×
10.09.2015
216.013.75ef

Результат интеллектуальной деятельности: ПАРОГАЗОВАЯ УСТАНОВКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области теплоэнергетики и предназначено для использования на тепловых электростанциях. Парогазовая установка содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, который снабжен газоходом для отвода газов в дымовую трубу. В котел-утилизатор встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, который паропроводом связан с паровой турбиной высокого давления. Первый рекуператор паропроводом связан с конденсатором-испарителем, который водопроводом связан с первым насосом. Паровая турбина низкого давления одним паропроводом через первый рекуператор связана с конденсатором-испарителем, а другим - через второй рекуператор связана с конденсатором, который через второй насос водопроводом связан со вторым рекуператором. В котел-утилизатор дополнительно встроены поверхности нагрева промежуточного пароперегревателя. Паровая турбина высокого давления через промежуточный пароперегреватель паропроводом связана с паровой турбиной среднего давления, которая паропроводом связана с первым рекуператором. Охладитель-подогреватель водопроводами связан с первым насосом и экономайзером котла-утилизатора и трубопроводами - с конденсатором-испарителем и со вторым рекуператором. Паровые турбины высокого, среднего и низкого давления через общий вал связаны с электрическим генератором. Изобретение позволяет увеличить мощность и КПД парогазовой установки, повысить надежность и безопасность ее работы, а также снизить затраты в установку. 1 ил.
Основные результаты: Парогазовая установка, содержащая газотурбинную установку, связанную газоходом с котлом-утилизатором, который снабжен газоходом для отвода газов в дымовую трубу, и в который встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, который паропроводом связан с паровой турбиной высокого давления, причем первый рекуператор паропроводом связан с конденсатором-испарителем, который водопроводом связан с первым насосом, а паровая турбина низкого давления одним паропроводом через первый рекуператор связана с конденсатором-испарителем, а другим через второй рекуператор связана с конденсатором, который через второй насос водопроводом связан со вторым рекуператором, отличающаяся тем, что в котел-утилизатор дополнительно встроены поверхности нагрева промежуточного пароперегревателя, а паровая турбина высокого давления через промежуточный пароперегреватель паропроводом связана с паровой турбиной среднего давления, которая паропроводом связана с первым рекуператором, причем охладитель-подогреватель водопроводами связан с первым насосом и экономайзером котла-утилизатора и трубопроводами - с конденсатором-испарителем и со вторым рекуператором, при этом паровые турбины высокого, среднего и низкого давления через общий вал связаны с электрическим генератором.

Изобретение относится к области теплоэнергетики и предназначено для использования на тепловых электростанциях.

Известна парогазовая установка с газотурбинным циклом и двумя циклами Ренкина на разных рабочих телах в паротурбинной части (воде и водяном паре в верхнем цикле и бутане - в нижнем) (Готовский М.А., Гринман М.И., Фомин В.А., Арефьев В.К., Григорьев А.А. Использование комбинированного пароводяного и органического циклов Ренкина для повышения экономичности ГТУ и ДВС / Журнал «Теплоэнергетика». 2012. №3, с. 56-61), содержащая газотурбинную установку, связанную газоходом с котлом-утилизатором, в который встроены поверхности нагрева экономайзера, испарителя и пароперегревателя. Испаритель котла-утилизатора трубопроводами связан с барабаном, который паропроводом связан с пароперегревателем котла-утилизатора и водопроводом с первым насосом, который водопроводом связан с деаэратором, который водопроводом связан с экономайзером котла-утилизатора. Паровая турбина высокого давления связана паропроводами с пароперегревателем котла-утилизатора, подогревателем сетевой воды и конденсатором-испарителем. Подогреватель сетевой воды водопроводом связан со вторым насосом, который водопроводом связан с экономайзером котла-утилизатора. Паровая турбина низкого давления паропроводами связана с конденсатором-испарителем и конденсатором, который водопроводом связан с третьим насосом, который водопроводом связан с конденсатором-испарителем. Конденсатор-испаритель водопроводом связан с четвертым насосом, который водопроводом связан с экономайзером котла-утилизатора. Паровая турбина высокого и паровая турбина низкого давления валами связанны с электрическим генератором.

