×
10.09.2015
216.013.793f

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКОГО УРОВНЯ ЖИДКОСТИ В СКВАЖИНЕ

Вид РИД

Изобретение

№ охранного документа
0002562628
Дата охранного документа
10.09.2015
Аннотация: Изобретение относится к эксплуатации нефтедобывающих скважин с помощью глубинно-насосного оборудования и может использоваться в нефтедобывающей промышленности. Техническим результатом является повышение точности измерения уровня жидкости в скважине. Способ основан на известном законе Бойля-Мариотта, при котором произведение давления газа на его объем является величиной постоянной при изотермических процессах изменения давления и объема газа. По изобретению небольшой объем нефтяного газа, выпущенного из скважины, измеряется счетчиком газа и переводится в скважинные условия. Изменение объема газа ведет к изменению его давления в скважине, которое предложено оценивать как среднеарифметическое между устьевым давлением и давлением в зоне динамического уровня жидкости P(h). Последний параметр определяется по известной экспоненциальной формуле Лапласа-Бабинэ, в которой неизвестной величиной является динамический уровень жидкости в скважине (h). Динамический уровень жидкости в скважине определяется делением выпущенного объема газа в скважинных условиях на площадь межтрубного пространства скважины, в которой находится попутный нефтяной газ. Предложено техническую задачу решать в режиме итерации, для этого в первом приближении за h принимают максимально возможную ее величину при действующей насосной установке, а именно глубину насосной установки. Во втором цикле расчетов в расчетах P(h) используют величину динамического уровня, полученного в первом цикле итерации. Расчеты ведут до тех пор, пока величина динамического уровня жидкости не станет постоянной величиной. 1 ил.
Основные результаты: Способ определения динамического уровня жидкости в скважине, заключающийся в кратковременном выпуске определенной части попутного нефтяного газа из межтрубного пространства скважины в изотермическом режиме, отличающийся тем, что попутный нефтяной газ (ПНГ) объемом V выпускается в атмосферу через счетчик газа, для проведения расчетов методом итерации в первом приближении за величину динамического уровня жидкости h принимают глубину расположения погружного насоса скважины h, находят расчетным путем по формуле 3 давление ПНГ в зоне динамического уровня Р(h), выпущенный объем газа V по формуле 2 переводят в скважинные условия, а динамический уровень жидкости определяют на основе закона Бойля-Мариотта по формуле 1, после чего цикл расчетов повторяют с уже полученным по формуле 1 значением h, расчеты ведут в режиме итерации в несколько циклов до тех пор, пока величина h не станет постоянной величиной: гдеh - динамический уровень жидкости в скважине;ΔV - объем ПНГ, выпущенного через счетчик газа из межтрубного пространства, приведенный к скважинным условиям; определяется по формуле 2;S - средняя площадь сечения ПНГ в скважине;P(h) - давление газа в зоне динамического уровня, определяется по формуле 3;P - давление газа в межтрубном пространстве на устье скважины до момента выпуска газа объемом ΔV;P - давление газа в межтрубном пространстве на устье скважины после выпуска газа объемом ΔV;ΔV - объем ПНГ, замеренный счетчиком газа на устье скважины, приводится в скважинные условия согласно уравнения Менделеева-Клапейрона по формуле 2: гдеV - объем ПНГ по счетчику газа;P - атмосферное давление (0,1 МПа);Т - температура ПНГ на устье скважины;Т(h) - температура ПНГ в зоне динамического уровня скважины;P(h) - давление в зоне динамического уровня при P;P(h) - давление в зоне динамического уровня жидкости определяется по формуле 3 (формула Лапласа-Бабинэ): гдеP - давление газа в межтрубном пространстве на устье скважины;ρ - относительная по воздуху плотность ПНГ в межтрубном пространстве, кг/м;Т, z - средние значения соответственно температуры и коэффициента сверхсжимаемости РНГ от устья скважины до h (Т измеряют в градусах K, а параметр z - безразмерная величина).

Заявляемое изобретение относится к теории и практике эксплуатации нефтедобывающих скважин с помощью глубинно-насосного оборудования и может использоваться в нефтедобывающей промышленности.

