×
27.08.2015
216.013.754c

Результат интеллектуальной деятельности: МЕТАЛЛОРГАНИЧЕСКИЕ СКЕЛЕТНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ 2,5-ФУРАНДИКАРБОНОВОЙ ИЛИ 2,5-ТИОФЕНДИКАРБОНОВОЙ КИСЛОТЫ

Вид РИД

Изобретение

№ охранного документа
0002561603
Дата охранного документа
27.08.2015
Аннотация: Изобретение относится к пористому металлорганическому скелетному материалу. Материал содержит по меньшей мере одно по меньшей мере двухкоординационное органическое соединение, координационно соединенное по меньшей мере с одним ионом металла и являющееся производным 2,5-фурандикарбоновой или 2,5-тиофендикарбоновой кислоты. При этом по меньшей мере один ион металла является ионом металла, выбранного из группы, включающей алюминий, магний и цинк. Понятие «производное» означает, что 2,5-фурандикарбоновая кислота или 2,5-тиофендикарбоновая кислота могут присутствовать в скелетном материале в частично или полностью депротонированной форме. Также предложены формованное изделие, способ получения скелетного материала, применение скелетного материала или формованного изделия. Изобретение позволяет получить скелетный материал, который может применяться для аккумуляции газа и выделения газа из газовой смеси. 5 н. и 4 з.п. ф-лы, 3 ил., 6 пр.

Изобретение относится к пористому металлорганическому скелетному материалу, формованному изделию, содержащему указанный материал, а также к способу их получения и их применению.

Пористые металлорганические скелетные материалы известны из уровня техники. Они отличаются прежде всего пористостью и часто находят применение, сравнимое с известными сферами применения неорганических цеолитов.

Металлорганические скелетные материалы обычно содержат координационно присоединенное к иону металла, по меньшей мере двухкоординационное органическое соединение, которое в виде мостиковой связи соединяет друг с другом по меньшей мере два иона металла, а следовательно, совместно с ионами металла образует скелет указанного материала.

Надлежащий выбор металла и/или органического соединения позволяет оптимизировать металлорганические скелетные материалы применительно к целевым сферам применения. При этом, например, выбор органического соединения может оказывать влияние на распределение пор по размерам. Кроме того, металл может вносить вклад в процессы адсорбции.

Существует постоянная потребность в особых металлорганических скелетных материалах, которые прежде всего обладают исключительными свойствами, определяемыми выбором металла и органического соединения.

В соответствии с этим в основу настоящего изобретения была положена задача предложить подобные материалы, способ их получения и сферы их применения.

Указанная задача согласно изобретению решается с помощью пористого металлорганического скелетного материала, содержащего по меньшей мере одно по меньшей мере двухкоординационное органическое соединение, координационно соединенное по меньшей мере с одним ионом металла и являющееся производным 2,5-фурандикарбоновой или 2,5-тиофендикарбоновой кислоты.

Обнаружено, что предлагаемый в изобретении металлорганический скелетный материал может быть особенно пригоден для применения с целью разделения СO2/СО, СН42О и/или аккумуляции водорода.

Предлагаемые в изобретении пористые металлорганические скелетные материалы обладают указанными выше типичными свойствами металлорганических скелетных материалов. При этом в качестве по меньшей мере двухкоординационного органического соединения они содержат 2,5-фурандикарбоновую или 2,5-тиофендикарбоновую кислоту, соответственно производные этих кислот.

В контексте настоящего изобретения определение «производные» означает, что 2,5-фурандикарбоновая кислота, соответственно 2,5-тиофендикарбоновая кислота, могут присутствовать в скелетном материале в частично или полностью депротонированной форме. Кроме того, 2,5-фурандикарбоновая, соответственно 2,5-тиофендикарбоновая кислота, могут содержать один заместитель или независимо друг от друга несколько заместителей. Примерами подобных заместителей являются группы ОН, NH2, ОСН3, СН3, NH(CH3), N(CH3)2, CN, а также атомы галогенов. Однако по меньшей мере двухкоординационное органическое соединение предпочтительно является производным незамещенной 2,5-фурандикарбоно-вой кислоты, соответственно 2,5-тиофендикарбоновой кислоты. Кроме того, определение «производные» в соответствии с настоящим изобретением означает, что одна или несколько функциональных групп карбоновой кислоты могут находиться в виде соответствующего содержащего серу аналога. При этом содержащими серу аналогами являются функциональные группы C(=O)SH, а также их таутомеры и группы C(=S)SH, которые можно использовать вместо одной или обеих функциональных групп карбоновой кислоты. Однако содержащие серу аналоги предпочтительно не используют.

