×
10.09.2015
216.013.7785

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ДЕФОРМИРУЕМОЙ ЗАГОТОВКИ ИЗ ТИТАНОВОГО СПЛАВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии и может быть использовано при получении заготовок из двухфазных титановых сплавов, применяемых, в частности, в авиационной промышленности. Исходную заготовку нагревают до температуры ниже температуры полного полиморфного превращения. Осуществляют деформацию нагретой заготовки в нагретом штампе в два этапа с переменной скоростью. На первом этапе деформацию осуществляют со скоростью, не превышающей скорость, обеспечивающую разогрев заготовки до температуры ниже полного полиморфного превращения. На втором этапе деформацию осуществляют со скоростью, обеспечивающей формирование рекристаллизованной структуры с размером β-зерна 5-9 мкм. В результате обеспечивается получение деформированной заготовки с однородной структурой и высокой циклической прочностью и снижение времени технологического цикла изготовления. 5 з.п. ф-лы, 2 табл., 3 пр.

Изобретение относится к области металлургии, в частности к способам получения штамповок из двухфазных титановых сплавов, и может найти применение в авиационной промышленности и машиностроении.

Изделия из высокопрочных титановых сплавов являются высоконагруженными и должны обеспечивать при высоких прочностных характеристиках высокие значения вязкости разрушения и трещиностойкости. Такое сочетание свойств возможно при формировании в штамповках β-рекристаллизованной структуры.

Подобная структура в штамповках формируется при деформации при температурах выше температуры полного полиморфного превращения (Тп.п.). Однако в штамповках, полученных по этой технологии, формируется крупное рекристаллизованное зерно. Для деталей, работающих в условиях знакопеременных нагрузок, необходимо формирование структуры с размером зерна менее 10 мкм, что позволит получать высокие значения циклической прочности.

Известен способ обработки титановых сплавов с целью снижения роста трещин в (α+β) титановом сплаве, содержащем значительное количество β-фазы и более 3% молибдена, включающий следующие операции:

- ковка выше температуры β превращения (Тп.п.) со степенью деформации, достаточной для последующей рекристаллизации;

- охлаждение материала ниже температуры β превращения (Тп.п.) со скоростью 11-55°C/мин;

- упрочняющая термообработка, включающая закалку с температуры на 27-82°C ниже Тп.п. и старение (патент США №4543132, опубл. 24.09.1985). Приведенный процесс позволяет уменьшить размер рекристаллизованного β-зерна за счет высокой скорости охлаждения из β-области, проводить обработку за один нагрев и снизить трудоемкость изготовления заготовок.

Однако технологический процесс имеет существенные недостатки: связанная с большим градиентом температур заготовка-штамп, неравномерность деформации, образование зон затрудненной деформации, длительный нагрев при температурах β-области и повышенное газонасыщение поверхностных слоев металла. Это требует увеличения припуска на механическую обработку и сопровождается снижением коэффициента использования металла. Кроме того, высокая скорость деформации при ковке также сопровождается образованием зон интенсивного течения металла и неравномерностью структуры, что приводит к снижению механических свойств и их стабильности в изделиях.

Известен способ получения деформированных заготовок с рекристаллизованной структурой с максимальным размером β-зерна менее 0,5 мм (Патент США №5026520, опубл. 25.06.1991).

Способ включает:

- нагрев заготовки от температуры Тп.п до Тп.п +45°C;

- деформацию на прессе в штампах, нагретых до температуры, близкой к температуре заготовки (изотермическая штамповка) с промежуточной выдержкой 4-10 мин;

- изотермическую выдержку при температуре, близкой к температуре нагрева штампа и заготовки в течение времени, достаточного для прохождения полной первичной рекристаллизации, но недостаточного для дальнейшего роста зерна;

- закалку (ускоренное охлаждение) заготовки после удаления из пресса до температуры ниже температуры полного полиморфного превращения для предотвращения дальнейшего роста зерна и получения микроструктуры с размером β-зерна менее 0,5 мм (500 мкм).

Способ позволяет избежать длительного отжига после деформации при температуре выше полного полиморфного превращения для получения рекристаллизованной структуры за счет проведения изотермической выдержки от 4 до 10 минут непосредственно после деформации, что позволяет получать размер зерна менее 0,5 мм и снизить толщину газонасыщенного слоя штамповки.

