×
10.09.2015
216.013.7785

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ДЕФОРМИРУЕМОЙ ЗАГОТОВКИ ИЗ ТИТАНОВОГО СПЛАВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии и может быть использовано при получении заготовок из двухфазных титановых сплавов, применяемых, в частности, в авиационной промышленности. Исходную заготовку нагревают до температуры ниже температуры полного полиморфного превращения. Осуществляют деформацию нагретой заготовки в нагретом штампе в два этапа с переменной скоростью. На первом этапе деформацию осуществляют со скоростью, не превышающей скорость, обеспечивающую разогрев заготовки до температуры ниже полного полиморфного превращения. На втором этапе деформацию осуществляют со скоростью, обеспечивающей формирование рекристаллизованной структуры с размером β-зерна 5-9 мкм. В результате обеспечивается получение деформированной заготовки с однородной структурой и высокой циклической прочностью и снижение времени технологического цикла изготовления. 5 з.п. ф-лы, 2 табл., 3 пр.

Изобретение относится к области металлургии, в частности к способам получения штамповок из двухфазных титановых сплавов, и может найти применение в авиационной промышленности и машиностроении.

Изделия из высокопрочных титановых сплавов являются высоконагруженными и должны обеспечивать при высоких прочностных характеристиках высокие значения вязкости разрушения и трещиностойкости. Такое сочетание свойств возможно при формировании в штамповках β-рекристаллизованной структуры.

Подобная структура в штамповках формируется при деформации при температурах выше температуры полного полиморфного превращения (Тп.п.). Однако в штамповках, полученных по этой технологии, формируется крупное рекристаллизованное зерно. Для деталей, работающих в условиях знакопеременных нагрузок, необходимо формирование структуры с размером зерна менее 10 мкм, что позволит получать высокие значения циклической прочности.

Известен способ обработки титановых сплавов с целью снижения роста трещин в (α+β) титановом сплаве, содержащем значительное количество β-фазы и более 3% молибдена, включающий следующие операции:

- ковка выше температуры β превращения (Тп.п.) со степенью деформации, достаточной для последующей рекристаллизации;

- охлаждение материала ниже температуры β превращения (Тп.п.) со скоростью 11-55°C/мин;

- упрочняющая термообработка, включающая закалку с температуры на 27-82°C ниже Тп.п. и старение (патент США №4543132, опубл. 24.09.1985). Приведенный процесс позволяет уменьшить размер рекристаллизованного β-зерна за счет высокой скорости охлаждения из β-области, проводить обработку за один нагрев и снизить трудоемкость изготовления заготовок.

Однако технологический процесс имеет существенные недостатки: связанная с большим градиентом температур заготовка-штамп, неравномерность деформации, образование зон затрудненной деформации, длительный нагрев при температурах β-области и повышенное газонасыщение поверхностных слоев металла. Это требует увеличения припуска на механическую обработку и сопровождается снижением коэффициента использования металла. Кроме того, высокая скорость деформации при ковке также сопровождается образованием зон интенсивного течения металла и неравномерностью структуры, что приводит к снижению механических свойств и их стабильности в изделиях.

Известен способ получения деформированных заготовок с рекристаллизованной структурой с максимальным размером β-зерна менее 0,5 мм (Патент США №5026520, опубл. 25.06.1991).

Способ включает:

- нагрев заготовки от температуры Тп.п до Тп.п +45°C;

- деформацию на прессе в штампах, нагретых до температуры, близкой к температуре заготовки (изотермическая штамповка) с промежуточной выдержкой 4-10 мин;

- изотермическую выдержку при температуре, близкой к температуре нагрева штампа и заготовки в течение времени, достаточного для прохождения полной первичной рекристаллизации, но недостаточного для дальнейшего роста зерна;

- закалку (ускоренное охлаждение) заготовки после удаления из пресса до температуры ниже температуры полного полиморфного превращения для предотвращения дальнейшего роста зерна и получения микроструктуры с размером β-зерна менее 0,5 мм (500 мкм).

Способ позволяет избежать длительного отжига после деформации при температуре выше полного полиморфного превращения для получения рекристаллизованной структуры за счет проведения изотермической выдержки от 4 до 10 минут непосредственно после деформации, что позволяет получать размер зерна менее 0,5 мм и снизить толщину газонасыщенного слоя штамповки.

