×
10.09.2015
216.013.7a51

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ СТЫКУЕМЫХ КОСМИЧЕСКИХ ОБЪЕКТОВ

Вид РИД

Изобретение

№ охранного документа
0002562902
Дата охранного документа
10.09.2015
Аннотация: Изобретение относится к космической технике и может быть использовано в управлении движением стыкуемых космических объектов (КО). Выводят КО на целевые орбиты со стартовых позиций одного космодрома со сдвигом по времени и с разницей в наклонениях целевых орбит для совмещения восходящих узлов орбит, зависящей от наклонения орбиты выводимого КО, географической широты стартовой позиции выводимого КО, угловой скорости вращения Земли и географических долгот стартовых позиций выводимых КО, определяют импульс для совмещения плоскостей орбит стыкуемых КО, прикладывают импульс сближения к одному из КО. Изобретение позволяет ускорить стыковку КО. 4 ил.
Основные результаты: Способ управления движением стыкуемых космических объектов, включающий их выведение на целевые орбиты со стартовых позиций одного космодрома с последующим приложением импульсов сближения к одному из объектов, отличающийся тем, что выведение объектов осуществляют со сдвигом по времени Δt и с разницей Δi в наклонениях целевых орбит, приводящей к совмещению восходящих узлов орбит стыкуемых объектов, при этом Δi определяют с учетом значения Δt по формуле: где i - наклонение орбиты второго выводимого космического объекта;φ - географическая широта стартовой позиции второго выводимого космического объекта;ω - угловая скорость вращения Земли;λ, λ - географические долготы стартовых позиций, используемых для выведения первого и второго космических объектов соответственно,затем по разнице наклонений Δi определяют импульс, необходимый для совмещения плоскостей орбит стыкуемых объектов, который прикладывают к одному из стыкуемых объектов во время сближения в узле орбиты.

Изобретение может быть использовано в космической технике при сближении и стыковке двух космических объектов, практически одновременно выводимых на околокруговую орбиту со стартовых позиций одного космодрома для выполнения двухпусковой схемы полета к небесному телу за пределами околоземной орбиты, например к Луне. В двухпусковой схеме раздельно выводятся разгонный блок (РБ) и пилотируемый космический корабль (ПКК), а затем, после их стыковки, образованная связка с помощью разгонного импульса, выполняемого РБ, переводится на траекторию полета к небесному телу.

Известен способ управления, выбранный в качестве аналога, в котором используются стартовые позиции одного космодрома и второй (по времени выведения) космический объект (ВКО) стыкуется с первым (первоначально стартовавшим) космическим объектом (ПКО). Этот способ разработан для проведения сближения американских ПКК «Джемини» с третьей ступенью РН «Аджена». В этом способе использовалось выгодное расположение стартовых позиций космодрома на мысе Канаверал непосредственно у акватории Атлантического Океана, что обеспечивало безопасные районы падения отделяемых частей РН и позволяло выполнять старты РН в одну орбитальную плоскость с двух соседних витков (фиг.1). Наклонение орбиты i=28.84° выбиралось несколько большим, чем широта стартовой позиции φст=28.5° и ПКО выводился со стартовой позиции (поз.1) в восходящую часть витка (поз.2) с азимутом стрельбы чуть меньше 90°. Затем, на следующем витке плоскость орбиты ПКО вновь проходила через стартовую позицию, что позволило вывести на орбиту ВКО, но уже в нисходящую часть витка (поз.3) с азимутом стрельбы больше 90°. Плоскости орбиты ВКО и ПКО совпадали и при этом реализовалось необходимое угловое рассогласование Ф между объектами (ПКО находился впереди (поз.4)). После завершения фазирования ВКО, т.е. его естественного сближения с ПКО за счет разницы в высотах орбиты (ВКО находился ниже по высоте, чем ПКО), ВКО оказывался в зоне действия бортового радиолокатора сближения, позволяющего получить фактические параметры относительного вектора состояния стыкующихся объектов. После приложения импульсов сближения, характеристики которых были получены по фактическому относительному вектору состояния, ВКО приводился в окрестность ПКО. По данному способу, например, завершился успешной стыковкой полет ПКК «Джемини-11» со ступенью РН «Аджена» через 1 час 34 минуты после выведения, описанный в NASA Press kit (1966) “Project Gemini-11” [1].

Основным недостатком такого способа управления является то, что для его реализации требуется обязательное наличие районов падения отделяющихся частей при старте РН в одну орбитальную плоскость с двух соседних витков. Большинство космодромов мира, например космодром Байконур, такой возможностью не обладают.

