×
10.09.2015
216.013.75f2

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА АТАКИ ОТРЫВА ПОТОКА С ГЛАДКИХ ПОВЕРХНОСТЕЙ МОДЕЛЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области аэродинамических испытаний и предназначено для использования в аэродинамических трубах, где требуется определение угла атаки начала отрыва потока и выявление зон отрыва потока с гладких поверхностей испытуемых моделей. В способе по одному из вариантов определения угла атаки начала отрыва потока и выявления зоны отрыва потока по характеру изменения безразмерного коэффициента давления С по длине рассматриваемого сечения (хорде крыла) с целью повышения точности оценок помимо самого коэффициента давления С определяют вначале среднеквадратичное отклонение безразмерного коэффициента давления (СКО С), угол атаки начала отрыва уточняют по факту ускоренного роста СКО С, а место отрыва уточняют по месту ускоренного роста СКО С. В другом варианте пульсации давления и угол атаки начала отрыва уточняют по факту ускоренного роста пульсаций давления. В еще одном варианте определение угла атаки вначале определяют спектры пульсаций коэффициента давления, а угол атаки начала отрыва уточняют по факту ускоренного роста амплитуд спектра пульсаций коэффициента давления и место отрыва уточняют по месту ускоренного роста амплитуд спектра коэффициента давления. Технический результат заключается в повышении точности определения угла атаки начала отрыва потока и выявлении зоны отрыва потока в реальных условиях эксперимента в аэродинамической трубе. 3 н.п. ф-лы, 5 ил.

Изобретение относится к области авиации, в частности, к аэродинамическим испытаниям в аэродинамических трубах, где требуется определение угла атаки начала отрыва потока и выявление зон отрыва потока с гладких поверхностей испытываемых моделей.

Известен способ определения угла атаки начала отрыва потока с помощью шелковинок, наклеенных на испытываемую модель (Головкин М.А., Головкин В.А., Калявин В.М. Вопросы вихревой гидромеханики. М.: Физматлит, 2009. 264 с.). Недостатком этого способа является внесение искажений в параметры потока, вызванных изменением геометрии и состояния внешних поверхностей модели и влиянием шелковинок на параметры самого течения в погранслое. Шелковинки не позволяют одновременно проводить измерения распределений давления. Кроме того, наклеивание и последующее снятие с модели большого количества шелковинок связано с высокими затратами труда и времени, вследствие чего возникают вынужденные простои аэродинамической трубы.

Известен способ определения угла атаки начала отрыва потока оптическими методами, например, с помощью «лазерного ножа» и др. (Аэродинамика ракет: в 2-х кн. Кн. 1.1 Под ред. М. Хемша, Дж. Нилсена. М., Мир, 1989. 426 с.). Недостатком этих способов является необходимость обеспечения требований прозрачности потока. В процессе проведения испытаний в аэродинамической трубе при высоких скоростях в потоке может образовываться туман, вызываемый конденсацией влаги из воздуха, что нарушает работу оптических устройств. Осушение больших объемов воздуха с целью устранения конденсации влаги в крупных аэродинамических трубах требует больших затрат времени и средств.

Известны способы определения угла атаки начала отрыва потока с помощью масляных пленок, специальных красок, покрытий, наносимых на поверхность модели (Аэродинамика ракет: в 2-х кн. Кн. 1. / Под ред. М. Хемша, Дж. Нилсена. М., Мир, 1989. 426 с.; Аэротермодинамика летательных аппаратов в фотографиях / Сост. Г.Ф. Глотов, ред. Г.И. Майкапар. Жуковский: ЦАГИ, 2003, 172 с.). Их недостатками являются отсутствие возможности одновременного измерения распределений давления, значительные трудозатраты, наличие сдвига оцениваемого положения зоны отрыва относительно истинного.

Известен способ определения угла атаки начала отрыва потока, взятый за прототип, (Боксер В.Д. Развитие отрыва и его влияние на аэродинамику сверхкритических профилей при околозвуковых скоростях // Уч. зап. ЦАГИ, 1988. t. XIX. №5. С. 60-69), заключающийся в измерении давления на исследуемой поверхности, вычислении распределения коэффициента давления Ср по длине рассматриваемого сечения, фиксации факта начала отрыва по росту разряжения вблизи задней кромки исследуемой поверхности. Недостатком этого способа является невысокая точность определения положения зоны отрыва и угла атаки, соответствующего началу отрыва. Кроме того, отсутствует возможность проведения мгновенных оценок обтекания (на данный момент времени), так как Ср вычисляется по осредненным по времени всего отсчета измерениям давления.