Недостатком этой парогазовой установки является то, что в последних ступенях паровой турбины высокого давления при давлениях пара на выходе 0,06-0,25 МПа, необходимых для подогрева сетевой воды, водяной пар имеет значительную влажность, что снижает КПД турбины, т.к. увеличение средней степени влажности на 1% снижает относительный КПД турбины на 1%. При этом при давлениях пара в конденсаторе-испарителе ниже 0,1 МПа необходима система отсоса воздуха. В паровую турбину низкого давления из конденсатора-испарителя идет насыщенный пар бутана с температурой 70-110°С. Отсутствие перегрева пара перед турбиной снижает КПД нижнего цикла, т.к. из термодинамики известно, что термический КПД цикла Ренкина зависит от температуры пара перед турбиной, ее увеличение на 10°С увеличивает КПД примерно на 0,2-0,25%. Следующим недостатком является то, что конденсат пара, поступающий из подогревателя сетевой воды и конденсатора-испарителя в экономайзер котла-утилизатора имеет температуру 86-127°С, в результате чего выходящие из котла-утилизатора газы будут иметь температуру как минимум 96-137°С, а котел-утилизатор при такой высокой температуре - пониженный КПД, т.к. увеличение температуры уходящих из котла-утилизатора газов на 10°С снижает его КПД примерно на 2%. Также недостатком является то, что выходящий из турбины низкого давления бутан имеет существенный перегрев, который не используется полезно в установке и приводит к дополнительным потерям энергии в цикле. С учетом рассмотренных недостатков парогазовая установка имеет снижение КПД при производстве электроэнергии на 2-4%.

Известна парогазовая установка с газотурбинным циклом и двумя циклами Ренкина на разных рабочих телах в паротурбинной части (бензоле в верхнем цикле и бутане - в нижнем) (А.М. Гафуров, Д.А. Усков, А.С. Шубина, «Энергетическая установка на базе ГТУ НК-37 с двумя теплоутилизирующими рабочими контурами» / Журнал «Энергетика Татарстана», 2012, №3, с. 35-41), содержащая газотурбинную установку, связанную газоходом с котлом-утилизатором, в который встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, паровую турбину высокого и паровую турбину низкого давления, валами связанные с отдельными электрическими генераторами. Паровая турбина высокого давления паропроводами связана входом с пароперегревателем котла-утилизатора и выходом через первый рекуператор - с конденсатором-испарителем, который водопроводом через первый насос связан с экономайзером котла-утилизатора. Паровая турбина низкого давления одним паропроводом через первый рекуператор связана с конденсатором-испарителем, а другим - через второй рекуператор с конденсатором, который водопроводом через второй насос и второй рекуператор связан с конденсатором-испарителем. Эта установка принята в качестве прототипа.

Недостатком этой установки в первую очередь является то, что в верхнем паротурбинном цикле в качестве рабочего тела используется бензол - токсичное, канцерогенное, взрывоопасное вещество, самовоспламеняющееся при температуре 534°С и замерзающее при температуре 5,5°С, что снижает безопасность и надежность работы установки. Главной причиной выбора бензола послужило то, что по сравнению с другими органическими жидкостями он термоустойчив при температурах выше 600°С и позволяет получить на выходе из турбины перегретый пар, в результате чего последние ступени турбины работают без эрозионного износа лопаток и потери энергии от влажности.

Вторым недостатком установки является отсутствие охлаждения конденсата бензола на входе в экономайзер, что не позволяет снизить температуру уходящих из котла-утилизатора газов. В прототипе температура конденсата бензола на входе в экономайзер 83°С, в результате температура выходящих из экономайзера газов будет как минимум 93°С. По правилам эксплуатации котлов для работы без низкотемпературной коррозии металла со стороны газов температура входящего в поверхность нагрева теплоносителя должна быть не ниже 60°С. Что позволяет при минимальном температурном напоре 10°С на выходе экономайзера иметь температуру уходящих газов 70°С. В результате, за счет снижения температуры бензола на входе экономайзера с 83 до 60°С можно понизить температуру уходящих из него газов на 23°С. Снижение температуры уходящих из котла-утилизатора газов на 10°С увеличивает его КПД примерно на 2%. Кроме того, снижение температуры уходящих газов позволяет увеличить количество теплоты, передаваемой в верхнем цикле рабочему телу, и этим увеличить расход генерируемого рабочего тела, что позволит повысить мощность турбины и КПД верхнего цикла.

