×
27.08.2015
216.013.7577

Результат интеллектуальной деятельности: ЛЕНТОЧНО-КОЛОДОЧНЫЙ ТОРМОЗ С "ТЕПЛОВЫМИ МОСТИКАМИ" В ОБОДЕ ШКИВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к машиностроению и может быть использовано в ленточно-колодочных тормозах буровых лебедок. Ленточно-колодочный тормоз с «тепловыми мостиками» в ободе шкива содержит теплоотводящие узлы для снижения температурных градиентов, расположенные в ободе составного тормозного шкива и тормозную ленту с фрикционными накладками. Узлы с «тепловыми мостиками» выполнены в виде системы тонких теплопроводных радиальных цилиндрических колец, простирающихся через всю толщину обода шкива. Между узлами расположены энергоемкие цилиндрические кольца с различными диаметрами, которые и составляют слои обода шкива, которые разделены между собой цилиндрическими теплоизоляционными кольцами. Достигается повышение теплоустойчивости пар трения ленточно-колодочного тормоза и повышение долговечности пар трения ленточно-колодочного тормоза за счет снижения температурных градиентов в их элементах путем целенаправленного кондуктивного охлаждения с применением «тепловых мостиков» в ободе шкива. 1 з.п. ф-лы, 3 ил.

Изобретение относится к машиностроению и может быть использовано в ленточно-колодочных тормозах буровых лебедок.

Известна система для охлаждения ленточно-колодочного тормоза, в которой узлы выполнены в виде термобатарей, термоэлементы которых состоят из графитовых колец и металлических дисков со сквозными отверстиями на боковых поверхностях, через которые они надеваются на теплоизолированные цилиндрические штыри, завинченные в тело одной из реборд, а вторая реборда при этом крепится к цилиндрическим штырям с помощью гаек, стягивая таким образом систему колец, образующих обод шкива [патент на изобретение RU 2268418, F16D 65/813, 2006, Б.И. №02 [аналог]]. Однако данная система обладает инерционностью и не обеспечивает снижение температурных градиентов обода шкива как на его рабочей поверхности? так и по толщине.

Известен ленточно-колодочный тормоз буровой лебедки, в котором при спуске колонны бурильных труб в скважину, в процессе торможения на поверхностях его металлополимерных пар трения развиваются температуры, которые достигают 800°C и более [Джанахмедов А.Х. Нефтяная трибология / А.Х. Джанахмедов. - Баку: Элм, 2003. - С. 38 [прототип]]. Указанная энергонагруженность влияет на износо-фрикционные свойства металлополимерных пар трения тормоза и, как следствие, на эффективность. Возникающие при этом градиенты температуры в ободе тормозного шкива из-за его неравномерного прогрева существенно влияют на долговечность элементов трения.

Задача изобретения - повышение теплоустойчивости пар трения ленточно-колодочного тормоза.

Технический результат изобретения - повышение долговечности пар трения ленточно-колодочного тормоза за счет снижения температурных градиентов в их элементах путем целенаправленного кондуктивного охлаждения с применением «тепловых мостиков» в ободе шкива.

Технический результат достигается тем, что для снижения температурных градиентов в ободе тормозного шкива выполнены теплоотводящие узлы в виде «тепловых мостиков», представляющих собой системы тонких теплопроводных радиальных цилиндрических колец, простирающихся через всю толщину обода шкива, между которыми расположены энергоемкие цилиндрические кольца с различными диаметрами, которые и составляют слои обода шкива, разделены между собой цилиндрическими теплоизоляционными кольцами. При этом материалы тонких теплопроводных радиальных цилиндрических колец имеют по величине самый высокий коэффициент теплопроводности, нежели материалы слоев обода шкива, теплопроводность которых увеличивается от верхнего к нижнему слою, обеспечивая тем самым сток генерируемой теплоты кондуктивным теплообменом к нижнему слою обода шкива в процессе электротермомеханического трения фрикционных узлов ленточно-колодочного тормоза.