Недостатками способа является нагрев исходной заготовки в β-области (выше Тп.п.), что сопровождается значительным ростом исходного зерна и не позволяет получать мелкозернистую структуру в штамповке. Кроме того, недостатком рассмотренного способа является необходимость механической обработки для удаления газонасыщенного поверхностного слоя, образующегося при нагреве и изотермической выдержке в β-области, что приводит к снижению коэффициента использования металла.

Другим недостатком способа является и высокая трудоемкость, связанная с необходимостью проведения длительной промежуточной выдержки (4-10 минут) в процессе деформации. При этом суммарное время выдержек может составлять 10-20 минут.

Наиболее близким к предлагаемому изобретению является способ получения штамповок с рекристаллизованной структурой с размером зерна 10-30 мкм, взятый в качестве прототипа (патент RU 2246556 C1, опубл. 20.02.2005).

Способ включает нагрев заготовки до Тп.п - (10-30)°C, деформацию в два этапа с переменной скоростью в штампах, нагретых до температуры выше Тп.п. на 10-30°C. При этом на первом этапе деформация проводится со скоростью, достаточной для разогрева заготовки до температуры штампа (т.е. выше Тп.п. на 10-30°C), а на втором этапе со скоростью 10-2-10-4 с-1 и степенью деформации 10-30% и изотермической выдержкой в штампе в течение 0,5-1,5 минут. Охлаждение заготовки проводят ускоренно (закалка).

Технология по способу, известному из прототипа, позволяет получать штамповки с однородной рекристаллизованной структурой и высоким КИМ.

Недостатком способа, известного из прототипа, является то, что при использовании предложенного способа не может быть получена рекристаллизованная структура с размером β-зерна менее 10 мкм.

Также недостатком способа, известного из прототипа, является увеличение времени технологического цикла с использованием дорогостоящего оборудования за счет изотермической выдержки в штампе, а также необходимость использования специального оборудования для ускоренного охлаждения (закалки) заготовок после деформации.

Технической задачей предлагаемого изобретения является создание способа получения деформированных заготовок из титановых сплавов, с мелкозернистой структурой.

Техническим результатом предлагаемого способа является формирование в деформированной заготовке однородной рекристаллизованной структуры с размером β-зерна 5-9 мкм и высокой циклической прочностью в термически упрочненном состоянии. Другим техническим результатом предлагаемого способа является снижение времени технологического цикла изготовления деформированной заготовки.

Для достижения поставленного технического результата предложен способ получения деформированной заготовки из титанового сплава, включающий нагрев заготовки ниже температуры полного полиморфного превращения, ее деформацию в нагретом штампе в два этапа с переменной скоростью и термическую обработку заготовки, причем деформацию в нагретом штампе проводят на первом этапе со скоростью, не превышающей скорость, обеспечивающей разогрев заготовки до температуры ниже полного полиморфного превращения, а на втором этапе деформацию проводят со скоростью, обеспечивающей формирование рекристаллизованной структуры с размером β-зерна 5-9 мкм.

Предпочтительно нагрев исходной заготовки проводить на 25-35°C ниже температуры полного полиморфного превращения. Предпочтительно на первом этапе деформацию проводить со скоростью не ниже 7х10-2 с-1 , но не превышающей скорость, обеспечивающую разогрев заготовки до температуры полного полиморфного превращения минус 30°C и степенью деформации не менее 80%.

Предпочтительно на втором этапе деформацию проводить со скоростью 10-3-10-4 с-1 и степенью деформации 7-9%.

Предпочтительно нагрев штампов проводить на 25-35°C ниже температуры полного полиморфного превращения исходной титановой заготовки.

Возможно охлаждение заготовки проводить непосредственно после деформации с нерегламентированной скоростью.

Возможно для получения в изделиях высокой прочности проводить термическую обработку деформированной заготовки.

Предлагаемый способ позволяет снизить время технологического цикла по сравнению со способом-прототипом за счет исключения изотермической выдержки в штампе.

Охлаждение заготовки непосредственно после деформации с нерегламентированной скоростью позволяет отказаться от использования специального оборудования для закалки за счет нерегламентированной скорости охлаждения после деформации.