В нефтедобывающей скважине межтрубное пространство (МП) между колонной лифтовых труб и обсадной колонной заполнено, как правило, двумя средами: газовой (попутный нефтяной газ) и жидкостной с определенным содержанием растворенного газа. Граница между средами в действующей скважине называется динамическим уровнем жидкости. Его глубину от устья скважины определяют с необходимой частотой для оценки давления на приеме глубинного насоса, определения объема жидкости в скважине и других целей. Коррозионные процессы протекают в жидкой и газовой средах с разной скоростью, поэтому важно знать среднестатистическую величину динамического уровня жидкости.

Динамический и статический уровни в нефтедобывающих скважинах определяют с помощью эхолотирования межтрубного пространства, то есть о глубине уровня судят по времени прохождения звуковой волны (стр. 202 в книге: Васильевский В.Н., Петров А.И. Оператор по исследованию скважин. Учебник для рабочих. - М.: Недра, 1983. - 310 с.). Метод является основным в нефтедобывающей промышленности, но имеет несколько недостатков. Во-первых, при недостаточном давлении в скважине для измерения уровня необходимо выпускать в атмосферу межтрубный газ. Во-вторых, точность измерений зависит от компонентного состава попутного нефтяного газа в скважине (ПНГ) и, как следствие, скорости прохождения звуковой волны в меняющейся по составу среде.

Известно устройство для измерения уровня жидкости в скважине (патент РФ на ПМ №101495, опубл. 20.01.2011, бюл. №2), в котором генератор акустического сигнала спускается на скребковой проволоке и фактически показывает момент своего вхождения под уровень жидкости. Такой способ определения уровня требует разгерметизации межтрубного пространства или применения малогабаритного лубрикатора (такие устройства не выпускаются в заводском исполнении в РФ).

Наиболее близким по техническому решению к заявленному изобретению является способ измерения уровня жидкости в скважине по патенту РФ на изобретение №2232267 (опубл. 10.07.2004 г.). Согласно этому патенту часть попутного нефтяного газа из межтрубного пространства скважины перепускается в емкость заданного объема, а уровень жидкости определяется из уравнения состояния газа при постоянстве температуры газа.

По прототипу попутный нефтяной газ в скважине рассматривается как газ с равным давлением во всех ее точках, и это давление фиксируется непосредственно на устье - Pуст. Между тем уровень жидкости в скважине может находиться на глубине в 1000 м и более. Давление ПНГ на определенной глубине в скважине P(h), в том числе в зоне уровня жидкости, в нефтепромысловой практике оценивают по формуле Лапласа-Бабинэ [стр. 134 в источнике: Коротаев Ю.П., Ширковский А.И. Добыча, транспорт и подземное хранение газа. Учебник для вузов. - М.: Недра, 1984. - 487 с.), а давление газа оценивают как среднее значение между Pуст и P(h). По патенту на изобретение за №2232267 этот факт не учитывается и по нашему мнению это ведет к повышению погрешности измерений.

Вторым недостатком прототипа является то, что стационарная емкость заданного объема является сосудом под давлением и является дополнительным источником опасности на скважине.

Технической задачей заявляемого изобретения является создание способа определения уровня жидкости в скважине на основе изменения и учета параметров попутного нефтяного газа в скважине при одновременном повышении точности измерений и мер безопасности. В качестве информационной составляющей скважины по изобретению предлагается использовать такое понятие, как состояние попутного нефтяного газа в межтрубном пространстве, причем с учетом его реальных свойств в условиях скважины.

Поставленная техническая задача по изобретению выполняется тем, что по способу определения динамического уровня жидкости в скважине, заключающемся в кратковременном выпуске определенной части попутного нефтяного газа из межтрубного пространства скважины, попутный нефтяной газ (ПНГ) выпускается в атмосферу через счетчик газа, в первом приближении за величину динамического уровня жидкости hдин принимают глубину расположения погружного насоса скважины hнасос, находят расчетным путем давление ПНГ в зоне динамического уровня P(hдин), а динамический уровень жидкости определяют на основе закона Бойля-Мариотта по формуле 1 (вывод формулы 1 приведен отдельно в конце текста), после чего данный цикл расчетов повторяют с уже полученным по формуле 1 значением hдин, расчеты ведут в режиме итерации в несколько циклов до тех пор, пока величина hдин не станет постоянной величиной.

где

hдин - динамический уровень жидкости в скважине;

ΔV - объем ПНГ, выпущенного через счетчик газа из межтрубного пространства, приведенный к скважинным условиям; определяется по формуле 2;

S - средняя площадь сечения ПНГ в скважине;

P(hдин1,2) - давление газа в зоне динамического уровня, определяется по формуле 3;

Pуст1 - давление газа в межтрубном пространстве на устье скважины до момента выпуска газа объемом ΔV;

Pуст2 - давление газа в межтрубном пространстве на устье скважины после выпуска газа объемом ΔV.