Согласно изобретению металлический компонент скелетного материала предпочтительно выбран из группы, включающей металлы групп Iа, IIа, IIIa, IVa-VIIIa и Ib-VIb периодической системы элементов. К особенно предпочтительным металлам относятся магний (Мg), кальций (Са), стронций (Sr), барий (Ва), скандий (Sc), иттрий (Y), лантаниды (Ln), титан (Ti), цирконий (Zr), гафний (Hf), ванадий (V), ниобий (Nb), тантал (Та), хром (Сr), молибден (Мо), вольфрам (W), марганец (Мп), рений (Re), железо (Fe), рутений (Ru), осмий (Os), кобальт (Со), родий (Rh), иридий (Ir), никель (Ni), палладий (Pd), платина (Pt), медь (Си), серебро (Аg), золото (Аu), цинк (Zn), кадмий (Cd), ртуть (Нg), алюминий (AI), галлий (Ga), индий (In), таллий (TI), кремний (Si), германий (Ge), олово (Sn), свинец (Рb), мышьяк (As), сурьма (Sb) и висмут (Bi).

Под лантанидами (Ln) подразумевают лантан (La), церий (Се), празеодим (Рr), неодим (Nd), прометий (Рm), самарий (Sm), европий (Еu), гадолиний (Gd), тербий (Тb), диспрозий (Dy), гольмий (Но), эрбий (Еr), тулий (Тm) и иттербий (Yb).

Особо следует упомянуть следующие ионы указанных выше элементов:Mg2+, Са2+, Sr2*, Ва2+, Sc3+, Y3+, Ln3+, Ti4+, Zr4+, Hf4*, V4+, V3+, V2+, Nb3+, Ta3+, Cr3+, Mo3+, W3+, Mn3+, Mn2+, Re3+, Re2+, Fe3+, Fe2+, Ru3+, Ru2+, Os3+, Os2+, Co3+, Co2+, Rh2+, Rh+, Ir2*, lr+, Ni2+, Ni+, Pd2+, Pd+, Pt2+, Pt+, Cu2+, Cu+, Ag+, Au+, Zn2+, Cd2+, Hg2+, Al3+, Ga3+, ln3+, Tl3+, Si4+, Si2+, Ge4+, Ge2+, Sn4+, Sn2+, Pb4+, Pb2+, As5+, As3+, As+, Sb5+, Sb3+, Sb+, Bi5+, Bi3+и Bi+.

Кроме того, особенно предпочтительными металлами являются магний (Мg), алюминий (AI), иттрий (Y), скандий (Sc), цирконий (Zr), титан (Ti), ванадий (V), хром (Сr), молибден (Мо), железо (Fe), кобальт (Со), медь (Сu), никель (Ni), цинк (Zn) и лантаниды (Ln). Более предпочтительными металлами являются алюминий (AI), магний (Мg), железо (Fe), медь (Си) и цинк (Zn). Предпочтительным металлом прежде всего является алюминий (AI).

Предлагаемый в изобретении способ получения предлагаемого в изобретении скелетного материала, включающий в качестве стадии (а) превращение реакционного раствора, содержащего по меньшей мере один ион металла соответствующей соли металла, 2,5-фурандикарбоновую кислоту, соответственно 2,5-тиофендикарбоновую кислоту, и растворитель, проводимое в температурном диапазоне от 100 до 150°С в течение по меньшей мере трех часов, и в качестве стадии (b) выделение выпавшего в осадок твердого вещества.

Превращение предпочтительно осуществляют по меньшей мере при периодическом перемешивании, что прежде всего относится к началу превращения.

В качестве исходного соединения используют соль металла. Начальной концентрации соли металла в реакционной смеси предпочтительно соответствуют диапазон от 0,05 до 0,8 моль/л. Кроме того, начальная концентрация соли металла предпочтительно составляет от 0,1 до 0,5 моль/л. Начальной концентрации соли металла прежде всего соответствует диапазон от 0,15 до 0,3 моль/л.

При этом определенное количество соли металла вводят в определенное количество реакционного раствора, так что концентрация ионов металла в реакционном растворе вследствие осаждения твердого вещества на стадии (b) снижается.