Известен способ управления, выбранный в качестве прототипа, в котором для обеспечения ускоренного сближения и последующей стыковки двух космических объектов использовалось выведение объектов на целевую орбиту суточной кратности со стартовых позиций одного космодрома и представленный на фиг.2. Вначале со стартовой позиции (поз.1) на орбиту суточной кратности выводится ПКО (поз.2). Круговая орбита суточной кратности при наклонении орбиты 50° имеет высоту 202 км. Ориентировочно через сутки, или через 16 витков плоскость орбиты ПКО будет проходить через стартовую позицию ВКО (поз.3), находящуюся в ближайшей окрестности от стартовой позиции ПКО, что и определяет время запуска РН с ВКО. В окрестности точки выведения ВКО на орбиту ИСЗ (поз.4) располагается и ПКО (поз.5). После приложения импульсов сближения к одному из объектов при таком способе можно быстро выполнить стыковку двух космических объектов. Такой способ управления неоднократно применялся при отработке стыковки, например двух космических кораблей «Космос-212» и «Космос-213», когда время между стартом корабля «Космос-213» и стыковкой составило всего 46 минут («Освоение космического пространства в СССР 1967-1970 гг.», М.: Наука, 1970. - прототип) [2].

Недостатком этого способа является продолжительное время - около суток между запусками ПКО и ВКО. В случае если первым объектом является ПКК, время стыковки со вторым объектом приходится на самый напряженный период деятельности экипажа, связанный с острым развитием адаптации к невесомости. Данное обстоятельство увеличивает риск невыполнения стыковки в случае необходимости перехода экипажа в ручной режим. Если же первым стартует РБ, то после его стыковки с ПКК к моменту выдачи разгонного импульса пройдет более суток, что существенно снизит энергетические возможности РБ из-за испарения криогенных составляющих топлива.

Техническим результатом изобретения является возможность ускоренной стыковки космических объектов, например в двухпусковой схеме полета к Луне, за несколько витков без существенного увеличения расхода топлива на сближение.

Технический результат достигается тем, что в способе управления движением стыкуемых космических объектов, включающем их выведение на целевые орбиты со стартовых позиций одного космодрома с последующим приложением импульсов сближения к одному из объектов, отличающемся тем, что выведение объектов осуществляют со сдвигом по времени Δt и с разницей Δi в наклонениях целевых орбит, приводящей к совмещению восходящих узлов орбит стыкуемых объектов, при этом Δi определяют с учетом значения Δt по формуле:

где i - наклонение орбиты второго выводимого космического объекта;

φст - географическая широта стартовой позиции второго выводимого космического объекта;

ωЗ - угловая скорость вращения Земли;

λ1ст, λ2ст - географические долготы стартовых позиций, используемых для выведения первого и второго космических объектов соответственно,

затем по разнице наклонений Δi определяют импульс, необходимый для совмещения плоскостей орбит стыкуемых объектов, который прикладывают к одному из стыкуемых объектов во время сближения в узле орбиты.

Технический результат в предлагаемом способе управления достигается за счет того, что старт и выведение второго объекта начинается на «фоне» выведения первого объекта. В результате сразу после выведения объекты располагаются между собой на небольшом фиксированном угловом расстоянии, но с некоторым рассогласованием плоскостей орбит. За счет небольшой разницы в наклонениях орбит удается совместить восходящие узлы орбит. Таким образом, рассогласование плоскостей ликвидируется дополнительным боковым импульсом, прикладываемым в узле одним из стыкуемых объектов. Реализовавшееся фиксированное начальное угловое рассогласование между объектами сокращается естественным путем (фазированием) за счет разницы в их угловых скоростях вращения вокруг небесного тела. Продолжительность этого процесса определяется высотной разницей между орбитами стыкуемых космических объектов. В пределе, при Δt=0S, т.е. при одновременном старте, космические объекты, также как и в прототипе, сразу после выведения могут оказаться в ближайшей окрестности. Правда такой вариант не обеспечивает необходимой безопасности космических объектов от соударения в процессе выведения РН и сразу после отделения от РН. Помимо безопасности, наличие дополнительного времени Δt позволяет убедиться в успешном старте ПКО до начала необратимых операций, связанных со стартом с ВКО. Так через Δt=300 секунд или 5 минут после старта на большинстве РН начинается устойчивый стационарный участок работы двигательной установки заключительной ступени (Steven J. Isakowitz (2004) "International Reference заключительной ступени (Steven J. Isakowitz (2004) "International Reference Guide to Space Launch Systems" Forth edition [3]). Это обстоятельство позволяет с высокой вероятностью гарантировать успешное выведение ПКО и разрешить выведение АКО с другой стартовой позиции для их последующей стыковки.