Объем ПНГ, замеренный счетчиком газа на устье скважины, приводится в скважинные условия согласно уравнению Менделеева-Клапейрона по формуле 2:

где

Vсчет - объем ПНГ по счетчику газа;

Pатм - атмосферное давление (0,1 МПа);

Tуст - температура ПНГ на устье скважины;

T(hдин) - температура ПНГ в зоне динамического уровня скважины;

P(hдин1) - давление в зоне динамического уровня при Pуст1.

Давление в зоне динамического уровня жидкости в нефтепромысловой практике определяется по формуле 3 (формула Лапласа-Бабинэ):

где

Pуст - давление газа в межтрубном пространстве на устье скважины;

ρотн - относительная по воздуху плотность ПНГ в межтрубном пространстве, кг/м3

Tср, zср - средние значения соответственно температуры и коэффициента сверхсжимаемости РНГ от устья скважины до hдин (Tср измеряют в градусах K, а параметр zср - безразмерная величина).

В формуле 3 отсутствует информация по параметру hдин, и по изобретению на первом этапе расчетов принимают, что hдин=hнасос.

Данный алгоритм расчетов закладывается в контроллер (программный отдел) устройства по замеру динамического уровня, общий вид которого приведен на чертеже, где 1 - погружной насос на колонне лифтовых труб, 2 - электрорегулируемый вентиль межтрубного пространства скважины, 3 - манометр (датчик давления), 4 - термометр, 5 - счетчик газа, 6 - электрорегулируемый вентиль на выходе газа, 7 - свеча рассеивания газа, 8 - контроллер устройства, 9 - теплоизоляция измерительного устройства.

Реализацию способа рассмотрим на примере.

Нефтедобывающая скважина имеет следующие параметры:

- внутренний ⌀ обсадной колонны D=197 мм;

- внешний ⌀ колонны лифтовых труб d=73 мм;

- глубина погружного насоса hнас=1000 м;

- относительная по воздуху плотность газа ρотн=0,95;

- коэффициент сверхсжимаемости ПНГ z=0,91 (постоянен по стволу скважины);

- температура флюидов по стволу скважины равномерно повышается от устья до погружного насоса: от Tуст=15°C (288 К) до Tнасос=25°C (298 К).

До начала выпуска газа (вентиль 2 - открыт, а вентиль 6 - закрыт)

Pуст1=0,800 МПа. Электрорегулируемый вентиль 6 по команде контроллера 8 плавно открывается и через счетчик газа пропускают объем попутного нефтяного газа Vсчет=0,50 м (при атмосферном давлении и температуре Tуст=15°C (288 К)). После этого действия давление ПНГ на устье понижается до Pуст2=0,790 МПа. Попутный нефтяной газ удаляется в атмосферу через свечу рассеивания 7. Для обеспечения изотермического процесса выхода газа устройство покрывают теплоизоляцией 9.

1. По формуле 3 контроллер находит в первом цикле итерации давление ПНГ на максимально возможной глубине, то есть при hдин=hнacoc, и среднюю температуру газа Tср=(15+25)/2=20°C=293 К. Искомое давление считается два раза при устьевом давлении Руст1 и Руст2.

2. Объем выпущенного газа Vсчет, замеренный счетчиком газа на устье скважины, приводится в скважинные условия по формуле 2:

3. Находится динамический уровень жидкости в скважине по первому этапу итерации:

где S=π(D2-d2)/4=3,14(0,1972-0,0732)/4=0,0264 м2.

4. Полученное значение hдин=183 м используется контроллером во втором цикле расчетов (пункты 1-3).

Предварительно определяется температура газа на глубине 183 м по линейной зависимости:

Средняя температура ПНГ Tср=(15+16,8)/2=15,9°С=288,9 К.

Для данных значений hдин=183 м и Tср=288,9 К находим давление ПНГ в зоне динамического уровня два раза: до и после выпуска газа.

По первому пункту:

По второму пункту:

По третьему пункту:

По расчетам второго цикла hдин=189,7 м.

5. Полученное значение hдин=189,7 м используется контроллером в третьем цикле расчетов (пункты 1-3).

Предварительно определяется температура газа на глубине 189,7 м по линейной зависимости:

Средняя температура ПНГ Tср=(15+16,9)/2=15,95°С=289 К.