Примеры осуществления

Для примеров осуществления способов изготовления деформированной заготовки из титановых сплавов выбран высокопрочный титановый сплав ВТ22 с температурой полного полиморфного превращения (Тп.п.), равной 870°C, из которого изготовлена деформированная заготовка типа «диск» диаметром 250 мм. В качестве исходной заготовки использовали деформированный пруток диаметром 100 мм с размером β-зерна 80 мкм.

В известном уровне технического решения (способ-прототип) способ осуществлялся по следующей технологии в соответствии с таблицей 1, пример 3.

Нагрев заготовки проводили до температуры 840°C (Тп.п. - 30°C). Деформацию проводили за два этапа в штампах, нагретых до температуры 900°C (Тп.п. титановой заготовки +30°C). На первом этапе деформацию проводили со скоростью 10-1 с-1 и степенью деформации 40%. На втором этапе деформацию проводили со скоростью 10-3 с-1 и степенью деформации 20%.

После окончания деформации штамповку подвергали выдержке под нагрузкой 80 МПа при температуре нагрева штампов (900°C) в течение 1,5 мин.

Охлаждение заготовки проводили закалкой до температуры 810°C со скоростью 50°C/мин обдувкой штамповки системой конвекции воздуха (вентиляторами).

В способе, осуществленном по известному уровню технического решения, получены следующие технические результаты.

Общее время технологического процесса составило 3,5 мин.

В образцах, вырезанных из различных зон штамповки, размер β-зерна составил 20 мкм.

Механические свойства образцов, изготовленных после термической обработки штамповки, составили σв=1220 МПа, N циклов при σв=550 МПа составило 14700 (таблица 2).

Согласно предлагаемому изобретению примеры осуществления проводились по режимам, приведенным в таблице 1 пп.1-2.

Пример 1 (таблица 1 п.1).

Нагрев заготовки проводили до температуры 830°C (Тп.п. - 40°C). Деформацию проводили за два этапа в штампах, нагретых до температуры 845°C (Тп.п. титановой заготовки - 25°C). На первом этапе деформацию проводили со скоростью 5·10-2 с-1 и степенью деформации 70%. На втором этапе деформацию проводили со скоростью 10-4 с-1 и степенью деформации 7%. Охлаждение заготовки проводили с нерегламентированной скоростью на спокойном воздухе.

Получены следующие технические результаты.

Для примера 1 общее время технологического процесса составило 1,0 мин.

В образцах, вырезанных из различных зон штамповки, размер β-зерна составил 8 мкм.

Механические свойства образцов, изготовленных после термической обработки штамповки, σв=1220 МПа, N циклов при σв=550 МПа составило 21800 (таблица 2).

Пример 2 (таблица 1 п.2).

Нагрев заготовки проводили до температуры 850°C (Тп.п. - 20°C). Деформацию проводили за два этапа в штампах, нагретых до температуры 840°C (Тп.п. титановой заготовки -30°C). На первом этапе деформацию проводили со скоростью 7·10-2 с-1 и степенью деформации 80%. На втором этапе деформацию проводили со скоростью 10-3 с-1 и степенью деформации 9%. Охлаждение заготовки проводили с нерегламентированной скоростью на спокойном воздухе.

Получены следующие технические результаты.

Для примера 2 общее время технологического процесса составило 1,0 мин.

В образцах, вырезанных из различных зон штамповки, размер β-зерна составил 9 мкм.

Механические свойства образцов, изготовленных после термической обработки штамповки, σв=1220 МПа, N циклов при σв=550 МПа составило 20900 (таблица 2).

Как видно из приведенных данных, предлагаемое техническое решение по сравнению с известным техническим решением позволяет снизить общее время технологического процесса 2-3,5 раза (с 3,5 до 1,0-1,5 мин), уменьшить размер β-зерна с 20 до 5-9 мкм и в термически обработанном состоянии увеличить количество циклов до разрушения образца при знакопеременной нагрузке σв=550 МПа (N) с 14700 до 20900-21800 циклов.