Из-за сдвига времен старта, вследствие вращения Земли, между плоскостями орбит ПКО и ВКО появляется угловое рассогласование, которое может быть ликвидировано выполнением бокового импульса ΔV в точке пересечения двух орбит. Величина этого импульса зависит от временного сдвига Δt между выведением обоих объектов и при большой задержке в старте ВКО может достигать значений, сопоставимых с запасом топлива на проведение сближения. Так, угловое рассогласование в 1° требует выполнения бокового импульса величиной 130 м/сек (Р.Ф. Аппазов, О.Г. Сытин «Методы проектирования траекторий носителей и спутников Земли», Москва, Наука, 1987) [4]. Для снижения этой величины предлагается выведение стыкующихся объектов на целевые орбиты с разницей по наклонению, что позволит уменьшить величину угла между плоскостями двух орбит более чем в два раза при выведении космических объектов с космодрома Байконур и, соответственно, расход топлива на выполнение бокового импульса ΔV.

Сущность изобретения поясняется фиг.1÷4,

где на фиг.1 показана схема выведения ПКК «Джемини» со ступенью РН «Аджена»,

на фиг.2 приведена схема последовательного выведения двух космических объектов на орбиту суточной кратности [2],

на фиг.3 поясняется появление углового рассогласования между плоскостями орбиты в случае раздельного старта космических объектов,

на фиг.4 представлена графическая схема расчета потребной разницы Δi в наклонении орбит ПКО и ВКО.

На фиг.3 поясняется появление углового рассогласования между плоскостями орбиты в случае раздельного старта космических объектов на орбиты с одинаковым наклонением i. Пусть стартовая позиция ПКО (поз.1) имеет географические координаты φст и λ1ст. Через время Δt в момент старта ВКО со своей стартовой позиции (поз.2) с географическими координатами φст и λ2ст Земля, вследствие вращения вокруг своей оси с угловой скоростью ωЗ, повернется на угол ωЗ·Δt вместе со стартовыми позициями, и стартовая позиция ВКО займет другое положение (поз.3) относительно орбиты ПКО. В результате после выведение ВКО на орбиту ИСЗ с наклонением i между плоскостями орбиты появится угол рассогласования ir0 (поз.4), а угол между восходящими узлами орбит ПКО и ВКО (поз.5) составит:

Применяя уравнение косинусов для сферического треугольника ΔАОВ (фиг.3), получим:

Это угловое рассогласование необходимо будет ликвидировать в процессе сближения боковым импульсом ΔV в одной из точек пересечения орбит. В момент выведения ВКО (поз.6) ПКО занимает положение (поз.7), отличающееся на фазовый угол Ф между стыкующимися объектами, который является функцией временного сдвига Δt и равен:

,

где Т - период орбиты ПКО.

На фиг.4 представлена суть предлагаемого способа. Вместо выведения космических объектов на орбиты с одинаковым наклонением у ПКО (поз.1) и ВКО (поз.2) предлагается выводить ПКО с разницей в наклонении Δi (поз.3) таким образом, чтобы восходящие узлы орбит ПКО (поз.4) и ВКО (поз.2) совместились. В этом случае точка пересечения орбит будет лежать на экваторе (поз.5) в восходящем узле орбиты и в нисходящем узле (поз.6). Изменение наклонения орбиты на незначительный угол (менее 1°) допустимо для современных РН на участке работы последней ступени [3].

Определим потребную разницу Δi.

Аналогично углу , рассмотренному на фиг.3, дуга из фиг.4

Учитывая, что из сферического прямоугольного треугольника ΔОСВ

а из треугольника ΔOCOB:

получим:

или

Учитывая, что Δi→0, разложим первое слагаемое в уравнении (3) в ряд Тейлора, ограничившись первой производной:

тогда, после преобразований уравнение (3) примет вид:

или

после дальнейших преобразований получим:

или с учетом (2) окончательно:

Так как разница в наклонениях орбиты Δi является одновременно и углом между плоскостями орбит стыкуемых объектов, то потребное значение бокового импульса составит [4]:

где VO - орбитальная скорость вращения небесного тела вокруг Земли.