Задачей изобретения является увеличение мощности и КПД парогазовой установки, повышение надежности и безопасности ее работы и снижение затрат в установку.

Поставленная задача решена за счет того, что парогазовая установка, также как в прототипе, содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, который снабжен газоходом для отвода газов в дымовую трубу, и в который встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, который паропроводом связан с паровой турбиной высокого давления, причем первый рекуператор паропроводом связан с конденсатором-испарителем, который водопроводом связан с первым насосом, а паровая турбина низкого давления одним паропроводом через первый рекуператор связана с конденсатором-испарителем, а другим через второй рекуператор связана с конденсатором, который через второй насос водопроводом связан со вторым рекуператором.

Согласно изобретению в котел-утилизатор дополнительно встроены поверхности нагрева промежуточного пароперегревателя, а паровая турбина высокого давления через промежуточный пароперегреватель паропроводом связана с паровой турбиной среднего давления, которая паропроводом связана с первым рекуператором, причем первый насос через охладитель-подогреватель водопроводами связан с экономайзером, а второй рекуператор трубопроводом связан с охладителем-подогревателем, который другим трубопроводом связан с конденсатором-испарителем, при этом паровые турбины высокого, среднего и низкого давления через общий вал связаны с электрическим генератором.

В предложенной парогазовой установке по сравнению с прототипом в верхнем цикле в качестве рабочего тела используется вода и установлена паровая турбина среднего давления, пар в которую поступает из паровой турбины высокого давления через промежуточный пароперегреватель, встроенный в котел-утилизатор. Промежуточный перегрев пара в результате подвода теплоты от газов в котле-утилизаторе при более высокой средней температуре позволяет повысить КПД первого цикла на 0,5-1%. Кроме того, в результате подогрева в промежуточном пароперегревателе пар на выходе паровой турбины среднего давления имеет перегрев относительно температуры насыщения на 40-50°С, что позволяет за счет рекуперации тепла в первом рекуператоре иметь температуру пара второго рабочего тела на входе в паровую турбину низкого давления на 5-10°С выше температуры насыщения и, таким образом, КПД нижнего цикла можно повысить на 0,1-0,2%. Использование охладителя-подогревателя позволяет понизить температуру поступающей в экономайзер воды до требуемых по условиям надежной работы экономайзера без коррозии металла 60°С и понизить температуру отводимых из котла-утилизатора газов до 70-80°С, что повышает КПД котла-утилизатора по сравнению с прототипом на 2-4%, а также увеличивает количество теплоты, передаваемой воде и пару, и этим увеличивает расход пара в верхнем цикле, что повышает мощность работающих на паре турбин высокого и среднего давления. При этом подогрев конденсата второго рабочего тела после второго рекуператора в охладителе-подогревателе позволяет увеличить расход генерируемого пара второго рабочего тела в конденсаторе-испарителе и этим увеличить мощность турбины низкого давления. В итоге, по сравнению с прототипом увеличиваются мощность и КПД парогазовой установки по производству электроэнергии, а замена бензола в качестве рабочего тела верхнего цикла водой обеспечивает ее надежную и безопасную работу. Кроме того, по сравнению с прототипом, за счет установки одного электрического генератора вместо двух уменьшаются капитальные вложения при создании предложенной парогазовой установки, а также уменьшаются затраты на приобретение рабочего тела верхнего цикла, т.к. вода значительно дешевле бензола.

На фиг. 1 представлена схема заявляемой парогазовой установки.

