, A.Yu. Zinovieva, I.N. Voropaev, P.A. Simonov, A.V. Romanenko, A.G. Okunev, Int. J. Hydrogen Energy, 2012, vol. 37, pp.11894-11903). Чернила включают в себя катализатор Pt/Sibunit 1562 с добавкой углеродного носителя типа Vulcan XC-72. Чернила готовятся путем добавления в раствор изопропанол-вода (30% об.) катализатора с углеродным носителем, диспергированием суспензии в ультразвуковой ванне, добавкой необходимого количества нафионового связующего, диспергированием в ультразвуковой ванне и нанесением на протонпроводящую полимерную мембрану. Нанесение производится путем распыления аэрографом на мембрану при температуре 60°C с последующим прессованием при температуре 120°C, давлении 3-5 атм в течение 2-3 минут.

К недостаткам известного способа можно отнести недостаточно высокую степень использования платины, что приводит к необходимости увеличения загрузки платины.

Изобретение решает следующие задачи: 1) возможность приготовления эффективных катодных электродов с Pt/C катализаторами и ультранизкой загрузкой платины до 6 мкгPt/см2 для ТПТЭ; 2) возможность приготовления МЭБ на основе Pt/C катализаторов, имеющих углеродный носитель с различными морфологическими свойствами, при этом электрод имеет низкую адгезию к протонпроводящей полимерной мембране; 3) возможность регулировать толщину электродного слоя для обеспечения наиболее эффективного массопереноса; 4) возможность повысить протонную и электронную проводимость в электродном слое МЭБ; 5) возможность повышения удельной мощности ТЭ на массу платины.

Поставленная задача решается оптимизацией состава каталитических чернил для катода ТПТЭ, состоящих из растворителя, состоящего из водного раствора органического вещества, катализатора Pt/C, иономерного связующего, пористого материала при следующем содержании компонентов:

Объем раствора 100-1000 мкл;

концентрация органического вещества - не выше 70 об.%;

масса Pt/C катализатора - 0.3-60 мг;

содержание Pt в Pt/C катализаторе - 10-60 мас.%;

содержание иономерного связующего - 0,03-40 мг;

содержание пористого материала - не выше 20 мг.

В качестве органического вещества используют, например, изопропиловый спирт, ацетон.

В качестве иономерного связующего используют нафионовое связующее или сульфонированный блок-сополимер полистирола и сополимера полиэтилен-бутилена.

В качестве углеродного носителя в Pt/C катализаторе используют мезопористый углерод-углеродный композит.

В качестве углеродного носителя в Pt/C катализаторе используют углеродные нанотрубки.

В качестве углеродного носителя в Pt/C катализаторе используют углеродные нановолокна.

В качестве углеродного носителя в Pt/C катализаторе используют сажу с высокой удельной поверхностью.

В качестве пористого материала используют сажу с высокой удельной поверхностью.

В качестве пористого материала используют смесь сажи с высокой удельной поверхностью и углеродных нанотрубок.

В качестве пористого материала используют смесь сажи с высокой удельной поверхностью и углеродных нановолокон.

Поставленная задача также решается способом приготовления МЭБ, заключающимся в горячем прессовании электродных слоев с мембраной без использования газодиффузионных слоев.

Чернила распыляют методом аэрографии на мембране, подогретой до 60-80°C, последующее прессование МЭБ между тефлоновыми дисками проводят при температуре 100-130°C, давлении 3-5 атм в течение 3-5 мин.

Сущность изобретения состоит в последовательной обработке протонпроводящих полимерных мембран при 80°C в течение 1 ч в 1 М H2SO4 (о.с.ч.), 1 М Н2О2 (о.с.ч.) и дистиллированной воде. В качестве анодного катализатора используется катализатор Pt/C. Катодные чернила готовили следующим образом. Навеску катодного катализатора Pt/C смешивали с пористым материалом, помещали в водный раствор органического вещества, перемешивали, подвергали обработке ультразвуком в течение 25 мин, еще раз перемешивали и еще раз подвергали обработке ультразвуком в течение 25 мин. Далее в суспензию добавляли дисперсию иономерного связующего, перемешивали и подвергали обработке ультразвуком в течение 25 мин. Анодные чернила готовили таким же образом, но без добавления пористого материала. Чернила наносили на протонпроводящую полимерную мембрану путем распыления аэрографом при температуре 60-80°C. Для улучшения адгезионных характеристик полученный МЭБ с катодным и анодным электродными слоями прессовали между тефлоновыми листами при температуре 120°C, давлении 4-5 атм в течение 1,5 мин. Полученный МЭБ зажимали между анодным и катодным ГДС и устанавливали в топливный элемент (Electrochem. Inc.). Рабочая поверхность электродов составляла 5 см2.