Определим эффективность введения разницы Δi в наклонениях орбит стыкующихся объектов. Допустим наклонение орбиты для выводимых космических объектов соответствует i=51.6° (см. фиг.3), сдвиг по времени между их выведением Δt=4 мин, а точки старта для ПКО и ВКО не отличаются по долготе, т.е. λ1ст2ст. Тогда Δλ=ωЗ·Δt=1° и согласно уравнению (1) iR=0.784°. Для поворота плоскости орбиты на этот угол потребуется выполнить боковой импульс ΔV~130∗0.784°~102 м/сек.

Если же использовать выведение космических объектов на разные наклонения, то при широте стартовой позиции φст=46.5°, соответствующей широте космодрома Байконур, потребная разница в наклонениях орбиты согласно (4) составит Δi=0.321°, а потребная ΔV~42 м/сек. Таким образом, для космодрома Байконур эффективность применения этого способа составит К=iR/Δi~2.445.

Кроме того, из формулы (4) очевидно, что чем меньше значение выражения в скобках, тем меньше разница в наклонениях орбит и, следовательно, меньше затраты на боковой импульс, т.е. в предложенном способе более эффективно, чтобы стартовая позиция ПКО находилась западнее стартовой позиции ВКО или λ1ст2ст.

Рассматривая уравнение (4), можно отметить также, что в случае, если наклонение орбиты соответствует широте стартовой позиции, т.е. i=φст, достигается максимальная эффективность, т.к. разница в Δi→0 и, соответственно ΔV→0. С другой стороны, для наклонения i=51.6° из уравнения (4), приравнивая величины Δi=iR=0.784°, можно определить, что φст~33.7°, т.е. использование данного способа при таких начальных условиях становится эффективным при наклонениях орбиты более 34÷35°.

Оценим длительность сближения объектов в зависимости от величины временного сдвига Δt и разницы средних высот целевых орбит ПКО и ВКО Δh. Так как средняя высота орбиты ПКО выше, то ВКО, отставая по начальному фазовому углу от ПКО, постепенно его догоняет со скоростью фазирования [4]:

Сдвиг по времени старта ПКО и ВКО приводит к появлению начального фазового угла между объектами: Ф=Δt·4°. Таким образом, сближение, т.е. ликвидация фазового угла, может произойти за:

где N - число витков до сближения.

Если к примеру высота орбиты Нмин×Нмакс ПКО составляет 190×350 км, а ВКО 200×240 км, то разница по средней высоте орбиты составит

Таким образом, из формулы (5) следует, что при разнице Δh в 50 км, каждая минута по сдвигу времени старта ВКО приводит к дополнительному витку по времени сближения с ПКО, т.е. 1 мин - 1 виток на сближение, 2 мин - 2 витка и т.д. Согласно формуле (5), для сокращения времени сближения необходимо насколько возможно уменьшать временной сдвиг Δt между стартами ПКО и ВКО, а также стремиться к увеличению разности средних высот Δh стыкующихся объектов.

В целом можно сделать вывод, что применение последовательного и почти одновременного запуска двух космических объектов, со стартовых позиций, принадлежащих одному космодрому для их последующей стыковки в целях выполнения двухпусковой схемы выведения ПКК, например на Луну, позволяет выполнить эту задачу значительно быстрее, чем в случае использования прототипа и с незначительными дополнительными топливными затратами.

Способ управления движением стыкуемых космических объектов, включающий их выведение на целевые орбиты со стартовых позиций одного космодрома с последующим приложением импульсов сближения к одному из объектов, отличающийся тем, что выведение объектов осуществляют со сдвигом по времени Δt и с разницей Δi в наклонениях целевых орбит, приводящей к совмещению восходящих узлов орбит стыкуемых объектов, при этом Δi определяют с учетом значения Δt по формуле: где i - наклонение орбиты второго выводимого космического объекта;φ - географическая широта стартовой позиции второго выводимого космического объекта;ω - угловая скорость вращения Земли;λ, λ - географические долготы стартовых позиций, используемых для выведения первого и второго космических объектов соответственно,затем по разнице наклонений Δi определяют импульс, необходимый для совмещения плоскостей орбит стыкуемых объектов, который прикладывают к одному из стыкуемых объектов во время сближения в узле орбиты.
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ СТЫКУЕМЫХ КОСМИЧЕСКИХ ОБЪЕКТОВ
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ СТЫКУЕМЫХ КОСМИЧЕСКИХ ОБЪЕКТОВ
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ СТЫКУЕМЫХ КОСМИЧЕСКИХ ОБЪЕКТОВ
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ СТЫКУЕМЫХ КОСМИЧЕСКИХ ОБЪЕКТОВ
СПОСОБ УПРАВЛЕНИЯ ДВИЖЕНИЕМ СТЫКУЕМЫХ КОСМИЧЕСКИХ ОБЪЕКТОВ
Источник поступления информации: Роспатент