По сравнению с аналогом и прототипом предложенное техническое решение имеет следующие существенные отличительные признаки:

- с увеличением энергонагруженности пар трения ленточно-колодочного тормоза наблюдается повышение эффективности кондуктивного охлаждения за счет разных величин коэффициентов теплопроводности материалов цилиндрических колец, составляющих слои обода, которые разделены теплоизоляционными кольцами;

- возможность использования для отвода теплоты от пар трения тормоза радиальных теплопроводных колец, которые пронизывают слои обода, обеспечивая продольный подвод теплоты к ним и, как следствие, достигается снижение температурных градиентов за счет равномерного прогрева системы энергоемких теплопроводных колец, из которых составлен обод шкива;

- достигается разъединение множества вертикальных тепловых токов и переориентация их в горизонтальные тепловые токи с ускоренным подводом к наружной поверхности нижнего слоя обода шкива за счет кондуктивного теплообмена в схеме «система теплопроводных радиальных цилиндрических колец - система теплопроводных цилиндрических колец слоев», что способствует снижению поверхностных температурных градиентов на рабочей поверхности шкива;

- возможность снижения температурных градиентов не только за счет конструктивных параметров системы теплопроводных цилиндрических колец, но и посредством изменения теплофизических свойств их материалов;

- повышается эффективность электротермомеханического трения и ресурса пар трения за счет снижения их энергонагруженности.

На фиг. 1 изображен общий вид ленточно-колодочного тормоза с «тепловыми мостиками» в ободе шкива; на фиг. 2 - вид А на фрикционные узлы в рабочем состоянии; на фиг. 3 показан поперечный разрез обода (без реборд) с «тепловыми мостиками». На фиг. 3 использованы следующие обозначения: λ1 - приведенный коэффициент теплопроводности материалов рабочего слоя обода шкива; λ2, λ3, λ4 - коэффициенты теплопроводности материалов слоев обода шкива; λ5, λ6 - коэффициенты теплопроводности материалов теплоизоляционных колец; λ7 - коэффициент теплопроводности металлических колец; q - генерируемый тепловой поток на рабочей поверхности обода шкива.

Ленточно-колодочный тормоз с «тепловыми мостиками» в ободе шкива содержит разборный тормозной шкив 1, имеющий, собственно, обод 2 с рабочей 3 и нерабочей 4 поверхностями. «Тепловые мостики» выполнены в виде системы тонких теплопроводных радиальных цилиндрических колец 5, простирающихся через всю толщину обода 2 шкива 1, между которыми расположены энергоемкие цилиндрические кольца с различными диаметрами, которые и составляют слои (I-й, II-й и III-й) обода 2 шкива 1, и разделены между собой цилиндрическими теплоизоляционными кольцами 6. По бокам обода 2 шкива 1 имеются реборды 7. Тормозной шкив 1 расположен на подъемном валу 8. С рабочей поверхностью 3 обода 2 шкива 1 взаимодействуют при торможении рабочие поверхности 10 фрикционных накладок 9. Последние крепятся с помощью усиков 11 к тормозной ленте 12, имеющей набегающую (а) и сбегающую (б) ветви. Сбегающая ветвь (б) тормозной ленты 12 с помощью винтовых стержней 13 крепится к опоре 14. При этом набегающая ветвь (а) тормозной ленты 12 прикреплена к рычагу управления 15.

Тормозной шкив 1 собирается из вертикальных столбцов, в которые входят энергоемкие цилиндрические кольца различного диаметра, переложенные цилиндрическими теплоизоляционными кольцами 6 в горизонтальной плоскости, и в вертикальной плоскости - тонкими радиальными теплопроводными кольцами 5. К торцам крайних столбцов примыкают реборды 7. Последние и слои обода 2 шкива 1 стягиваются болтовыми соединениями (на фиг. 1 не показаны).

В процессе электротермомеханического трения при импульсной и длительной передаче теплоты от слоя к слою обода шкива существенную роль играет их термическое сопротивление. Чем больше расстояние от рабочей поверхности обода шкива до его середины, тем меньше внутреннее термическое сопротивление из-за ослабления теплового тока, прошивающего толщину очередного слоя обода.

Величина поверхностной температуры зависит не только от числа спуско-подъемных операций, выполняемых ленточно-колодочным тормозом буровой лебедки, но и от физико-химических свойств приповерхностных слоев их металлополимерных пар трения. Установлено, что в начале спуска бурового инструмента генерируемая электрическая и тепловая энергия затрачивается на прогрев обода шкива. При этом прирост температуры в ободе шкива является минимальным, но зато в дальнейшем он возрастает за счет увеличения времени торможения и слабой вынужденной конвективной и радиационной теплоотдачей от матовой поверхности шкива скоростными токами омывающей среды. Причиной является увеличение работы торможения, выполняемой узлами трения и способствующей полному прогреву обода шкива в процессе спуска колонны бурильных труб в скважину. Таким образом, на начальной стадии торможения в большинстве случаев необходимо регулировать величину градиента температуры по толщине обода шкива (поперечное регулирование). В дальнейшем при полном прогреве обода шкива будет наблюдаться, в основном, прирост температуры на рабочей поверхности обода шкива, а следовательно, и величины поверхностного градиента температуры (продольное регулирование).