Недостатками способа является нагрев исходной заготовки в β-области (выше Тп.п.), что сопровождается значительным ростом исходного зерна и не позволяет получать мелкозернистую структуру в штамповке. Кроме того, недостатком рассмотренного способа является необходимость механической обработки для удаления газонасыщенного поверхностного слоя, образующегося при нагреве и изотермической выдержке в β-области, что приводит к снижению коэффициента использования металла.

Другим недостатком способа является и высокая трудоемкость, связанная с необходимостью проведения длительной промежуточной выдержки (4-10 минут) в процессе деформации. При этом суммарное время выдержек может составлять 10-20 минут.

Наиболее близким к предлагаемому изобретению является способ получения штамповок с рекристаллизованной структурой с размером зерна 10-30 мкм, взятый в качестве прототипа (патент RU 2246556 C1, опубл. 20.02.2005).

Способ включает нагрев заготовки до Тп.п - (10-30)°C, деформацию в два этапа с переменной скоростью в штампах, нагретых до температуры выше Тп.п. на 10-30°C. При этом на первом этапе деформация проводится со скоростью, достаточной для разогрева заготовки до температуры штампа (т.е. выше Тп.п. на 10-30°C), а на втором этапе со скоростью 10-2-10-4 с-1 и степенью деформации 10-30% и изотермической выдержкой в штампе в течение 0,5-1,5 минут. Охлаждение заготовки проводят ускоренно (закалка).

Технология по способу, известному из прототипа, позволяет получать штамповки с однородной рекристаллизованной структурой и высоким КИМ.

Недостатком способа, известного из прототипа, является то, что при использовании предложенного способа не может быть получена рекристаллизованная структура с размером β-зерна менее 10 мкм.

Также недостатком способа, известного из прототипа, является увеличение времени технологического цикла с использованием дорогостоящего оборудования за счет изотермической выдержки в штампе, а также необходимость использования специального оборудования для ускоренного охлаждения (закалки) заготовок после деформации.

Технической задачей предлагаемого изобретения является создание способа получения деформированных заготовок из титановых сплавов, с мелкозернистой структурой.

Техническим результатом предлагаемого способа является формирование в деформированной заготовке однородной рекристаллизованной структуры с размером β-зерна 5-9 мкм и высокой циклической прочностью в термически упрочненном состоянии. Другим техническим результатом предлагаемого способа является снижение времени технологического цикла изготовления деформированной заготовки.

Для достижения поставленного технического результата предложен способ получения деформированной заготовки из титанового сплава, включающий нагрев заготовки ниже температуры полного полиморфного превращения, ее деформацию в нагретом штампе в два этапа с переменной скоростью и термическую обработку заготовки, причем деформацию в нагретом штампе проводят на первом этапе со скоростью, не превышающей скорость, обеспечивающей разогрев заготовки до температуры ниже полного полиморфного превращения, а на втором этапе деформацию проводят со скоростью, обеспечивающей формирование рекристаллизованной структуры с размером β-зерна 5-9 мкм.

Предпочтительно нагрев исходной заготовки проводить на 25-35°C ниже температуры полного полиморфного превращения. Предпочтительно на первом этапе деформацию проводить со скоростью не ниже 7х10-2 с-1 , но не превышающей скорость, обеспечивающую разогрев заготовки до температуры полного полиморфного превращения минус 30°C и степенью деформации не менее 80%.

Предпочтительно на втором этапе деформацию проводить со скоростью 10-3-10-4 с-1 и степенью деформации 7-9%.

Предпочтительно нагрев штампов проводить на 25-35°C ниже температуры полного полиморфного превращения исходной титановой заготовки.

Возможно охлаждение заготовки проводить непосредственно после деформации с нерегламентированной скоростью.

Возможно для получения в изделиях высокой прочности проводить термическую обработку деформированной заготовки.

Предлагаемый способ позволяет снизить время технологического цикла по сравнению со способом-прототипом за счет исключения изотермической выдержки в штампе.

Охлаждение заготовки непосредственно после деформации с нерегламентированной скоростью позволяет отказаться от использования специального оборудования для закалки за счет нерегламентированной скорости охлаждения после деформации.