Показаны записи 261-270 из 370.
25.08.2017
№217.015.d2ff

Способ определения выходной мощности солнечной батареи космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ), имеющих положительную выходную мощность своей тыльной поверхности. Способ включает измерение высоты (Н) околокруговой орбиты КА и угол (ε) между направлением на Солнце и геоцентрическим...
Тип: Изобретение
Номер охранного документа: 0002621816
Дата охранного документа: 07.06.2017
25.08.2017
№217.015.d358

Герметизированное устройство

Изобретение относится к машиностроению и может быть использовано при испытаниях полостей устройств авиационной и ракетной техники, а также в других областях техники. Заявлено герметизированное устройство, содержащее корпус, с торца которого имеется расточка, сообщенная с внутренней полостью...
Тип: Изобретение
Номер охранного документа: 0002621472
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d35e

Способ управления космическим аппаратом дистанционного зондирования земли

Изобретение относится к управлению полетом специализированных космических аппаратов (КА). Способ включает построение инерциальной солнечной ориентации КА системой силовых гироскопов, измерение векторов их кинетических моментов, поддержание данной ориентации с одновременной разгрузкой...
Тип: Изобретение
Номер охранного документа: 0002621933
Дата охранного документа: 08.06.2017
26.08.2017
№217.015.d394

Космический модуль

Изобретение относится к космической технике, а именно к малым космическим модулям (КМ). КМ содержит силовой корпус блочного типа в виде скрепленных ребер правильной призмы с торцевыми панелями, имеющими вырезы для корпуса оптико-электронного модуля (ОЭМ) и для крепления блока реактивной...
Тип: Изобретение
Номер охранного документа: 0002621783
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.dda6

Электропривод

Изобретение относится к машиностроению, а более конкретно к электроприводам. Электропривод содержит корпус с расточкой, подшипниковый щит, кронштейн с электродвигателем с шестерней и цилиндрический зубчатый редуктор. Кронштейн выполнен в виде двух фланцев, соединенных друг с другом аксиальными...
Тип: Изобретение
Номер охранного документа: 0002624886
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.dda9

Средство и способ защиты искусственных объектов от воздействия факторов космического пространства

Группа изобретений относится к области защиты сооружаемых на Луне объектов от радиации, экстремальных температур и микрометеороидов. Средство защиты содержит оболочку, заполненную реголитом и изготовленную из материала на основе стекловолокна с пределами рабочих температур от -200°C до +550°C и...
Тип: Изобретение
Номер охранного документа: 0002624893
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.ddb4

Система фиксации космонавта при передвижении по внешней поверхности космического объекта (варианты) и способ её эксплуатации (варианты)

Группа изобретений относится к космической технике, а именно к средствам обеспечения безопасной деятельности на внешней поверхности космического объекта (КО), например орбитальной станции (ОС). Система фиксации космонавта при передвижении по внешней поверхности КО включает поручни, жестко...
Тип: Изобретение
Номер охранного документа: 0002624895
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.dde2

Система фиксации космонавта при передвижении по внешней поверхности космического объекта и способ её эксплуатации

Группа изобретений относится к страховочным средствам внекорабельной деятельности космонавта, а также может быть использована в других видах монтажных работ. Система фиксации включает в себя поручни, закрепленные на внешней поверхности космического объекта, и закрепленную на скафандре...
Тип: Изобретение
Номер охранного документа: 0002624891
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.ddfd

Способ определения максимальной выходной мощности солнечных батарей космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает разворот панели СБ в рабочее положение, измерение напряжения (U) и тока (I) от СБ в моменты, когда излучение от Земли поступает на нерабочую сторону панели СБ, и определение...
Тип: Изобретение
Номер охранного документа: 0002624885
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.de1c

Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной установки и способ определения его массы

Предлагаемое изобретение относится к области электроракетных двигательных установок (ЭРДУ) и может быть использовано в системах хранения и подачи рабочего тела ЭРДУ. Устройство для измерения массы рабочего тела, газообразного при нормальных условиях, в баллоне электроракетной двигательной...
Тип: Изобретение
Номер охранного документа: 0002624688
Дата охранного документа: 05.07.2017
Показаны записи 261-270 из 297.
25.08.2017
№217.015.c590