Сущность изобретения иллюстрируется следующими примерами и иллюстрациями.

Пример 1

0,312 мг катализатора 20 мас. % Pt/Vulcan-XC72 (высокоповерхностная сажа) смешивают с 7 мг пористого углеродного носителя Vulcan ХС-72 и добавляют к 300 мкл 50 об.% раствора изопропилового спирта в воде. Раствор интенсивно встряхивают и диспергируют в течение 25 мин в ультразвуковой ванне. Эту процедуру повторяют дважды. Затем необходимое количество 10 мас. % дисперсии Nafion® (фирмы Aldrich) добавляют в чернила с последующей обработкой в ультразвуковой ванне в течение еще 25 мин. Чернила распыляют методом аэрографии на мембране, подогретой при 60-80°C. Для того чтобы обеспечить лучший контакт мембраны с катодным и анодным электродными слоями, ее прессуют между двумя тефлоновыми пластинами при температуре 120°C, давлении 4,5 атм в течение 1,5 мин. Перед измерениями каталитическую мембрану зажимают между анодным и катодным ГДЛ и помещают в топливный элемент (Electrochem. Inc.). Рабочая поверхность электродов составляет 5 см2. Полученный МЭБ имеет высокую удельную мощность по сравнению со стандартным катализатором 33 против 2.8 Вт/мгPt. (Фиг. 1)

Пример 2

В качестве Pt/C катализатора используют 20 мас. % Pt/Sibunit-1562. Навеска катализатора составляет 0,625 мг. В качестве пористого материала используют коммерческий носитель Vulcan ХС-72 (высокоповерхностная сажа). Его масса составляла 7.5 мг. В качестве органического вещества используют ацетон.

Пример 3

В качестве Pt/C катализатора используют 60 мас. % Pt/Sibunit-1562. Навеска катализатора составляет 1,67 мг. В качестве пористого материала используют коммерческий носитель Vulcan ХС-72. Его масса составляет 7.3 мг.

Пример 4

В качестве Pt/C катализатора используют Pt, нанесенную на углеродные нанотрубки, с содержанием платины 20 мас. %. Навеска катализатора составляет 2,5 мг. В качестве пористого материала используют коммерческий носитель Vulcan ХС-72. Его масса составляет 6.5 мг.

Пример 5

В качестве Pt/C катализатора используют 40 мас. % Pt/ KetjenBlack DJ-600 (высокоповерхностная сажа). Навеска катализатора составляет 2,5 мг. В качестве пористого материала используют коммерческий носитель Vulcan ХС-72. Его масса составляет 6.5 мг.

Удельная мощность возросла с 3,7 до 4,8 Вт/мгPt (Фиг. 2)

Пример 6

В качестве Pt/C катализатора используют 40 мас. % Pt/Vulcan ХС-72. Навеска катализатора составляет 2,5 мг. В качестве пористого материала используют коммерческий носитель углеродные нановолокна. Их масса составляет 6.5 мг.

Пример 7

В качестве Pt/C катализатора используют 20 мас. % Pt/Sibunit-1562. Навеска катализатора составляет 0,625 мг. В качестве пористого материала используют коммерческий носитель Vulcan ХС-72 (высокоповерхностная сажа). Его масса составляла 7.5 мг. В качестве иономерного связующего используют сульфонированный блок-сополимер полистирола и сополимера полиэтилен-бутилена).

Пример 8

Аналогичен примеру 7, но отличается тем, что при прессование проводят при температуре 110°C, давлении 3-5 атм в течение 2-3 мин.