Особенностью поперечного и продольного регулирования тепловых потоков, пронизывающих слои (I-й, II-й и III-й) обода 2 шкива 1, является следующее условие: λ1234, а для теплоизоляционных колец λ56. В свою очередь, λ71; λ2; λ3 и λ4. Предложенные ограничения величин коэффициентов теплопроводности материалов позволяют интенсивно отводить тепловой поток q не только верхним слоем (I-м) обода 2 шкива 1, но и с помощью радиальных теплопроводных колец 5 к внутреннему слою (II) обода 2 шкива 1. Кроме того, на пути следования теплового потока происходит потеря энергии от боковых поверхностей теплопроводных колец 5 на нагревание среднего слоя (II-го) обода 2 шкива 1. Наличие цилиндрических теплоизоляционных колец 6 между I-м и II-м слоями и II-м и III-м слоями позволяют ограничить их кондуктивный теплообмен между собой в поперечном направлении. В то же время усиливается эффект продольного кондуктивного теплообмена за счет взаимодействия боковых поверхностей радиальных теплопроводных колец 5 с боковыми поверхностями энергоемких колец, составляющих обод 2.

Таким образом, за счет деления обода шкива на кольца, сформированных в слои, с помощью радиальных теплопроводных цилиндрических колец и теплоизоляционных колец, разделяющих слои обода, т.е. путем его разбивки на элементы с незначительной металлоемкостью, достигается существенное уменьшение градиентов температуры по толщине обода и по его рабочей поверхности посредством поперечного и продольного регулирования их энергонагруженности.

Ленточно-колодочный тормоз с «тепловыми мостиками» в ободе шкива работает следующим образом.

При нажатии на рычаг 15 происходит перемещение тормозной ленты 12 с фрикционными накладками 10 для взаимодействия их микровыступов с микровыступами рабочей поверхности 3 тормозного шкива 1. Первыми при этом взаимодействуют с микровыступами шкива 1 микровыступы рабочих поверхностей 9 накладок 10 набегающей ветви (а) тормозной ленты 12, а потом уже сбегающей ветви (б), при этом на их поверхностях одновременно генерируются как электрические, так и тепловые токи, в результате чего поверхностные температуры зон взаимодействия металлополимерных пар трения становятся одинаковыми, а следовательно, их поверхностные температурные градиенты равны. В дальнейшем из-за различных величин коэффициентов теплопроводности материалов обода 2 тормозного шкива 1 и фрикционных накладок 10 большая часть теплоты уходит на нагревание системы теплопроводных цилиндрических колец, суммарная энергоемкость которых намного меньше из-за наличия между ними продольных кольцевых теплоизоляторов 6, нежели серийного обода шкива. При этом происходит снижение температурных градиентов как по поверхности системы теплопроводных цилиндрических колец, так и по их толщине.

Таким образом, использовав принцип суперпозиции в элементах трения тормоза «генерирование - сток» теплоты, достигается предложенным кондуктивным решением повышение темпа вынужденного охлаждения за счет применения кондуктивного теплообмена по схеме «система тонких теплопроводных радиальных цилиндрических колец 5 - система теплопроводных энергоемких цилиндрических колец», составляющих обод 2 шкива 1.

Интенсивное кондуктивное охлаждение пар трения ленточно-колодочного тормоза позволяет повысить его эксплуатационные параметры, снизить температурные градиенты как на поверхности, так и по толщине теплопроводных цилиндрических колец и, как следствие, увеличить ресурс пар трения фрикционных узлов тормоза.