Электронасосный агрегат

Изобретение относится к машиностроению и может быть использовано в системах терморегулирования изделий космической техники. Электронасосный агрегат содержит металлический корпус, установленный на корпусе электродвигатель, размещенные на его валу колеса. Снаружи электродвигателя установлен...
Тип: Изобретение
Номер охранного документа: 0002618377
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c5f6

Быстроразъемный агрегат

Изобретение относится к ракетно-космической технике, а именно к устройствам разделения заправочных магистралей. Быстроразъемный агрегат содержит первую и вторую плиты, соединенные замковым устройством. Быстроразъемный агрегат включает установленную в первую плиту подпружиненную подвижную...
Тип: Изобретение
Номер охранного документа: 0002618669
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c66c

Устройство для соединения коммуникаций

Изобретение предназначено для использования в области ракетно-космической техники, в частности для заправки (дренажа) системы терморегулирования изделия теплоносителем и обеспечения циркуляции теплоносителя, и может быть использовано в машиностроении. В устройстве для соединения коммуникаций,...
Тип: Изобретение
Номер охранного документа: 0002618641
Дата охранного документа: 05.05.2017
25.08.2017
№217.015.c77a

Способ определения максимальной выходной мощности солнечных батарей космического аппарата

Изобретение относится к электрогенерирующим системам космического аппарата (КА). Способ включает разворот панелей солнечных батарей (СБ) КА их рабочими поверхностями на Солнце. Максимальную выходную мощность СБ определяют путём измерения тока и напряжения от СБ в моменты, когда отраженное от...
Тип: Изобретение
Номер охранного документа: 0002618844
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.d0fe

Посадочное устройство космического корабля

Изобретение относится к области машиностроения, где необходимо осуществить мягкую посадку объекта с помощью посадочного устройства по вертикальной схеме. Посадочное устройство содержит посадочные опоры с центральными стойками, содержащими главный цилиндр с сотовым энергопоглотителем и узел...
Тип: Изобретение
Номер охранного документа: 0002621416
Дата охранного документа: 05.06.2017
25.08.2017
№217.015.d195

Дренажное устройство

Изобретение относится к космической технике и может быть использовано при внештатной посадке многоразового спускаемого аппарата на воду. Дренажное устройство состоит из дренажной системы, которая выполнена в виде емкости, в нижней части которой выполнено посадочное отверстие с уплотнительной...
Тип: Изобретение
Номер охранного документа: 0002621930
Дата охранного документа: 08.06.2017
25.08.2017
№217.015.d2ff

Способ определения выходной мощности солнечной батареи космического аппарата

Изобретение относится к электроснабжению космических аппаратов (КА) с помощью солнечных батарей (СБ), имеющих положительную выходную мощность своей тыльной поверхности. Способ включает измерение высоты (Н) околокруговой орбиты КА и угол (ε) между направлением на Солнце и геоцентрическим...
Тип: Изобретение
Номер охранного документа: 0002621816
Дата охранного документа: 07.06.2017
25.08.2017
№217.015.d358

Герметизированное устройство

Изобретение относится к машиностроению и может быть использовано при испытаниях полостей устройств авиационной и ракетной техники, а также в других областях техники. Заявлено герметизированное устройство, содержащее корпус, с торца которого имеется расточка, сообщенная с внутренней полостью...
Тип: Изобретение
Номер охранного документа: 0002621472
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d35e

Способ управления космическим аппаратом дистанционного зондирования земли

Изобретение относится к управлению полетом специализированных космических аппаратов (КА). Способ включает построение инерциальной солнечной ориентации КА системой силовых гироскопов, измерение векторов их кинетических моментов, поддержание данной ориентации с одновременной разгрузкой...
Тип: Изобретение
Номер охранного документа: 0002621933
Дата охранного документа: 08.06.2017
26.08.2017
№217.015.d394

Космический модуль

Изобретение относится к космической технике, а именно к малым космическим модулям (КМ). КМ содержит силовой корпус блочного типа в виде скрепленных ребер правильной призмы с торцевыми панелями, имеющими вырезы для корпуса оптико-электронного модуля (ОЭМ) и для крепления блока реактивной...
Тип: Изобретение
Номер охранного документа: 0002621783
Дата охранного документа: 07.06.2017
+ добавить свой РИД