Примеры осуществления

Для примеров осуществления способов изготовления деформированной заготовки из титановых сплавов выбран высокопрочный титановый сплав ВТ22 с температурой полного полиморфного превращения (Тп.п.), равной 870°C, из которого изготовлена деформированная заготовка типа «диск» диаметром 250 мм. В качестве исходной заготовки использовали деформированный пруток диаметром 100 мм с размером β-зерна 80 мкм.

В известном уровне технического решения (способ-прототип) способ осуществлялся по следующей технологии в соответствии с таблицей 1, пример 3.

Нагрев заготовки проводили до температуры 840°C (Тп.п. - 30°C). Деформацию проводили за два этапа в штампах, нагретых до температуры 900°C (Тп.п. титановой заготовки +30°C). На первом этапе деформацию проводили со скоростью 10-1 с-1 и степенью деформации 40%. На втором этапе деформацию проводили со скоростью 10-3 с-1 и степенью деформации 20%.

После окончания деформации штамповку подвергали выдержке под нагрузкой 80 МПа при температуре нагрева штампов (900°C) в течение 1,5 мин.

Охлаждение заготовки проводили закалкой до температуры 810°C со скоростью 50°C/мин обдувкой штамповки системой конвекции воздуха (вентиляторами).

В способе, осуществленном по известному уровню технического решения, получены следующие технические результаты.

Общее время технологического процесса составило 3,5 мин.

В образцах, вырезанных из различных зон штамповки, размер β-зерна составил 20 мкм.

Механические свойства образцов, изготовленных после термической обработки штамповки, составили σв=1220 МПа, N циклов при σв=550 МПа составило 14700 (таблица 2).

Согласно предлагаемому изобретению примеры осуществления проводились по режимам, приведенным в таблице 1 пп.1-2.

Пример 1 (таблица 1 п.1).

Нагрев заготовки проводили до температуры 830°C (Тп.п. - 40°C). Деформацию проводили за два этапа в штампах, нагретых до температуры 845°C (Тп.п. титановой заготовки - 25°C). На первом этапе деформацию проводили со скоростью 5·10-2 с-1 и степенью деформации 70%. На втором этапе деформацию проводили со скоростью 10-4 с-1 и степенью деформации 7%. Охлаждение заготовки проводили с нерегламентированной скоростью на спокойном воздухе.

Получены следующие технические результаты.

Для примера 1 общее время технологического процесса составило 1,0 мин.

В образцах, вырезанных из различных зон штамповки, размер β-зерна составил 8 мкм.

Механические свойства образцов, изготовленных после термической обработки штамповки, σв=1220 МПа, N циклов при σв=550 МПа составило 21800 (таблица 2).

Пример 2 (таблица 1 п.2).

Нагрев заготовки проводили до температуры 850°C (Тп.п. - 20°C). Деформацию проводили за два этапа в штампах, нагретых до температуры 840°C (Тп.п. титановой заготовки -30°C). На первом этапе деформацию проводили со скоростью 7·10-2 с-1 и степенью деформации 80%. На втором этапе деформацию проводили со скоростью 10-3 с-1 и степенью деформации 9%. Охлаждение заготовки проводили с нерегламентированной скоростью на спокойном воздухе.

Получены следующие технические результаты.

Для примера 2 общее время технологического процесса составило 1,0 мин.

В образцах, вырезанных из различных зон штамповки, размер β-зерна составил 9 мкм.

Механические свойства образцов, изготовленных после термической обработки штамповки, σв=1220 МПа, N циклов при σв=550 МПа составило 20900 (таблица 2).

Как видно из приведенных данных, предлагаемое техническое решение по сравнению с известным техническим решением позволяет снизить общее время технологического процесса 2-3,5 раза (с 3,5 до 1,0-1,5 мин), уменьшить размер β-зерна с 20 до 5-9 мкм и в термически обработанном состоянии увеличить количество циклов до разрушения образца при знакопеременной нагрузке σв=550 МПа (N) с 14700 до 20900-21800 циклов.