По первому пункту:

По второму пункту:

По третьему пункту:

По расчетам третьего цикла hдин=189,9 м.

Последующие расчеты в режиме итерации показывают, что величина динамического уровня скважины стабилизируется на уровне 190 м.

В отличие от прототипа по заявленному изобретению учитывается рост давления ПНГ вниз по стволу скважины, и это повышает точность измерения уровня жидкости. Отсутствует также сосуд, работающий под давлением, так как часть попутного нефтяного газа выводится из межтрубного пространства скважины непосредственно в атмосферу без промежуточного сосуда, а учтенный объем газа по изобретению переводится в скважинные условия по параметрам: давление и температура.

По изобретению достигается ожидаемый технический результат, причем способ может быть осуществлен устройством как стационарного, так и переносного характера. Современные манометры имеют чувствительность до тысячной доли одной атмосферы, поэтому объем выпускаемого ПНГ из межтрубного пространства - это небольшая величина, поэтому эта технологическая процедура займет малый период времени.

Промышленное внедрение предложенного способа позволит более точным образом определять динамический уровень жидкости в нефтедобывающих скважинах, что является особенно актуальным при приближении динамического уровня жидкости к приему глубинного насоса скважины.

Вывод формулы 1:

Записываем уравнение Бойля-Мариотта:

где P1 - среднее давление ПНГ в межтрубном пространстве до выпуска газа объемом ΔV; P1=(Pуст1+P(hдин1))/2;

P2 - среднее давление ПНГ в межтрубном пространстве после выпуска газа объемом ΔV; P2=(Pуст2+P(hдин2))/2.

Также известно, что V2=V1+ΔV, поэтому:

откуда выражаем V2 и в последующем hдин:

Способ определения динамического уровня жидкости в скважине, заключающийся в кратковременном выпуске определенной части попутного нефтяного газа из межтрубного пространства скважины в изотермическом режиме, отличающийся тем, что попутный нефтяной газ (ПНГ) объемом V выпускается в атмосферу через счетчик газа, для проведения расчетов методом итерации в первом приближении за величину динамического уровня жидкости h принимают глубину расположения погружного насоса скважины h, находят расчетным путем по формуле 3 давление ПНГ в зоне динамического уровня Р(h), выпущенный объем газа V по формуле 2 переводят в скважинные условия, а динамический уровень жидкости определяют на основе закона Бойля-Мариотта по формуле 1, после чего цикл расчетов повторяют с уже полученным по формуле 1 значением h, расчеты ведут в режиме итерации в несколько циклов до тех пор, пока величина h не станет постоянной величиной: гдеh - динамический уровень жидкости в скважине;ΔV - объем ПНГ, выпущенного через счетчик газа из межтрубного пространства, приведенный к скважинным условиям; определяется по формуле 2;S - средняя площадь сечения ПНГ в скважине;P(h) - давление газа в зоне динамического уровня, определяется по формуле 3;P - давление газа в межтрубном пространстве на устье скважины до момента выпуска газа объемом ΔV;P - давление газа в межтрубном пространстве на устье скважины после выпуска газа объемом ΔV;ΔV - объем ПНГ, замеренный счетчиком газа на устье скважины, приводится в скважинные условия согласно уравнения Менделеева-Клапейрона по формуле 2: гдеV - объем ПНГ по счетчику газа;P - атмосферное давление (0,1 МПа);Т - температура ПНГ на устье скважины;Т(h) - температура ПНГ в зоне динамического уровня скважины;P(h) - давление в зоне динамического уровня при P;P(h) - давление в зоне динамического уровня жидкости определяется по формуле 3 (формула Лапласа-Бабинэ): гдеP - давление газа в межтрубном пространстве на устье скважины;ρ - относительная по воздуху плотность ПНГ в межтрубном пространстве, кг/м;Т, z - средние значения соответственно температуры и коэффициента сверхсжимаемости РНГ от устья скважины до h (Т измеряют в градусах K, а параметр z - безразмерная величина).
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКОГО УРОВНЯ ЖИДКОСТИ В СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКОГО УРОВНЯ ЖИДКОСТИ В СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКОГО УРОВНЯ ЖИДКОСТИ В СКВАЖИНЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКОГО УРОВНЯ ЖИДКОСТИ В СКВАЖИНЕ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 48.
10.01.2013
№216.012.1a82

