×
10.09.2015
216.013.7785

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ДЕФОРМИРУЕМОЙ ЗАГОТОВКИ ИЗ ТИТАНОВОГО СПЛАВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии и может быть использовано при получении заготовок из двухфазных титановых сплавов, применяемых, в частности, в авиационной промышленности. Исходную заготовку нагревают до температуры ниже температуры полного полиморфного превращения. Осуществляют деформацию нагретой заготовки в нагретом штампе в два этапа с переменной скоростью. На первом этапе деформацию осуществляют со скоростью, не превышающей скорость, обеспечивающую разогрев заготовки до температуры ниже полного полиморфного превращения. На втором этапе деформацию осуществляют со скоростью, обеспечивающей формирование рекристаллизованной структуры с размером β-зерна 5-9 мкм. В результате обеспечивается получение деформированной заготовки с однородной структурой и высокой циклической прочностью и снижение времени технологического цикла изготовления. 5 з.п. ф-лы, 2 табл., 3 пр.

Изобретение относится к области металлургии, в частности к способам получения штамповок из двухфазных титановых сплавов, и может найти применение в авиационной промышленности и машиностроении.

Изделия из высокопрочных титановых сплавов являются высоконагруженными и должны обеспечивать при высоких прочностных характеристиках высокие значения вязкости разрушения и трещиностойкости. Такое сочетание свойств возможно при формировании в штамповках β-рекристаллизованной структуры.

Подобная структура в штамповках формируется при деформации при температурах выше температуры полного полиморфного превращения (Тп.п.). Однако в штамповках, полученных по этой технологии, формируется крупное рекристаллизованное зерно. Для деталей, работающих в условиях знакопеременных нагрузок, необходимо формирование структуры с размером зерна менее 10 мкм, что позволит получать высокие значения циклической прочности.

Известен способ обработки титановых сплавов с целью снижения роста трещин в (α+β) титановом сплаве, содержащем значительное количество β-фазы и более 3% молибдена, включающий следующие операции:

- ковка выше температуры β превращения (Тп.п.) со степенью деформации, достаточной для последующей рекристаллизации;

- охлаждение материала ниже температуры β превращения (Тп.п.) со скоростью 11-55°C/мин;

- упрочняющая термообработка, включающая закалку с температуры на 27-82°C ниже Тп.п. и старение (патент США №4543132, опубл. 24.09.1985). Приведенный процесс позволяет уменьшить размер рекристаллизованного β-зерна за счет высокой скорости охлаждения из β-области, проводить обработку за один нагрев и снизить трудоемкость изготовления заготовок.

Однако технологический процесс имеет существенные недостатки: связанная с большим градиентом температур заготовка-штамп, неравномерность деформации, образование зон затрудненной деформации, длительный нагрев при температурах β-области и повышенное газонасыщение поверхностных слоев металла. Это требует увеличения припуска на механическую обработку и сопровождается снижением коэффициента использования металла. Кроме того, высокая скорость деформации при ковке также сопровождается образованием зон интенсивного течения металла и неравномерностью структуры, что приводит к снижению механических свойств и их стабильности в изделиях.

Известен способ получения деформированных заготовок с рекристаллизованной структурой с максимальным размером β-зерна менее 0,5 мм (Патент США №5026520, опубл. 25.06.1991).

Способ включает:

- нагрев заготовки от температуры Тп.п до Тп.п +45°C;

- деформацию на прессе в штампах, нагретых до температуры, близкой к температуре заготовки (изотермическая штамповка) с промежуточной выдержкой 4-10 мин;

- изотермическую выдержку при температуре, близкой к температуре нагрева штампа и заготовки в течение времени, достаточного для прохождения полной первичной рекристаллизации, но недостаточного для дальнейшего роста зерна;

- закалку (ускоренное охлаждение) заготовки после удаления из пресса до температуры ниже температуры полного полиморфного превращения для предотвращения дальнейшего роста зерна и получения микроструктуры с размером β-зерна менее 0,5 мм (500 мкм).

Способ позволяет избежать длительного отжига после деформации при температуре выше полного полиморфного превращения для получения рекристаллизованной структуры за счет проведения изотермической выдержки от 4 до 10 минут непосредственно после деформации, что позволяет получать размер зерна менее 0,5 мм и снизить толщину газонасыщенного слоя штамповки.