Парогазовая установка (фиг. 1) содержит газотурбинную установку 1 (ГТУ), связанную газоходом с котлом-утилизатором 2, в который встроены связанные между собой поверхности нагрева первого экономайзера 3, испарителя 4 и пароперегревателя 5, а также поверхности нагрева промежуточного пароперегревателя 6. Паровые турбины высокого 7, среднего 8 и низкого 9 давления через общий вал связаны с электрическим генератором 10. Пароперегреватель 5 паропроводом связан с паровой турбиной высокого давления 7, которая паропроводом связана с промежуточным пароперегревателем 6, который паропроводом связан с паровой турбиной среднего давления 8. Паровая турбина среднего давления 8 паропроводом связана с первым рекуператором 11, который паропроводом связан с конденсатором-испарителем 12. Конденсатор-испаритель 12 водопроводом связан с первым насосом 13, который водопроводом связан с охладителем-подогревателем 14, который водопроводом связан с экономайзером 3. Охладитель-подогреватель 14 трубопроводом связан с конденсатором-испарителем 12, который паропроводом связан с первым рекуператором 11, который паропроводом связан с паровой турбиной низкого давления 9. Паровая турбина низкого давления 9 паропроводом связана со вторым рекуператором 15, который паропроводом связан с конденсатором 16. Конденсатор 16 водопроводом связан со вторым насосом 17, который водопроводом связан со вторым рекуператором 15. Второй рекуператор 15 трубопроводом связан с охладителем-подогревателем 14. Котел-утилизатор 2 снабжен газоходом 18 для отвода газов в дымовую трубу.

Парогазовая установка работает следующим образом. Газы, образующиеся в результате работы газотурбинной установки 1 (ГТУ), с температурой, например 450-650°С поступают в котел-утилизатор 2, где в экономайзере 3 нагревают первое рабочее тело, воду, до кипения, в испарителе 4 превращают ее в насыщенный пар и в пароперегревателе 5 перегревают пар до температуры на 20-30°С ниже температуры газов, поступающих в котел-утилизатор 2. Перегретый пар поступает в паровую турбину высокого давления 7, где вырабатывает механическую мощность, и поступает в промежуточный пароперегреватель 6, где за счет тепла газов нагревается до температуры на 20-30°С ниже температуры газов, поступающих в котел-утилизатор 2. Из промежуточного пароперегревателя 6 перегретый пар поступает в паровую турбину среднего давления 8, где вырабатывает механическую мощность, и при давлении выше атмосферного с температурой 140-160°С уходит через первый рекуператор 11 в конденсатор-испаритель 12, в котором конденсируется. Образовавшийся конденсат насосом 13 сжимается до около или сверхкритического давления и через охладитель-подогреватель 14 подается в экономайзер 3. В конденсаторе-испарителе 12 за счет теплоты конденсирующегося пара нагревается и испаряется второе рабочее тело, например, бутан, которое перегревается в первом рекуператоре 11 на 5-10°С выше температуры насыщения и поступает в паровую турбину низкого давления 9, где вырабатывает механическую мощность, и при давлении выше атмосферного через второй рекуператор 14 уходит в конденсатор 15, в котором конденсируется. Образовавшийся конденсат бутана вторым насосом 16 сжимается до давления на 30-50% выше, чем давление бутана в конденсаторе-испарителе 12, и через второй рекуператор 15 и охладитель-подогреватель 14 перекачивается в конденсатор-испаритель 12. Снижение температуры воды на входе экономайзера 3 до 60°С позволяет снизить температуру отводимых в дымовую трубу газов 18 до 70-80°С и этим увеличить количество теплоты, передаваемой от газов воде и пару, что увеличивает расход пара в верхнем цикле, и в результате мощность паровых турбин высокого 7 и среднего 8 давления. Подогрев конденсата бутана во втором рекуператоре 15 и в охладителе-подогревателе 14 увеличивает количество генерируемого пара бутана в конденсаторе-испарителе 12 и в результате увеличивается мощность паровой турбины низкого давления 9. Паровые турбины высокого 7, среднего 8 и низкого 9 давления через общий вал передают механическую мощность электрическому генератору 10, который вырабатывает электроэнергию.