СПОСОБ ПРИГОТОВЛЕНИЯ МЕМБРАН-ЭЛЕКТРОДНЫХ БЛОКОВ
СПОСОБ ПРИГОТОВЛЕНИЯ МЕМБРАН-ЭЛЕКТРОДНЫХ БЛОКОВ

Источник поступления информации: Роспатент

Показаны записи 1-10 из 102.
27.04.2013
№216.012.3980

Катализатор, способ его приготовления (варианты) и способ очистки отходящих газов от оксидов азота

Изобретение относится к катализатору, способу его приготовления и способу очистки отходящих газов от NO в окислительных условиях в присутствии углеводорода. Катализатор для очистки отходящих газов от оксидов азота каталитическим восстановлением метаном в окислительной атмосфере, содержит в...
Тип: Изобретение
Номер охранного документа: 0002480281
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4b72

Регенерированный катализатор гидроочистки углеводородного сырья, способ регенерации дезактивированного катализатора и процесс гидроочистки углеводородного сырья

Изобретение относится к регенерированному катализатору гидроочистки, способу регенерации дезактивированных катализаторов и способу гидроочистки нефтяных дистиллятов. Описан регенерированный катализатор гидроочистки углеводородного сырья, имеющий объем пор 0,3-0,8 мл/г, удельную поверхность...
Тип: Изобретение
Номер охранного документа: 0002484896
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c32

Способ прямой конверсии низших парафинов c-c в оксигенаты

Изобретение относится к способу прямой конверсии низших парафинов С-С в оксигенаты, такие как спирты и альдегиды, которые являются ценными промежуточными продуктами органического синтеза и могут применяться в качестве компонентов моторного топлива и/либо исходного сырья для получения...
Тип: Изобретение
Номер охранного документа: 0002485088
Дата охранного документа: 20.06.2013
10.08.2013
№216.012.5c25

Элемент каталитической насадки (варианты) и способ осуществления экзотермических каталитических реакций

Изобретение относится к области каталитического сжигания топлив, а именно к способам приготовления элементов малообъемных каталитических насадок для осуществления сжигания газообразных, жидких и твердых топлив в организованном псевдоожиженном слое частиц инертного материала. Описан элемент...
Тип: Изобретение
Номер охранного документа: 0002489210
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.614f

Каталитический реактор - парогенератор

Изобретение относится к теплоэнергетике и может быть использовано при экологически безопасной выработке пара для получения электроэнергии и теплоснабжения потребителей. Технический результат заключается в снижении расхода дефицитного и дорогостоящего катализатора и уменьшении содержания...
Тип: Изобретение
Номер охранного документа: 0002490543
Дата охранного документа: 20.08.2013
27.09.2013
№216.012.6e5f

Поглотитель, способ его приготовления (варианты) и способ удаления диоксида углерода из газовых смесей

Изобретение относится к области адсорбционного разделения газов. Предложен поглотитель диоксида углерода, содержащий карбонат калия, нанесенный на пористую матрицу из оксида иттрия. Описаны два варианта метода приготовления поглотителя. Предложен способ удаления диоксида углерода из газовых...
Тип: Изобретение
Номер охранного документа: 0002493906
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.6eea

Способ получения диоксида титана

Изобретение может быть использовано для получения диоксида титана с высокой дисперсностью, применяемого в качестве фотокатализатора для процессов фотокаталитической очистки воды и воздуха, а также в качестве адсорбента, пигмента или носителя активного компонента для приготовления катализаторов....
Тип: Изобретение
Номер охранного документа: 0002494045
Дата охранного документа: 27.09.2013
27.10.2013
№216.012.78c3

Катализатор гидрооблагораживания

Изобретение относится к области разработки катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы. Описан катализатор гидрооблагораживания кислородорганических продуктов переработки растительной биомассы, который является композитом, содержащим никель...
Тип: Изобретение
Номер охранного документа: 0002496577
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.78c5

Способ приготовления катализатора и способ каталитического сжигания топлив в псевдоожиженном слое

Изобретение относится к катализаторам. Описан способ приготовления катализатора сжигания топлива в псевдоожиженном слое на основе мартеновского шлака, в котором гранулы мартеновского шлака подвергают обработке парами воды при температуре максимального выделения водорода с последующим нанесением...
Тип: Изобретение
Номер охранного документа: 0002496579
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.78c6

Способ приготовления катализатора гидрооблагораживания

Изобретение относится к области разработки способа приготовления катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы. Описан способ приготовления катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы,...
Тип: Изобретение
Номер охранного документа: 0002496580
Дата охранного документа: 27.10.2013
Показаны записи 1-10 из 100.
27.04.2013
№216.012.3980