Недостатками способа является нагрев исходной заготовки в β-области (выше Тп.п.), что сопровождается значительным ростом исходного зерна и не позволяет получать мелкозернистую структуру в штамповке. Кроме того, недостатком рассмотренного способа является необходимость механической обработки для удаления газонасыщенного поверхностного слоя, образующегося при нагреве и изотермической выдержке в β-области, что приводит к снижению коэффициента использования металла.

Другим недостатком способа является и высокая трудоемкость, связанная с необходимостью проведения длительной промежуточной выдержки (4-10 минут) в процессе деформации. При этом суммарное время выдержек может составлять 10-20 минут.

Наиболее близким к предлагаемому изобретению является способ получения штамповок с рекристаллизованной структурой с размером зерна 10-30 мкм, взятый в качестве прототипа (патент RU 2246556 C1, опубл. 20.02.2005).

Способ включает нагрев заготовки до Тп.п - (10-30)°C, деформацию в два этапа с переменной скоростью в штампах, нагретых до температуры выше Тп.п. на 10-30°C. При этом на первом этапе деформация проводится со скоростью, достаточной для разогрева заготовки до температуры штампа (т.е. выше Тп.п. на 10-30°C), а на втором этапе со скоростью 10-2-10-4 с-1 и степенью деформации 10-30% и изотермической выдержкой в штампе в течение 0,5-1,5 минут. Охлаждение заготовки проводят ускоренно (закалка).

Технология по способу, известному из прототипа, позволяет получать штамповки с однородной рекристаллизованной структурой и высоким КИМ.

Недостатком способа, известного из прототипа, является то, что при использовании предложенного способа не может быть получена рекристаллизованная структура с размером β-зерна менее 10 мкм.

Также недостатком способа, известного из прототипа, является увеличение времени технологического цикла с использованием дорогостоящего оборудования за счет изотермической выдержки в штампе, а также необходимость использования специального оборудования для ускоренного охлаждения (закалки) заготовок после деформации.

Технической задачей предлагаемого изобретения является создание способа получения деформированных заготовок из титановых сплавов, с мелкозернистой структурой.

Техническим результатом предлагаемого способа является формирование в деформированной заготовке однородной рекристаллизованной структуры с размером β-зерна 5-9 мкм и высокой циклической прочностью в термически упрочненном состоянии. Другим техническим результатом предлагаемого способа является снижение времени технологического цикла изготовления деформированной заготовки.

Для достижения поставленного технического результата предложен способ получения деформированной заготовки из титанового сплава, включающий нагрев заготовки ниже температуры полного полиморфного превращения, ее деформацию в нагретом штампе в два этапа с переменной скоростью и термическую обработку заготовки, причем деформацию в нагретом штампе проводят на первом этапе со скоростью, не превышающей скорость, обеспечивающей разогрев заготовки до температуры ниже полного полиморфного превращения, а на втором этапе деформацию проводят со скоростью, обеспечивающей формирование рекристаллизованной структуры с размером β-зерна 5-9 мкм.

Предпочтительно нагрев исходной заготовки проводить на 25-35°C ниже температуры полного полиморфного превращения. Предпочтительно на первом этапе деформацию проводить со скоростью не ниже 7х10-2 с-1 , но не превышающей скорость, обеспечивающую разогрев заготовки до температуры полного полиморфного превращения минус 30°C и степенью деформации не менее 80%.

Предпочтительно на втором этапе деформацию проводить со скоростью 10-3-10-4 с-1 и степенью деформации 7-9%.

Предпочтительно нагрев штампов проводить на 25-35°C ниже температуры полного полиморфного превращения исходной титановой заготовки.

Возможно охлаждение заготовки проводить непосредственно после деформации с нерегламентированной скоростью.

Возможно для получения в изделиях высокой прочности проводить термическую обработку деформированной заготовки.

Предлагаемый способ позволяет снизить время технологического цикла по сравнению со способом-прототипом за счет исключения изотермической выдержки в штампе.