Парогазовая установка, содержащая газотурбинную установку, связанную газоходом с котлом-утилизатором, который снабжен газоходом для отвода газов в дымовую трубу, и в который встроены связанные между собой поверхности нагрева экономайзера, испарителя и пароперегревателя, который паропроводом связан с паровой турбиной высокого давления, причем первый рекуператор паропроводом связан с конденсатором-испарителем, который водопроводом связан с первым насосом, а паровая турбина низкого давления одним паропроводом через первый рекуператор связана с конденсатором-испарителем, а другим через второй рекуператор связана с конденсатором, который через второй насос водопроводом связан со вторым рекуператором, отличающаяся тем, что в котел-утилизатор дополнительно встроены поверхности нагрева промежуточного пароперегревателя, а паровая турбина высокого давления через промежуточный пароперегреватель паропроводом связана с паровой турбиной среднего давления, которая паропроводом связана с первым рекуператором, причем охладитель-подогреватель водопроводами связан с первым насосом и экономайзером котла-утилизатора и трубопроводами - с конденсатором-испарителем и со вторым рекуператором, при этом паровые турбины высокого, среднего и низкого давления через общий вал связаны с электрическим генератором.
ПАРОГАЗОВАЯ УСТАНОВКА
Источник поступления информации: Роспатент

Показаны записи 51-60 из 142.
10.11.2014
№216.013.04af

Способ визуализации ультразвуковой дефектоскопии трехмерного изделия

Использование: для визуализации ультразвуковой дефектоскопии трехмерного изделия. Сущность изобретения заключается в том, что размещают пьезопреобразователи антенной решетки на объекте контроля, причем расстояние между соседними положениями антенной решетки, при которой получают одно...
Тип: Изобретение
Номер охранного документа: 0002532597
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04b8

Устройство ультразвуковой томографии

Использование: для визуализации ультразвуковой дефектоскопии трехмерного изделия. Сущность изобретения заключается в том, что устройство ультразвуковой томографии содержит антенную решетку с n приемно-передающими элементами, каждый из которых соединен с выходом соответствующего генератора...
Тип: Изобретение
Номер охранного документа: 0002532606
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.08b4

Способ определения частотных границ полезного сигнала и полос пропускания цифровых частотных фильтров

Изобретение относится к области цифровой обработки сигналов и может быть использовано для решения задач неразрушающего контроля и диагностики оборудования на основе корреляционного анализа. Техническим результатом является определение частотных границ полезного сигнала и полос пропускания...
Тип: Изобретение
Номер охранного документа: 0002533629
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0cf1

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования-контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытания на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002534730
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0cf3

Способ количественного определения афлатоксина в1 методом дифференциальной вольтамперометрии

Изобретение относится к области аналитической химии и может быть использовано в фармакокинетических исследованиях, для контроля кормов и кормовых добавок, в пищевой промышленности для определения фальсификации и др. Способ определения афлатоксина B1, включающий следующие операции: афлатоксин...
Тип: Изобретение
Номер охранного документа: 0002534732
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0d2f

Способ получения фторида водорода из отходов алюминиевого производства

Изобретение может быть использовано в химической промышленности. Способ получения фторида водорода из отходов алюминиевого производства включает сернокислотное разложение криолитсодержащих отходов. В качестве отходов алюминиевого производства берут пыль электрофильтров. Отходы предварительно...
Тип: Изобретение
Номер охранного документа: 0002534792
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0d82

Шихта для получения пинкового пигмента со структурой оловянного сфена

Изобретение относится к керамическому производству, в частности, к получению керамических пигментов. Техническим результатом изобретения является понижение температуры синтеза пигмента, удешевление керамических пигментов и утилизация отхода производства глинозема. Шихта для получения пинкового...
Тип: Изобретение
Номер охранного документа: 0002534875
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0e6c

Способ получения нанопорошков металлов с повышенной запасенной энергией

Изобретение относится к порошковой металлургии, в частности к получению нанопорошков металлов с повышенной запасенной энергией. Может использоваться для повышения реакционной способности нанопорошков при спекании, горении, в энергосберегающих технологиях. Образец нанопорошка металла облучают...
Тип: Изобретение
Номер охранного документа: 0002535109
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0e8b

Композиция с антиоксидантной и антибактериальной активностью

Изобретение относится к области медицины и представляет собой композицию, обладающую антиоксидантной и антибактериальной активностью, включающую аскорбат лития, отличающуюся тем, что дополнительно содержит бензоат лития при следующем соотношении компонентов, мас.%: аскорбат лития - 50; бензоат...
Тип: Изобретение
Номер охранного документа: 0002535140
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0f28