Катализатор, способ его приготовления (варианты) и способ очистки отходящих газов от оксидов азота

Изобретение относится к катализатору, способу его приготовления и способу очистки отходящих газов от NO в окислительных условиях в присутствии углеводорода. Катализатор для очистки отходящих газов от оксидов азота каталитическим восстановлением метаном в окислительной атмосфере, содержит в...
Тип: Изобретение
Номер охранного документа: 0002480281
Дата охранного документа: 27.04.2013
20.06.2013
№216.012.4b72

Регенерированный катализатор гидроочистки углеводородного сырья, способ регенерации дезактивированного катализатора и процесс гидроочистки углеводородного сырья

Изобретение относится к регенерированному катализатору гидроочистки, способу регенерации дезактивированных катализаторов и способу гидроочистки нефтяных дистиллятов. Описан регенерированный катализатор гидроочистки углеводородного сырья, имеющий объем пор 0,3-0,8 мл/г, удельную поверхность...
Тип: Изобретение
Номер охранного документа: 0002484896
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c32

Способ прямой конверсии низших парафинов c-c в оксигенаты

Изобретение относится к способу прямой конверсии низших парафинов С-С в оксигенаты, такие как спирты и альдегиды, которые являются ценными промежуточными продуктами органического синтеза и могут применяться в качестве компонентов моторного топлива и/либо исходного сырья для получения...
Тип: Изобретение
Номер охранного документа: 0002485088
Дата охранного документа: 20.06.2013
10.08.2013
№216.012.5c25

Элемент каталитической насадки (варианты) и способ осуществления экзотермических каталитических реакций

Изобретение относится к области каталитического сжигания топлив, а именно к способам приготовления элементов малообъемных каталитических насадок для осуществления сжигания газообразных, жидких и твердых топлив в организованном псевдоожиженном слое частиц инертного материала. Описан элемент...
Тип: Изобретение
Номер охранного документа: 0002489210
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.614f

Каталитический реактор - парогенератор

Изобретение относится к теплоэнергетике и может быть использовано при экологически безопасной выработке пара для получения электроэнергии и теплоснабжения потребителей. Технический результат заключается в снижении расхода дефицитного и дорогостоящего катализатора и уменьшении содержания...
Тип: Изобретение
Номер охранного документа: 0002490543
Дата охранного документа: 20.08.2013
27.09.2013
№216.012.6e5f

Поглотитель, способ его приготовления (варианты) и способ удаления диоксида углерода из газовых смесей

Изобретение относится к области адсорбционного разделения газов. Предложен поглотитель диоксида углерода, содержащий карбонат калия, нанесенный на пористую матрицу из оксида иттрия. Описаны два варианта метода приготовления поглотителя. Предложен способ удаления диоксида углерода из газовых...
Тип: Изобретение
Номер охранного документа: 0002493906
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.6eea

Способ получения диоксида титана

Изобретение может быть использовано для получения диоксида титана с высокой дисперсностью, применяемого в качестве фотокатализатора для процессов фотокаталитической очистки воды и воздуха, а также в качестве адсорбента, пигмента или носителя активного компонента для приготовления катализаторов....
Тип: Изобретение
Номер охранного документа: 0002494045
Дата охранного документа: 27.09.2013
27.10.2013
№216.012.78c3

Катализатор гидрооблагораживания

Изобретение относится к области разработки катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы. Описан катализатор гидрооблагораживания кислородорганических продуктов переработки растительной биомассы, который является композитом, содержащим никель...
Тип: Изобретение
Номер охранного документа: 0002496577
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.78c5

Способ приготовления катализатора и способ каталитического сжигания топлив в псевдоожиженном слое

Изобретение относится к катализаторам. Описан способ приготовления катализатора сжигания топлива в псевдоожиженном слое на основе мартеновского шлака, в котором гранулы мартеновского шлака подвергают обработке парами воды при температуре максимального выделения водорода с последующим нанесением...
Тип: Изобретение
Номер охранного документа: 0002496579
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.78c6

Способ приготовления катализатора гидрооблагораживания

Изобретение относится к области разработки способа приготовления катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы. Описан способ приготовления катализатора гидрооблагораживания кислородорганических продуктов переработки растительной биомассы,...
Тип: Изобретение
Номер охранного документа: 0002496580
Дата охранного документа: 27.10.2013
+ добавить свой РИД