Охлаждение заготовки непосредственно после деформации с нерегламентированной скоростью позволяет отказаться от использования специального оборудования для закалки за счет нерегламентированной скорости охлаждения после деформации.

Примеры осуществления

Для примеров осуществления способов изготовления деформированной заготовки из титановых сплавов выбран высокопрочный титановый сплав ВТ22 с температурой полного полиморфного превращения (Тп.п.), равной 870°C, из которого изготовлена деформированная заготовка типа «диск» диаметром 250 мм. В качестве исходной заготовки использовали деформированный пруток диаметром 100 мм с размером β-зерна 80 мкм.

В известном уровне технического решения (способ-прототип) способ осуществлялся по следующей технологии в соответствии с таблицей 1, пример 3.

Нагрев заготовки проводили до температуры 840°C (Тп.п. - 30°C). Деформацию проводили за два этапа в штампах, нагретых до температуры 900°C (Тп.п. титановой заготовки +30°C). На первом этапе деформацию проводили со скоростью 10-1 с-1 и степенью деформации 40%. На втором этапе деформацию проводили со скоростью 10-3 с-1 и степенью деформации 20%.

После окончания деформации штамповку подвергали выдержке под нагрузкой 80 МПа при температуре нагрева штампов (900°C) в течение 1,5 мин.

Охлаждение заготовки проводили закалкой до температуры 810°C со скоростью 50°C/мин обдувкой штамповки системой конвекции воздуха (вентиляторами).

В способе, осуществленном по известному уровню технического решения, получены следующие технические результаты.

Общее время технологического процесса составило 3,5 мин.

В образцах, вырезанных из различных зон штамповки, размер β-зерна составил 20 мкм.

Механические свойства образцов, изготовленных после термической обработки штамповки, составили σв=1220 МПа, N циклов при σв=550 МПа составило 14700 (таблица 2).

Согласно предлагаемому изобретению примеры осуществления проводились по режимам, приведенным в таблице 1 пп.1-2.

Пример 1 (таблица 1 п.1).

Нагрев заготовки проводили до температуры 830°C (Тп.п. - 40°C). Деформацию проводили за два этапа в штампах, нагретых до температуры 845°C (Тп.п. титановой заготовки - 25°C). На первом этапе деформацию проводили со скоростью 5·10-2 с-1 и степенью деформации 70%. На втором этапе деформацию проводили со скоростью 10-4 с-1 и степенью деформации 7%. Охлаждение заготовки проводили с нерегламентированной скоростью на спокойном воздухе.

Получены следующие технические результаты.

Для примера 1 общее время технологического процесса составило 1,0 мин.

В образцах, вырезанных из различных зон штамповки, размер β-зерна составил 8 мкм.

Механические свойства образцов, изготовленных после термической обработки штамповки, σв=1220 МПа, N циклов при σв=550 МПа составило 21800 (таблица 2).

Пример 2 (таблица 1 п.2).

Нагрев заготовки проводили до температуры 850°C (Тп.п. - 20°C). Деформацию проводили за два этапа в штампах, нагретых до температуры 840°C (Тп.п. титановой заготовки -30°C). На первом этапе деформацию проводили со скоростью 7·10-2 с-1 и степенью деформации 80%. На втором этапе деформацию проводили со скоростью 10-3 с-1 и степенью деформации 9%. Охлаждение заготовки проводили с нерегламентированной скоростью на спокойном воздухе.

Получены следующие технические результаты.

Для примера 2 общее время технологического процесса составило 1,0 мин.

В образцах, вырезанных из различных зон штамповки, размер β-зерна составил 9 мкм.

Механические свойства образцов, изготовленных после термической обработки штамповки, σв=1220 МПа, N циклов при σв=550 МПа составило 20900 (таблица 2).

Как видно из приведенных данных, предлагаемое техническое решение по сравнению с известным техническим решением позволяет снизить общее время технологического процесса 2-3,5 раза (с 3,5 до 1,0-1,5 мин), уменьшить размер β-зерна с 20 до 5-9 мкм и в термически обработанном состоянии увеличить количество циклов до разрушения образца при знакопеременной нагрузке σв=550 МПа (N) с 14700 до 20900-21800 циклов.