Электрогенератор станка-качалки скважины

Предполагаемое изобретение относится к области электротехники, в частности - к устройствам по выработке электроэнергии, и может быть использовано в конструкции станка-качалки добывающей скважины. Вращение противовеса кривошипно-шатунного механизма станка-качалки (СК) предложено преобразовать во...
Тип: Изобретение
Номер охранного документа: 0002472278
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1df3

Скважинный электрогенератор

Изобретение относится к электротехнике, к устройствам выработки электрической энергии и может найти применение в конструкции добывающих скважин, имеющих станки-качалки (СК). Технический результат состоит в расширении эксплуатационных возможностей. Предложено заменить противовесы...
Тип: Изобретение
Номер охранного документа: 0002473161
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.277c

Способ промывки скважинного погружного электроцентробежного насоса реагентом

Изобретение относится к нефтедобывающей промышленности, в частности к технологиям очистки скважинного насоса от отложений. При осуществлении способа реагент подают в полость насоса через клапан обратный трехпозиционный (КОТ), установленный над выкидным отверстием насоса. Подачу и сбор реагента...
Тип: Изобретение
Номер охранного документа: 0002475628
Дата охранного документа: 20.02.2013
27.05.2013
№216.012.44e4

Устьевой турбулизатор скважинной продукции

Изобретение относится к горному делу и может быть использовано для перемешивания газожидкостной продукции в трубопроводе. Техническим результатом является повышение объективности в оценке добывающих возможностей скважин и состава транспортируемой по трубам промысловой жидкости. Устройство...
Тип: Изобретение
Номер охранного документа: 0002483213
Дата охранного документа: 27.05.2013
20.07.2013
№216.012.57d4

Способ определения концентрации газа в жидкости

Способ предусматривает определение концентрации газа в жидкости методом дегазации пробы жидкости и замера количества выделенного газа химическим индикатором. К существующей схеме анализа добавлена газосборная камера, в которую собирается газовоздушная смесь (ГВС), полученная в процессе...
Тип: Изобретение
Номер охранного документа: 0002488092
Дата охранного документа: 20.07.2013
10.10.2013
№216.012.7387

Способ очистки колонны лифтовых труб от асфальтосмолопарафиновых отложений

Изобретение относится к нефтедобывающей промышленности и используется для удаления асфальтосмолопарафиновых отложений (АСПО) механическим путем. Для спускоподьемных операций со скребком используют многожильный электрический бронированный кабель и мобильный подъемник с гидрофицированной...
Тип: Изобретение
Номер охранного документа: 0002495232
Дата охранного документа: 10.10.2013
20.12.2013
№216.012.8e11

Способ определения объема отсепарированного попутного нефтяного газа

Способ обеспечивает определение объема отсепарированного попутного нефтяного газа (ПНГ) в установке предварительного сброса воды (УПСВ) или дожимной насосной станции (ДНС). Способ реализуется на основании периодических измерений содержания сероводорода в поступающей на УПСВ или ДНС...
Тип: Изобретение
Номер охранного документа: 0002502052
Дата охранного документа: 20.12.2013
10.01.2014
№216.012.950b

Глубинный плунжерный насос

Изобретение относится к нефтедобывающей промышленности и служит для повышения эффективности эксплуатации глубинных плунжерных насосов. В полость насоса и на приеме насоса помещают датчики измерения давления. Всасывающий клапан выполняют в виде электромагнитного клапана, конструкция которого...
Тип: Изобретение
Номер охранного документа: 0002503849
Дата охранного документа: 10.01.2014
20.04.2014
№216.012.bc21

Способ промывки скважинного глубинного электроцентробежного насоса

Изобретение относится к нефтедобывающей промышленности и направлено на повышение эффективности эксплуатации скважинных глубинных электроцентробежных насосов, осложненных образованием асфальтосмолопарафиновых отложений на рабочих органах насоса. В качестве растворяющего отложения реагента...
Тип: Изобретение
Номер охранного документа: 0002513889
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bc24

Способ определения остаточного содержания газа в жидкости

Изобретение относится к нефтедобывающей промышленности. Техническим результатом является обеспечение определения остаточного содержания газа в жидкости после дегазации продукции группы скважин в газосепараторе перед дальнейшей откачкой в нефтепровод. Способ включает в себя процедуры нахождения...
Тип: Изобретение
Номер охранного документа: 0002513892
Дата охранного документа: 20.04.2014
Показаны записи 1-10 из 61.
10.01.2013
№216.012.1a82