Источник поступления информации: Роспатент

Показаны записи 341-350 из 367.
09.06.2019
№219.017.7ad9

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов, предназначенных для использования в качестве конструкционного материала при изготовлении обшивки, лонжеронов, шпангоутов, фюзеляжа, крыльев, агрегатов и других деталей летательных аппаратов. Сплав на основе...
Тип: Изобретение
Номер охранного документа: 0002356977
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7add

Низковязкая силоксановая композиция

Изобретение относится к области низковязких силоксановых композиций, способных отверждаться при комнатной температуре с образованием эластомерных материалов, которые могут быть использованы в качестве диэлектриков и изоляторов. Предложена низковязкая силоксановая композиция, включающая, мас.ч.:...
Тип: Изобретение
Номер охранного документа: 0002356117
Дата охранного документа: 20.05.2009
09.06.2019
№219.017.7ade

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов Может использоваться для деталей и узлов авиакосмической и ракетной техники, изготовление которых требует высокой технологической пластичности сплава. Сплав на основе титана содержит, мас.%: алюминий 2,0-6,5;...
Тип: Изобретение
Номер охранного документа: 0002356976
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7ae0

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов. Может использоваться для изготовления деталей и узлов авиакосмической и ракетной техники, материал которых работает в условиях высоких температур. Сплав на основе титана содержит, мас.%: алюминий 3,0-7,0,...
Тип: Изобретение
Номер охранного документа: 0002356978
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7b23

Присадочный материал на основе никеля

Изобретение относится к сплавам на основе никеля, предназначенным для применения в авиационной, энергетической отраслях промышленности в качестве присадочного материала в сварных конструкциях в виде «лапши» или в виде сварочной проволоки. Для обеспечения повышенной кратковременной прочности...
Тип: Изобретение
Номер охранного документа: 0002373038
Дата охранного документа: 20.11.2009
09.06.2019
№219.017.7cba

Радиопоглощающий материал

Изобретение относится к области получения радиопоглощающих материалов (РПМ), обеспечивающих снижение уровня вторичного излучения, электромагнитную совместимость бортовой аппаратуры, коррекцию диаграмм направленности бортовых антенных систем при длительной эксплуатации и воздействии агрессивных...
Тип: Изобретение
Номер охранного документа: 0002410777
Дата охранного документа: 27.01.2011
09.06.2019
№219.017.7f72

Полимерная теплоотражающая композиция для покрытия

Изобретение относится к полимерным теплоотражающим композициям для покрытий, которые наносятся на надувные конструкции, защитные и спасательные средства (трапы самолетов гражданской авиации, плоты, дирижабли, надувные ангары, теплоотражающие экраны, щиты для пожарных), состоящие из герметичного...
Тип: Изобретение
Номер охранного документа: 0002467042
Дата охранного документа: 20.11.2012
13.06.2019
№219.017.811d

Способ нанесения защитных покрытий и устройство для его осуществления

Изобретение относится к области нанесения защитных покрытий. Может применяться для получения керамического слоя теплозащитных покрытий на изделия авиационной техники, преимущественно на рабочих и сопловых лопатках турбин из жаропрочных литейных сплавов. Устройство для нанесения покрытий методом...
Тип: Изобретение
Номер охранного документа: 0002691166
Дата охранного документа: 11.06.2019
10.07.2019
№219.017.aa19

Слоистый композиционный материал и изделие, выполненное из него

Изобретение относится к слоистому алюмополимерному материалу для изготовления или ремонта силовых элементов планера самолета: обшивок, перегородок, стрингеров фюзеляжа и крыла, панелей пола, а также для наземного транспорта. Предложен слоистый композиционный материал, состоящий из чередующихся...
Тип: Изобретение
Номер охранного документа: 0002270098
Дата охранного документа: 20.02.2006
10.07.2019
№219.017.ab12

Сплав на основе магния и изделие, выполненное из него

Изобретение относится к области машиностроения и авиастроения, где могут быть применены высокопрочные и жаропрочные свариваемые магниевые сплавы с малой анизотропией механических свойств в качестве легкого свариваемого конструкционного материала, например, для изготовления несущих деталей,...
Тип: Изобретение
Номер охранного документа: 0002293784
Дата охранного документа: 20.02.2007
Показаны записи 331-333 из 333.
16.05.2023
№223.018.607b

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607c

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607d

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
+ добавить свой РИД