Источник поступления информации: Роспатент

Показаны записи 101-110 из 367.
20.01.2016
№216.013.a3ad

Способ получения изделий из алюминиевых сплавов

Изобретение относится к области металлургии, а именно к технологии получения изделий методом горячей деформации алюминиевых сплавов, преимущественно высокопрочных и жаропрочных, для использования главным образом в авиакосмической технике и транспортном машиностроении. Способ получения изделия...
Тип: Изобретение
Номер охранного документа: 0002573543
Дата охранного документа: 20.01.2016
27.02.2016
№216.014.c0c5

Сплав на основе алюминия

Изобретение относится к области цветной металлургии, в частности к термически неупрочняемым алюминиевым сплавам системы алюминий - магний, и может быть использовано для изготовления высоконагруженных элементов изделий. Сплав на основе алюминия содержит, мас.%: магний 5,0-5,8, скандий 0,15-0,28,...
Тип: Изобретение
Номер охранного документа: 0002576286
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c12c

Способ термической обработки изделий из высокопрочных алюминиевых сплавов

Изобретение относится к области металлургии, в частности к технологии термической обработки изделий из высокопрочных алюминиевых сплавов для использования в судостроении и конструкциях, эксплуатирующихся в морских условиях, авиакосмической технике, транспортном машиностроении. Способ...
Тип: Изобретение
Номер охранного документа: 0002576283
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c152

Холоднотвердеющая смесь для изготовления форм и стержней

Изобретение относится к литейному производству и может быть использовано при литье алюминиевых и магниевых сплавов. Холоднотвердеющая смесь содержит, мас.ч.: кремнезем - 100, карбамидная смола - 2,1-3,5, ортофосфорная кислота - 0,5-1,3, по меньшей мере, одно соединение бора - 0,1-0,3, и...
Тип: Изобретение
Номер охранного документа: 0002576289
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c1ff

Композиция для антикоррозионного покрытия

Изобретение относится к области полимерных композиций на основе модифицированных олигомеров для защиты конструкций из алюминиевых сплавов, стали и углепластика при температурах эксплуатации от -60°С до 150°С и может быть использовано в авиационной промышленности. Полимерная композиция для...
Тип: Изобретение
Номер охранного документа: 0002574512
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c32c

Способ изготовления деталей из полимерных композиционных материалов

Изобретение относится к области изготовления деталей и элементов конструкций из полимерных композиционных материалов (ПКМ) методом послойной выкладки и может быть использовано в автомобиле-, судостроении и в авиационной промышленности, в частности при изготовлении мотогондол двигателей. Способ...
Тип: Изобретение
Номер охранного документа: 0002574269
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c393

Малодеформационная закалка алюминиевых сплавов

Изобретение относится к области термической обработки металлов и сплавов, а именно к закалке сложноконтурных деталей и полуфабрикатов из сплавов на основе алюминия, широко используемых в авиационной и ракетной технике и других изделиях машиностроения в качестве конструкционных основных...
Тип: Изобретение
Номер охранного документа: 0002574928
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c394

Способ получения упрочняющих многослойных покрытий

Изобретение относится к способу получения покрытия на поверхности металлического изделия и может быть использовано для обработки поверхностей лопаток компрессора газотурбинных двигателей и установок. Размещают изделие и токопроводящий материал в зоне обработки и создают вакуум. Подают...
Тип: Изобретение
Номер охранного документа: 0002574542
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c82a

Герметизирующая композиция для ленточного герметика

Изобретение относится к герметизирующим материалам на основе полисульфидного олигомера и может быть использовано в машиностроении, нефтеперерабатывающей, авиастроительной, судостроительной отраслях промышленности. Предложена композиция для ленточного герметика, включающая следующие компоненты,...
Тип: Изобретение
Номер охранного документа: 0002578157
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.c83e

Магнитный материал для постоянных магнитов и изделие, выполненное из него

Группа изобретений относится к области порошковой металлургии, а именно к магнитным (магнитотвердым) материалам для постоянных магнитов на основе редкоземельных элементов и к изделиям, выполненным из таких материалов, и может быть использована в авиационной промышленности. Предложен магнитный...
Тип: Изобретение
Номер охранного документа: 0002578211
Дата охранного документа: 27.03.2016
Показаны записи 101-110 из 333.
20.01.2016
№216.013.a3ad