ЛЕНТОЧНО-КОЛОДОЧНЫЙ ТОРМОЗ С
ЛЕНТОЧНО-КОЛОДОЧНЫЙ ТОРМОЗ С
ЛЕНТОЧНО-КОЛОДОЧНЫЙ ТОРМОЗ С
Источник поступления информации: Роспатент

Показаны записи 21-21 из 21.
10.05.2018
№218.016.3b3f

Способ оценки внешних и внутренних параметров узлов трения при испытании в стендовых условиях

Изобретение относится к способам оценки внешних и внутренних параметров узлов трения тормозных устройств в стендовых условиях, в частности пар трения ленточно-колодочных тормозов буровых лебедок. Предложен способ оценки внешних и внутренних параметров узлов трения при испытании в стендовых...
Тип: Изобретение
Номер охранного документа: 0002647338
Дата охранного документа: 15.03.2018
Показаны записи 241-250 из 252.
12.01.2017
№217.015.5f47

Способ производства жировой начинки

Изобретение относится к пищевой промышленности и может быть использовано для приготовления жировой начинки, предназначенной для производства мучных и сахарных кондитерских изделий. Способ производства жировой начинки, предусматривающий смешивание жировой композиции с вкусовым наполнителем, с...
Тип: Изобретение
Номер охранного документа: 0002590834
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5faa

Способ производства конфет профилактического назначения

Изобретение относится к кондитерской промышленности, в частности к производству конфет. Предложен способ производства конфет профилактического назначения, включающий подготовку компонентов в виде меда пчелиного и наполнителя, смешивание, формование с последующим глазированием, при этом...
Тип: Изобретение
Номер охранного документа: 0002590839
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5fcc

Состав для приготовления жировой начинки

Изобретение относится к пищевой промышленности и может быть использовано для приготовления жировой начинки, предназначенной для производства мучных и сахарных кондитерских изделий. Состав для приготовления жировой начинки, включающий сахарную пудру в качестве подслащивающего компонента,...
Тип: Изобретение
Номер охранного документа: 0002590944
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.60fc

Композиция жировой начинки функционального назначения

Изобретение относится к пищевой промышленности и может быть использовано для приготовления жировой начинки, предназначенной для производства мучных и сахарных кондитерских изделий. Композиция жировой начинки функционального назначения включает сахарную пудру в качестве подслащивающего...
Тип: Изобретение
Номер охранного документа: 0002590838
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6189

Способ получения высокоплотного порошкового хромсодержащего материала на основе железа

Изобретение относится к получению высокоплотного порошкового хромсодержащего материала на основе железа. Готовят шихту на основе распыленного порошка хромомолибденовой стали с добавкой углерода. Компоненты шихты смешивают в аттриторе в течение 1-2 ч, затем проводят статическое холодное...
Тип: Изобретение
Номер охранного документа: 0002588979
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7ff6

Композиция для производства спортивных батончиков

Изобретение относится к области пищевой промышленности, в частности к кондитерской, и может быть использовано для производства сахаристых кондитерских изделий для людей, занимающихся фитнесом, испытывающих невысокие силовые нагрузки. Композиция для производства спортивных батончиков имеет...
Тип: Изобретение
Номер охранного документа: 0002599821
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.80a1

Способ отделения оболочки от семян сои

Изобретение относится к масложировой и перерабатывающей промышленности, в частности к способам производства продуктов из семян сои, и может быть использовано для отделения оболочки от семян сои перед переработкой для получения соевых продуктов. Способ включает очистку от примесей поступающих в...
Тип: Изобретение
Номер охранного документа: 0002602191
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.80f6

Установка для газификации рисовой лузги

Изобретение относится к области получения синтез-газа. В силосе 4 рисовую лузгу подвергают подсушиванию путем активного вентилирования посредством подачи теплого воздуха из калорифера 2, нагнетаемого вентилятором 3. Далее рисовую лузгу по транспортеру 5 подают на норию 6 и в оперативную емкость...
Тип: Изобретение
Номер охранного документа: 0002602107
Дата охранного документа: 10.11.2016
26.08.2017
№217.015.db54

Интеллектуальная микропроцессорная система для определения величины технических потерь электроэнергии

Изобретение относится к области электротехники. Технический результат – непрерывный контроль и регистрация уровня потерь электроэнергии в сети, повышение точности определения потерь. Согласно изобретению система содержит датчик тока, датчик температуры окружающей среды, датчик температуры...
Тип: Изобретение
Номер охранного документа: 0002624001
Дата охранного документа: 30.06.2017
26.08.2017
№217.015.e4ba

Установка для получения многослойного наноструктурированного композитного покрытия с эффектом памяти формы на поверхности стальной цилиндрической детали

Изобретение относится к области машиностроения и металлургии, в частности к комбинированным способам получения покрытий, и может быть использовано, в частности, для получения покрытий на деталях. Установка для получения многослойного наноструктурированного композитного покрытия с эффектом...
Тип: Изобретение
Номер охранного документа: 0002625694
Дата охранного документа: 18.07.2017
+ добавить свой РИД