Источник поступления информации: Роспатент

Показаны записи 291-300 из 367.
19.04.2019
№219.017.2dc6

Способ получения литых трубных изделий из сплавов на основе никеля и/или кобальта

Изобретение относится к области металлургической промышленности. Способ включает плавление шихтовых материалов и заливку расплава в предварительно нагретую литейную форму, осуществляемые в двухкамерной вакуумно-индукционной печи. Заливку литейной формы расплавом осуществляют со скоростью 20-50...
Тип: Изобретение
Номер охранного документа: 0002344019
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dce

Способ получения алюминидного покрытия на поверхности изделия из жаропрочного сплава

Изобретение относится к металлургии и может быть использовано в авиационном и энергетическом турбиностроении для защиты лопаток турбин от высокотемпературного окисления и сульфидной коррозии. Размещают изделие и сплав на основе алюминия в зоне обработки. Создают вакуум в зоне обработки, подают...
Тип: Изобретение
Номер охранного документа: 0002348739
Дата охранного документа: 10.03.2009
19.04.2019
№219.017.2de0

Способ защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к способам получения алюминидных покрытий, и может быть использовано в авиационном и энергетическом турбиностроении для защиты от высокотемпературного окисления внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных...
Тип: Изобретение
Номер охранного документа: 0002349678
Дата охранного документа: 20.03.2009
19.04.2019
№219.017.2de1

Состав для получения покрытия

Изобретение относится к области машиностроения и металлургии и может использоваться в авиационном и энергетическом турбостроении для защиты деталей из сталей, никелевых и титановых сплавов от солевой и фреттинг-коррозии и контактного износа. Состав для получения покрытия на деталях,...
Тип: Изобретение
Номер охранного документа: 0002349681
Дата охранного документа: 20.03.2009
19.04.2019
№219.017.2e20

Керамический композиционный материал

Изобретение относится к керамическим композиционным материалам и может быть использовано в авиационной технике и машиностроении при изготовлении теплонагруженных деталей газотурбинных установок и двигателей газо-, нефтеперекачивающих, энергетических и транспортных систем и др., эксплуатируемых...
Тип: Изобретение
Номер охранного документа: 0002397969
Дата охранного документа: 27.08.2010
19.04.2019
№219.017.2e2a

Припой на основе никеля

Изобретение может найти применение при изготовлении деталей из деформированных и литых жаропрочных никелевых сплавов, в частности, для горячего тракта газотурбинных двигателей, таких как направляющие аппараты компрессоров и сопловые аппараты турбин. Припой имеет следующий состав, мас.%: Cr...
Тип: Изобретение
Номер охранного документа: 0002393074
Дата охранного документа: 27.06.2010
19.04.2019
№219.017.2e2f

Способ получения отливок

Изобретение относится к литейному производству. Способ включает заливку расплава в форму с последующим его охлаждением, предварительную механическую обработку отливок. Для создания разрежения отливку подвергают вакуумной обработке в автоклаве. Затем отливку под давлением 0,1-0,8 МПа пропитывают...
Тип: Изобретение
Номер охранного документа: 0002393053
Дата охранного документа: 27.06.2010
19.04.2019
№219.017.2e73

Композиционный материал и изделие, выполненное из него

Изобретение относится к композиционным материалам, а именно к композиционным материалам на основе стекломатриц, армированных углеродными волокнистыми наполнителями, используемым для изготовления теплонагруженных деталей, например бандажных колец, применяющихся в авиационной, космической технике...
Тип: Изобретение
Номер охранного документа: 0002310628
Дата охранного документа: 20.11.2007
19.04.2019
№219.017.2ebd

Способ нанесения цинковых покрытий

Изобретение относится к области электрохимического нанесения покрытий, в частности к локальному осаждению цинковых покрытий на токопроводящую поверхность деталей, например, для ремонта поврежденных цинковых покрытий. Способ включает электролитическое натирание поверхности анодом, к которому...
Тип: Изобретение
Номер охранного документа: 0002389828
Дата охранного документа: 20.05.2010
19.04.2019
№219.017.2ed9

Способ получения пористого истираемого материала из металлических волокон

Изобретение относится к области машиностроения, а именно к способам получения истираемых материалов из металлических волокон, и может быть использовано при изготовлении уплотнений проточной части компрессора и турбины газотурбинного двигателя, в газонефтеперекачивающих установках для...
Тип: Изобретение
Номер охранного документа: 0002382828
Дата охранного документа: 27.02.2010
Показаны записи 291-300 из 333.
09.05.2019
№219.017.4a54