Способ получения изделий из алюминиевых сплавов

Изобретение относится к области металлургии, а именно к технологии получения изделий методом горячей деформации алюминиевых сплавов, преимущественно высокопрочных и жаропрочных, для использования главным образом в авиакосмической технике и транспортном машиностроении. Способ получения изделия...
Тип: Изобретение
Номер охранного документа: 0002573543
Дата охранного документа: 20.01.2016
27.02.2016
№216.014.c0c5

Сплав на основе алюминия

Изобретение относится к области цветной металлургии, в частности к термически неупрочняемым алюминиевым сплавам системы алюминий - магний, и может быть использовано для изготовления высоконагруженных элементов изделий. Сплав на основе алюминия содержит, мас.%: магний 5,0-5,8, скандий 0,15-0,28,...
Тип: Изобретение
Номер охранного документа: 0002576286
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c12c

Способ термической обработки изделий из высокопрочных алюминиевых сплавов

Изобретение относится к области металлургии, в частности к технологии термической обработки изделий из высокопрочных алюминиевых сплавов для использования в судостроении и конструкциях, эксплуатирующихся в морских условиях, авиакосмической технике, транспортном машиностроении. Способ...
Тип: Изобретение
Номер охранного документа: 0002576283
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c152

Холоднотвердеющая смесь для изготовления форм и стержней

Изобретение относится к литейному производству и может быть использовано при литье алюминиевых и магниевых сплавов. Холоднотвердеющая смесь содержит, мас.ч.: кремнезем - 100, карбамидная смола - 2,1-3,5, ортофосфорная кислота - 0,5-1,3, по меньшей мере, одно соединение бора - 0,1-0,3, и...
Тип: Изобретение
Номер охранного документа: 0002576289
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c1ff

Композиция для антикоррозионного покрытия

Изобретение относится к области полимерных композиций на основе модифицированных олигомеров для защиты конструкций из алюминиевых сплавов, стали и углепластика при температурах эксплуатации от -60°С до 150°С и может быть использовано в авиационной промышленности. Полимерная композиция для...
Тип: Изобретение
Номер охранного документа: 0002574512
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c32c

Способ изготовления деталей из полимерных композиционных материалов

Изобретение относится к области изготовления деталей и элементов конструкций из полимерных композиционных материалов (ПКМ) методом послойной выкладки и может быть использовано в автомобиле-, судостроении и в авиационной промышленности, в частности при изготовлении мотогондол двигателей. Способ...
Тип: Изобретение
Номер охранного документа: 0002574269
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c393

Малодеформационная закалка алюминиевых сплавов

Изобретение относится к области термической обработки металлов и сплавов, а именно к закалке сложноконтурных деталей и полуфабрикатов из сплавов на основе алюминия, широко используемых в авиационной и ракетной технике и других изделиях машиностроения в качестве конструкционных основных...
Тип: Изобретение
Номер охранного документа: 0002574928
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c394

Способ получения упрочняющих многослойных покрытий

Изобретение относится к способу получения покрытия на поверхности металлического изделия и может быть использовано для обработки поверхностей лопаток компрессора газотурбинных двигателей и установок. Размещают изделие и токопроводящий материал в зоне обработки и создают вакуум. Подают...
Тип: Изобретение
Номер охранного документа: 0002574542
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c82a

Герметизирующая композиция для ленточного герметика

Изобретение относится к герметизирующим материалам на основе полисульфидного олигомера и может быть использовано в машиностроении, нефтеперерабатывающей, авиастроительной, судостроительной отраслях промышленности. Предложена композиция для ленточного герметика, включающая следующие компоненты,...
Тип: Изобретение
Номер охранного документа: 0002578157
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.c83e

Магнитный материал для постоянных магнитов и изделие, выполненное из него

Группа изобретений относится к области порошковой металлургии, а именно к магнитным (магнитотвердым) материалам для постоянных магнитов на основе редкоземельных элементов и к изделиям, выполненным из таких материалов, и может быть использована в авиационной промышленности. Предложен магнитный...
Тип: Изобретение
Номер охранного документа: 0002578211
Дата охранного документа: 27.03.2016
+ добавить свой РИД