Электрогенератор станка-качалки скважины

Предполагаемое изобретение относится к области электротехники, в частности - к устройствам по выработке электроэнергии, и может быть использовано в конструкции станка-качалки добывающей скважины. Вращение противовеса кривошипно-шатунного механизма станка-качалки (СК) предложено преобразовать во...
Тип: Изобретение
Номер охранного документа: 0002472278
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1df3

Скважинный электрогенератор

Изобретение относится к электротехнике, к устройствам выработки электрической энергии и может найти применение в конструкции добывающих скважин, имеющих станки-качалки (СК). Технический результат состоит в расширении эксплуатационных возможностей. Предложено заменить противовесы...
Тип: Изобретение
Номер охранного документа: 0002473161
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.277c

Способ промывки скважинного погружного электроцентробежного насоса реагентом

Изобретение относится к нефтедобывающей промышленности, в частности к технологиям очистки скважинного насоса от отложений. При осуществлении способа реагент подают в полость насоса через клапан обратный трехпозиционный (КОТ), установленный над выкидным отверстием насоса. Подачу и сбор реагента...
Тип: Изобретение
Номер охранного документа: 0002475628
Дата охранного документа: 20.02.2013
27.05.2013
№216.012.44e4

Устьевой турбулизатор скважинной продукции

Изобретение относится к горному делу и может быть использовано для перемешивания газожидкостной продукции в трубопроводе. Техническим результатом является повышение объективности в оценке добывающих возможностей скважин и состава транспортируемой по трубам промысловой жидкости. Устройство...
Тип: Изобретение
Номер охранного документа: 0002483213
Дата охранного документа: 27.05.2013
20.07.2013
№216.012.57d4

Способ определения концентрации газа в жидкости

Способ предусматривает определение концентрации газа в жидкости методом дегазации пробы жидкости и замера количества выделенного газа химическим индикатором. К существующей схеме анализа добавлена газосборная камера, в которую собирается газовоздушная смесь (ГВС), полученная в процессе...
Тип: Изобретение
Номер охранного документа: 0002488092
Дата охранного документа: 20.07.2013
10.10.2013
№216.012.7387

Способ очистки колонны лифтовых труб от асфальтосмолопарафиновых отложений

Изобретение относится к нефтедобывающей промышленности и используется для удаления асфальтосмолопарафиновых отложений (АСПО) механическим путем. Для спускоподьемных операций со скребком используют многожильный электрический бронированный кабель и мобильный подъемник с гидрофицированной...
Тип: Изобретение
Номер охранного документа: 0002495232
Дата охранного документа: 10.10.2013
20.12.2013
№216.012.8e11

Способ определения объема отсепарированного попутного нефтяного газа

Способ обеспечивает определение объема отсепарированного попутного нефтяного газа (ПНГ) в установке предварительного сброса воды (УПСВ) или дожимной насосной станции (ДНС). Способ реализуется на основании периодических измерений содержания сероводорода в поступающей на УПСВ или ДНС...
Тип: Изобретение
Номер охранного документа: 0002502052
Дата охранного документа: 20.12.2013
10.01.2014
№216.012.950b

Глубинный плунжерный насос

Изобретение относится к нефтедобывающей промышленности и служит для повышения эффективности эксплуатации глубинных плунжерных насосов. В полость насоса и на приеме насоса помещают датчики измерения давления. Всасывающий клапан выполняют в виде электромагнитного клапана, конструкция которого...
Тип: Изобретение
Номер охранного документа: 0002503849
Дата охранного документа: 10.01.2014
20.04.2014
№216.012.bc21

Способ промывки скважинного глубинного электроцентробежного насоса

Изобретение относится к нефтедобывающей промышленности и направлено на повышение эффективности эксплуатации скважинных глубинных электроцентробежных насосов, осложненных образованием асфальтосмолопарафиновых отложений на рабочих органах насоса. В качестве растворяющего отложения реагента...
Тип: Изобретение
Номер охранного документа: 0002513889
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bc24

Способ определения остаточного содержания газа в жидкости

Изобретение относится к нефтедобывающей промышленности. Техническим результатом является обеспечение определения остаточного содержания газа в жидкости после дегазации продукции группы скважин в газосепараторе перед дальнейшей откачкой в нефтепровод. Способ включает в себя процедуры нахождения...
Тип: Изобретение
Номер охранного документа: 0002513892
Дата охранного документа: 20.04.2014
+ добавить свой РИД