Состав для удаления лакокрасочных покрытий с внешних металлических поверхностей

Изобретение относится к области материалов для лакокрасочной промышленности. Описан состав для удаления полимерных лакокрасочных покрытий с внешних металлических поверхностей, включающий растворитель метиленхлорид, загуститель, замедлитель испарения и разрыхлитель, который дополнительно...
Тип: Изобретение
Номер охранного документа: 0002686928
Дата охранного документа: 06.05.2019
18.05.2019
№219.017.5447

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение может быть использовано для получения деталей турбин авиационного и энергетического назначения. Устройство содержит вакуумную камеру, загрузочную шлюзовую камеру, направляющие для перемещения литейных форм, печь подогрева форм и плавильно-заливочную печь, расположенные в вакуумной...
Тип: Изобретение
Номер охранного документа: 0002267380
Дата охранного документа: 10.01.2006
18.05.2019
№219.017.5683

Полиимидное связующее для армированных пластиков, препрег на его основе и изделие, выполненное из него

Изобретение относится к области получения полиимидов, а именно к области получения полиимидного связующего для армированных пластиков. Полиимидное связующее представляет собой продукт взаимодействия диангидрида бензофенон-3,3′-4,4′-тетракарбоновой кислоты и м-фенилендиамина и модифицирующую...
Тип: Изобретение
Номер охранного документа: 0002394857
Дата охранного документа: 20.07.2010
18.05.2019
№219.017.56b8

Способ получения пористо-волокнистого металлического материала

Изобретение относится к способам получения пористых материалов из металлических волокон, а именно к способам получения волокнистых металлических материалов с высокой пористостью (до 95%) из жаростойких сплавов для звукопоглощающих конструкций горячего тракта газотурбинного двигателя на рабочие...
Тип: Изобретение
Номер охранного документа: 0002311262
Дата охранного документа: 27.11.2007
18.05.2019
№219.017.576d

Устройство для получения отливок из жаропрочных сплавов с монокристаллической структурой

Изобретение относится к области литейного производства. Устройство содержит керамическую форму, в основании которой выполнены затравочная полость с размещенной в ней монокристаллической затравкой, полость кристалловода и коническая стартовая полость, соединенная с полостью формы, образующей...
Тип: Изобретение
Номер охранного документа: 0002353471
Дата охранного документа: 27.04.2009
18.05.2019
№219.017.5826

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к созданию титановых сплавов, предназначенных для изготовления деталей и узлов авиакосмической и ракетной техники: баллонов, шпангоутов, лонжеронов, стрингеров, нервюр, деталей крепления и др. Сплав имеет следующий химический состав, мас.%: алюминий 4,3-6,8; ванадий...
Тип: Изобретение
Номер охранного документа: 0002304178
Дата охранного документа: 10.08.2007
18.05.2019
№219.017.5828

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической структурой. Изделиями могут быть сопловые лопатки, проставки соплового аппарата, крупногабаритные створки и другие детали ГТД...
Тип: Изобретение
Номер охранного документа: 0002304179
Дата охранного документа: 10.08.2007
18.05.2019
№219.017.5849

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с монокристаллической структурой, таким как рабочие и сопловые лопатки газотурбинных двигателей, используемых в авиационной промышленности. Сплав...
Тип: Изобретение
Номер охранного документа: 0002308499
Дата охранного документа: 20.10.2007
18.05.2019
№219.017.584a

Сплав на основе титана и изделие, выполненное из этого сплава

Изобретение относится к созданию титановых сплавов, предназначенных для использования в качестве конструкционного материала при изготовлении обшивки, лонжеронов, шпангоутов, фюзеляжа, крыльев, агрегатов и двигателей самолетов, работающих при повышенных температурах. Сплав на основе титана...
Тип: Изобретение
Номер охранного документа: 0002308497
Дата охранного документа: 20.10.2007
20.05.2019
№219.017.5c7a

Препрег

Изобретение относится к области создания высокопрочных полимерных композиционных материалов конструкционного назначения на основе волокнистых арамидных наполнителей в виде нитей, жгутов, тканей и полимерных связующих, которые могут быть использованы в различных областях техники (машино-,...
Тип: Изобретение
Номер охранного документа: 0002687926
Дата охранного документа: 16.05.2019
+ добавить свой РИД