Задачей данного изобретения является выявление положения зоны отрыва и определении угла атаки начала отрыва без использования дополнительных средств и доработок испытуемой модели.

Технический результат заключается в повышении точности определения угла атаки начала отрыва и повышении точности выявления зон отрыва.

Технический результат достигается тем, что в способе определения угла атаки начала отрыва потока с гладких поверхностей исследуемого объекта, заключающемся в измерении давления на исследуемой поверхности, вычислении распределения коэффициента давления Ср по длине рассматриваемого сечения, определяют среднеквадратичное отклонение коэффициента давления Ср, а угол атаки начала отрыва и место отрыва уточняют по месту ускоренного роста среднеквадратичных отклонений Ср в сечении на 2% и более.

Технический результат также достигается тем, что в способе определения угла атаки начала отрыва потока с гладких поверхностей исследуемого объекта, заключающемся в измерении давления на исследуемой поверхности, вычислении распределения коэффициента давления Ср по длине рассматриваемого сечения, фиксации факта начала отрыва по росту разряжения вблизи задней кромки исследуемой поверхности, определяют пульсации давлений, а угол атаки начала отрыва и место отрыва уточняют по месту ускоренного роста ускоренного роста значений пульсаций давления более чем на 5%.

Технический результат достигается также тем, что в способе определения угла атаки начала отрыва потока с гладких поверхностей исследуемого объекта, заключающемся в измерении давления на исследуемой поверхности, вычислении распределения коэффициента давления Ср по длине рассматриваемого сечения, определяют спектры пульсаций давлений, а угол атаки начала отрыва и место отрыва уточняют по месту ускоренного роста амплитуд спектра коэффициента давления более чем на 2%.

Повышенные уровни пульсаций давления возникают в местах отрыва потока, а также в местах взаимодействия свободного сдвигового слоя с поверхностью модели и в зонах перемещений скачка уплотнения. В предлагаемом способе отрыв потока определяется, как и в способе - прототипе, по уменьшению давления вблизи задней кромки с увеличением угла атаки. Кроме того, он уточняется по:

1) факту и месту быстрого роста уровня среднеквадратичных отклонений коэффициента пульсаций давления (СКО Ср);

2) факту и месту быстрого роста амплитуд спектра пульсаций давления;

3) факту и месту быстрого роста значений пульсаций давления.

Вариант (3) позволяет уточнять мгновенные оценки устойчивости потока (на текущий момент времени) еще в процессе проведения эксперимента.

Изобретение поясняется фигурами.

На фиг. 1 показан график изменения в сечении крыла распределений коэффициентов давления Ср по углу атаки.

На фиг. 2 приведен график изменения среднеквадратичных отклонений коэффициента Ср по углу атаки.

На фиг. 3 приведен график роста пульсаций давления с ростом угла атаки.

На фиг. 4 приведен график роста амплитуд спектра пульсаций давления с ростом угла атаки.

На фиг. 5 показано одно из сечений дренированной модели и отмечены точки измерений датчиками №1÷9.

Используемые в предлагаемом способе входные данные (коэффициенты давления, пульсации давления, амплитуды пульсаций давления) могут быть получены различными экспериментальными (и) или расчетными методами. В частности, в аэродинамической трубе могут быть проведены исследования дренированной модели с датчиками давления, расположенными в исследуемом сечении крыла (фиг. 5).

По показаниям датчиков давления ΔР могут быть вычислены используемые в способе данные:

Р=ΔPi+Pst

где Р - измеряемое давление,

ΔPi - измеряемый датчиком перепад давления,

Pst - опорное статическое давление.

Вычисляются средние значения перепада давления

где i - номер измерения,

n - число измерений.

Вычисляются значения пульсаций давления

Вычисляются значения безразмерных коэффициентов давления

где - скоростной напор,

t - текущее значение времени.

Вычисляются осредненные по времени значения безразмерных коэффициентов Ср и их среднеквадратичные отклонения СКО Ср:

Далее производят анализ полученных зависимостей. Для большей наглядности и удобства пользования по вычисленным значениям могут быть построены графики изменений распределений Ср и СКО Ср в рассматриваемом сечении крыла вида (фиг. 1 и фиг. 2) в зависимости от угла атаки α.