Способ защиты электродвигателей от коротких замыканий

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для защиты электродвигателей. Технический результат - повышение чувствительности к токам двухфазных коротких замыканий. Способ защиты электродвигателей от коротких замыканий заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002535297
Дата охранного документа: 10.12.2014
Показаны записи 51-60 из 235.
20.10.2013
№216.012.75ac

Способ управления погружением подводного объекта и устройство для его осуществления

Группа изобретений относится к автоматическому управлению подводными объектами с использованием судовых спускоподъемных устройств. Способ заключается в изменении длины частей гибкой механической связи между подводным объектом и судном-носителем. Основное перемещение подводного объекта по...
Тип: Изобретение
Номер охранного документа: 0002495784
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.78a8

Способ предварительной подготовки нефти на промыслах при многоступенчатой сепарации

Изобретение относится к области промысловой подготовки нефти. Способ предварительной подготовки нефти на промыслах при многоступенчатой сепарации, включающий закачку реагента-деэмульгатора в трубопровод, подачу на вход первого сепаратора воды, нагретой до 100°С тепловой энергией, выделяемой...
Тип: Изобретение
Номер охранного документа: 0002496550
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.78bc

Способ получения сорбента для очистки воды от ионов железа и марганца

Изобретение относится к получению неорганических сорбентов. Способ получения сорбента включает обработку диоксида титана, состоящего из кристаллических фаз анатаза и рутила, ультразвуком в 0,2 н. растворе NaOH или НСl в течение 10 мин. Сорбент промывают декантацией не менее 3 раз и сушат при...
Тип: Изобретение
Номер охранного документа: 0002496570
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.79b5

Травитель для титана

Изобретение предназначено для подготовки поверхности титана перед нанесением биоактивных покрытий на поверхность имплантата. Травитель для титановых имплантатов содержит фосфорную кислоту, окислитель и воду при следующих количественных соотношениях компонентов, мас.%: фосфорная кислота 23-65,...
Тип: Изобретение
Номер охранного документа: 0002496819
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7eed

Устройство для индивидуального теплоснабжения

Изобретение относится к теплоэнергетике, а именно к устройствам газификации твердого топлива, используемым для обеспечения потребителя теплом и горячим водоснабжением. Устройство содержит бункер для твердого топлива с расположенными в нем колосниковой решеткой и загрузочным люком,...
Тип: Изобретение
Номер охранного документа: 0002498166
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f60

Термоэлектрический способ неразрушающего контроля качества поверхностного слоя металла

Использование: для неразрушающего контроля качества поверхностного слоя металла. Сущность: заключается в том, что используют две группы одинаково нагретых электродов из одного материала, устанавливают одну группу нагреваемых электродов на контролируемое изделие, а другую па эталонный образец,...
Тип: Изобретение
Номер охранного документа: 0002498281
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f61

Способ определения содержания водорода в титане

Изобретение может быть использовано для контроля материалов, изначально свободных и защищенных от водорода для космических аппаратов, активных зон водоохлаждаемых ядерных энергетических установок (ЯЭУ), вентиляторов двигателей самолетов, дисков турбин высокого и низкого давления, их планетарных...
Тип: Изобретение
Номер охранного документа: 0002498282
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f68

Способ определения платины в рудах по пику селективного электроокисления сu из интерметаллического соединения ptcu методом инверсионной вольтамперометрии

Изобретение может быть использовано в различных геологических разработках при поиске и разведке в случае анализа руд, рудных концентратов и пород. Способ определения платины в рудах по пику селективного электроокисления Cu из интерметаллического соединения PtCu методом инверсионной...
Тип: Изобретение
Номер охранного документа: 0002498289
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f69

Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления меди из rhcu

Изобретение относится к аналитической химии, а именно к способам определения содержания ионов металлов для определения в питьевых и природных водах методом инверсионной вольтамперометрии (ИВ). Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику...
Тип: Изобретение
Номер охранного документа: 0002498290
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f8b

Способ определения наличия гармонических составляющих и их частот в дискретных сигналах

Изобретение относится к области цифровой обработки сигналов и может быть использовано для определения наличия гармонических составляющих и их частот в сигналах различного происхождения при решении задач неразрушающего контроля и диагностики оборудования на основе корреляционного анализа....
Тип: Изобретение
Номер охранного документа: 0002498324
Дата охранного документа: 10.11.2013
+ добавить свой РИД