Строят графики изменений пульсаций давления по времени и по углу атаки для рассматриваемых датчиков давления (фиг. 3).

Пульсации давления по времени раскладываются в ряд Фурье и строятся графики изменения амплитуд спектра пульсаций давления по углу атаки (фиг. 4). В примере показаны зависимости, полученные для датчика №9, фиг. 5.

Опыт использования метода показывает, что такие параметры процесса, как СКО Ср, пульсации давлений и их амплитуды острее реагируют на появление отрыва потока с поверхности крыла, чем осредненный по времени безразмерный коэффициент давления Ср. Это можно видеть, сравнивая график (фиг. 1) с графиками (фиг. 2, 3 и 4). Если началу отрыва потока с задней кромки крыла соответствует относительно небольшой и весьма плавный рост значения коэффициентов Ср, измеренных в точках, расположенных вблизи задней кромки (кривая с безразмерной координатой по хорде сечения крыла x=0,9, фиг. 1), по которому определяется факт отрыва в способе - прототипе, то рост значений СКО Ср при отрыве потока происходит заметно быстрее в сравнении с результатами испытаний, проведенных при меньших углах атаки (фиг. 2). Так, например, рост Ср происходит на - 10% при увеличении угла атаки с 10,8° до 11,7°, а рост СКО Ср на - 30% уже при увеличении угла атаки с 8,9° до 9,8°.

Еще более отчетливо можно наблюдать рост пульсаций давлений и их амплитуд с началом отрыва (фиг. 3 и 4). Происходит увеличение амплитуд А колебаний давлений в несколько раз по всему спектру при изменении угла атаки с 8,9° до 9,8° (фиг. 4). Таким образом, амплитуды колебаний давлений более чувствительны к возникновению отрыва потока в сравнении с другим параметром течения - осредненным по времени коэффициентом Ср. Этот факт и лежит в основе предлагаемого способа определения угла атаки начала отрыва потока с гладкой поверхности крыла. Существенное увеличение пульсаций давлений и их амплитуд свидетельствует о наличии отрыва в месте расположения датчика давления.

В частности, в рассматриваемом примере из графиков следует, что отрыв начинает проявляться при угле 8,9° и имеет место при углах атаки свыше 9,8°. С изменением угла атаки место отрыва перемещается. Так, при угле атаки 10,8° отрыв в рассматриваемом сечении начинается с - 20% хорды. Для сравнения: способ-прототип позволяет диагностировать отрыв потока значительно позднее - лишь при достижении значения угла атаки 11,7°, т.е. тогда, когда уже все варианты предлагаемого способа уверенно диагностируют наличие отрыва.

Заметим, что в ранее используемом способе (прототипе) по графику (фиг. 1) сложно определить угол атаки начала отрыва потока и весьма сложно определить место отрыва. Предлагаемый способ позволяет достаточно просто решить эту задачу. Так в примере при угле атаки 8,9° отрыв начинается в зоне расположенной выше датчика №9 (фиг. 5). Это диагностируют по факту резкого роста амплитуд пульсаций давления (на десятки процентов и более) при попадании датчика из безотрывной зоны в зону отрыва.

Учитывая, что имеются некоторые погрешности измерений, то в качестве числовых критериев отрыва целесообразно выбирать значения, связанные с величинами этих погрешностей. Так, при наличии погрешности измерений 1% от номинального значения измеряемой величины (например Ср) целесообразно назначать числовое значение критерия отрыва в 2÷3% от максимального значения коэффициента Ср. При меньшем числовом значении критерия отрыва снижается надежность оценок, так как отклонения параметра могут быть вызваны погрешностями измерений. При выборе больших значений критерия отрыва возможно существенное запаздывание диагностируемого значения угла атаки начала отрыва относительно его истинного значения.

Опытные исследования модели крыла, выполненные по пунктам формулы изобретения, показали их более высокую точность определения угла атаки начала отрыва и повышение точности выявления зон отрыва по сравнению с ранее используемыми методами и обеспечили выполнение ответственных аэродинамических испытаний моделей самолетов.


СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА АТАКИ ОТРЫВА ПОТОКА С ГЛАДКИХ ПОВЕРХНОСТЕЙ МОДЕЛЕЙ
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА АТАКИ ОТРЫВА ПОТОКА С ГЛАДКИХ ПОВЕРХНОСТЕЙ МОДЕЛЕЙ
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА АТАКИ ОТРЫВА ПОТОКА С ГЛАДКИХ ПОВЕРХНОСТЕЙ МОДЕЛЕЙ
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА АТАКИ ОТРЫВА ПОТОКА С ГЛАДКИХ ПОВЕРХНОСТЕЙ МОДЕЛЕЙ
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛА АТАКИ ОТРЫВА ПОТОКА С ГЛАДКИХ ПОВЕРХНОСТЕЙ МОДЕЛЕЙ
Источник поступления информации: Роспатент

Показаны записи 111-120 из 256.
13.01.2017
№217.015.878c

Лопасть несущего винта вертолёта с отклоняемой задней кромкой

Изобретение относится к области авиации, в частности к конструкциям устройств изменения циклического шага несущих винтов вертолетов. Лопасть несущего винта вертолета с отклоняемой задней кромкой включает закрылок, привод и встроенную в корпус лопасти систему передачи движения, содержащую тяги....
Тип: Изобретение
Номер охранного документа: 0002603707
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.87b7

Устройство для измерения давления и температуры

Изобретение относится к измерительной технике и может быть использовано для одновременного измерения давления, температуры и теплового потока с компенсацией влияния температуры на результаты измерения давления. Чувствительным элементом (ЧЭ) для измерения давления выбран «кремний на сапфире»,...
Тип: Изобретение
Номер охранного документа: 0002603446
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.880a

Способ торможения сверхзвукового потока

Изобретение относится к аэродинамике летательных аппаратов сверхзвуковых и околозвуковых скоростей. Способ торможения сверхзвукового потока заключается в создании скачков уплотнения, движущихся относительно обтекаемой поверхности в направлении течения, со значениями скоростей меньшими разницы...
Тип: Изобретение
Номер охранного документа: 0002603705
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9c51

Устройство для измерения интегральной полусферической излучательной способности частично прозрачных материалов

Изобретение относится к измерительной технике. Устройство содержит вакуумную камеру, исследуемый образец, механизм вращения образца, два плоских омических нагревателя с расположенными в них датчиками температуры и тепловых потоков. Определение интегральной полусферической излучательной...
Тип: Изобретение
Номер охранного документа: 0002610552
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.a4c1

Сопло газоструйной системы управления вертолета

Изобретение относится к области авиации и может быть использовано для вертолетов со струйной системой управления. Механизм управления створками трехстворчатого сопла с управляемым вектором тяги состоит из зубчатого сектора управления положением средней створки, рычагов управления боковыми...
Тип: Изобретение
Номер охранного документа: 0002607687
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a50e

Крупноразмерная аэродинамическая модель

Изобретение относится к конструкции крупноразмерных аэродинамических моделей летательных аппаратов, применяющихся для испытаний в аэродинамических трубах. Устройство состоит из соединенных между собой сердечников фюзеляжа, крыла с подвижной механизацией, подвижного хвостового оперения с...
Тип: Изобретение
Номер охранного документа: 0002607675
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a5d4

Способ повышения прочности болтового металлокомпозиционного соединения

Изобретение относится к области машиностроения и может применяться в авиастроении, транспорте, строительстве, энергетике для повышения прочности и ресурса конструкций из металлических, композиционных и металлокомпозиционных материалов. Способ заключается в использовании наномодифицированной...
Тип: Изобретение
Номер охранного документа: 0002607888
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.acd8

Устройство для измерения давления в аэродинамических трубах

Изобретение относится к измерительной технике и может быть использовано для измерения полного и статическое давления, их пульсаций в аэродинамических трубах и стендах. Для измерения указанных давлений предложен датчик давления, содержащий тензометрические и емкостные чувствительные элементы....
Тип: Изобретение
Номер охранного документа: 0002612733
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.ae50

Гидродинамический интерцептор

Изобретение относится к области судостроения и, в частности, касается усовершенствования быстроходных судов, обеспечивает ускоренный выход судна на режим глиссирования и повышает устойчивость при движении на скорости. Предложен гидродинамический интерцептор, содержащий устройство управления,...
Тип: Изобретение
Номер охранного документа: 0002612941
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b614

Магистральный пассажирский самолет на криогенном топливе

Изобретение относится к авиационной технике. Магистральный пассажирский самолет на криогенном топливе состоит из фюзеляжа, стреловидного крыла большого удлинения, хвостового оперения, двигателей, расположенных на фюзеляже. Фюзеляж имеет две параллельные пассажирские кабины, между которыми...
Тип: Изобретение
Номер охранного документа: 0002614443
Дата охранного документа: 28.03.2017
Показаны записи 111-120 из 146.
13.01.2017
№217.015.878c

Лопасть несущего винта вертолёта с отклоняемой задней кромкой

Изобретение относится к области авиации, в частности к конструкциям устройств изменения циклического шага несущих винтов вертолетов. Лопасть несущего винта вертолета с отклоняемой задней кромкой включает закрылок, привод и встроенную в корпус лопасти систему передачи движения, содержащую тяги....
Тип: Изобретение
Номер охранного документа: 0002603707
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.87b7

Устройство для измерения давления и температуры

Изобретение относится к измерительной технике и может быть использовано для одновременного измерения давления, температуры и теплового потока с компенсацией влияния температуры на результаты измерения давления. Чувствительным элементом (ЧЭ) для измерения давления выбран «кремний на сапфире»,...
Тип: Изобретение
Номер охранного документа: 0002603446
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.880a

Способ торможения сверхзвукового потока

Изобретение относится к аэродинамике летательных аппаратов сверхзвуковых и околозвуковых скоростей. Способ торможения сверхзвукового потока заключается в создании скачков уплотнения, движущихся относительно обтекаемой поверхности в направлении течения, со значениями скоростей меньшими разницы...
Тип: Изобретение
Номер охранного документа: 0002603705
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9c51

Устройство для измерения интегральной полусферической излучательной способности частично прозрачных материалов

Изобретение относится к измерительной технике. Устройство содержит вакуумную камеру, исследуемый образец, механизм вращения образца, два плоских омических нагревателя с расположенными в них датчиками температуры и тепловых потоков. Определение интегральной полусферической излучательной...
Тип: Изобретение
Номер охранного документа: 0002610552
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.a4c1

Сопло газоструйной системы управления вертолета

Изобретение относится к области авиации и может быть использовано для вертолетов со струйной системой управления. Механизм управления створками трехстворчатого сопла с управляемым вектором тяги состоит из зубчатого сектора управления положением средней створки, рычагов управления боковыми...
Тип: Изобретение
Номер охранного документа: 0002607687
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a50e

Крупноразмерная аэродинамическая модель

Изобретение относится к конструкции крупноразмерных аэродинамических моделей летательных аппаратов, применяющихся для испытаний в аэродинамических трубах. Устройство состоит из соединенных между собой сердечников фюзеляжа, крыла с подвижной механизацией, подвижного хвостового оперения с...
Тип: Изобретение
Номер охранного документа: 0002607675
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a5d4

Способ повышения прочности болтового металлокомпозиционного соединения

Изобретение относится к области машиностроения и может применяться в авиастроении, транспорте, строительстве, энергетике для повышения прочности и ресурса конструкций из металлических, композиционных и металлокомпозиционных материалов. Способ заключается в использовании наномодифицированной...
Тип: Изобретение
Номер охранного документа: 0002607888
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.acd8

Устройство для измерения давления в аэродинамических трубах

Изобретение относится к измерительной технике и может быть использовано для измерения полного и статическое давления, их пульсаций в аэродинамических трубах и стендах. Для измерения указанных давлений предложен датчик давления, содержащий тензометрические и емкостные чувствительные элементы....
Тип: Изобретение
Номер охранного документа: 0002612733
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.ae50

Гидродинамический интерцептор

Изобретение относится к области судостроения и, в частности, касается усовершенствования быстроходных судов, обеспечивает ускоренный выход судна на режим глиссирования и повышает устойчивость при движении на скорости. Предложен гидродинамический интерцептор, содержащий устройство управления,...
Тип: Изобретение
Номер охранного документа: 0002612941
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b614

Магистральный пассажирский самолет на криогенном топливе

Изобретение относится к авиационной технике. Магистральный пассажирский самолет на криогенном топливе состоит из фюзеляжа, стреловидного крыла большого удлинения, хвостового оперения, двигателей, расположенных на фюзеляже. Фюзеляж имеет две параллельные пассажирские кабины, между которыми...
Тип: Изобретение
Номер охранного документа: 0002614443
Дата охранного документа: 28.03.2017
+ добавить свой РИД