Кроме того, отношение начального количества используемой 2,5-фурандикарбоновой кислоты, соответственно 2,5-тиофендикарбоновой кислоты, к начальному количеству используемой соли металла (в пересчете на металл) предпочтительно находится в диапазоне от 0,5:1 до 2:1. Указанному отношению предпочтительно соответствует также диапазон от 1:1 до 1,8:1 или от 1:1 до 1,7:1.

Реакционная смесь, используемая на стадии (а) предлагаемого в изобретении способа получения предлагаемого в изобретении скелетного материала, содержит также растворитель.

Растворитель должен быть пригоден для перевода по меньшей мере части используемых исходных веществ в раствор. Кроме того, растворитель следует выбирать таким образом, чтобы можно было обеспечить необходимый температурный интервал.

Таким образом, в соответствии с предлагаемым в изобретении способом получения предлагаемого в изобретении материала превращение осуществляют в присутствии растворителя. При этом можно использовать сольвотермальные условия. Согласно настоящему изобретению термальным является такой способ получения, в соответствии с которым превращение осуществляют в резервуаре высокого давления, причем в процессе превращения резервуар остается закрытым и причем в нем создают повышенную температуру, в связи с чем внутри находящейся в нем реакционной среды возникает давление, обусловленное давлением паров присутствующего растворителя. Благодаря этому при необходимости может быть достигнута требуемая температура превращения.

Превращение предпочтительно осуществляют не в содержащей воду среде, а также не в сольвотермальных условиях.

Таким образом, превращение в соответствии с предлагаемым в изобретении способом предпочтительно осуществляют в присутствии неводного растворителя.

Превращение предпочтительно осуществляют под давлением, не превышающим 2 бар (абсолютных). Максимальное давление предпочтительно составляет 1230 мбар (абсолютных). В частности, превращение предпочтительно реализуют при атмосферном давлении. Однако при этом может возникать обусловленное конструкцией аппаратуры небольшое избыточное давление или давление ниже атмосферного. Таким образом, в соответствии с настоящим изобретением под атмосферным давлением подразумевают диапазон значений давления, которому соответствует фактическое атмосферное давление ±150 мбар.

Превращение осуществляют в температурном интервале от 100 до 150°С. Температура превращения предпочтительно составляет от 115 до 140°С. Кроме того, температура превращения предпочтительно составляет от 120 до 130°С.

Реакционный раствор может содержать также основание. При этом назначением основания прежде всего является облегчение растворения используемой кислоты. Однако, в случае использования органического растворителя необходимость в добавлении основания часто отсутствует. Тем не менее растворитель для осуществления предлагаемого в изобретении способа можно выбирать таким образом, чтобы он обладал щелочной реакцией, хотя данное условие и не является обязательным для осуществления способа.

Таким образом, можно использовать основание. Однако дополнительное основание предпочтительно не используют.

Кроме того, предпочтительным является превращение при перемешивании, интенсивность которого целесообразно постепенно повышать.

(Неводными) органическими растворителями предпочтительно являются C1-6-алканол, диметилсульфоксид, N,N-диметилформамид, N,N-диэтилформамид, N.N-диметилацетамид, ацетонитрил, толуол, диоксан, бензол, хлорбензол, метилэтилкетон, пиридин, тетрагидрофуран, этилацетат, при необходимости галогенированный С1-200-алкан, сульфолан, гликоль, N-метилпирролидон, гамма-бутиролактон, алициклические спирты, такие как циклогексанол, кетоны, такие как ацетон или ацетилацетон, циклокетоны, такие как циклогексанон, сульфолен или смеси указанных соединений.

C1-6-алканолом является спирт с 1-6 атомами углерода. Соответствующими примерами являются метанол, этанол, н-пропанол, изопропанол, н-бутанол, изобутанол, трет-бутанол, пентанол, гексанол, а также их смеси.

При необходимости галогенированным С1-200-алканом является алкан с 1-200 атомами углерода, один атом водорода, несколько атомов водорода или все атомы водорода которого могут быть заменены галогеном, предпочтительно хлором или фтором, в частности хлором. Соответствующими примерами являются хлороформ, дихлорметан, тетрахлорметан, дихлорэтан, гексан, гептан, октан, а также их смеси.

Предпочтительными растворителями являются диметилформамид, диэтилформамид, диметилацетамид и N-метилпирролидон. Особенно предпочтительным растворителем является диметилформамид.

Определение «неводный» предпочтительно относится к растворителю, максимальное содержание воды в котором в пересчете на общую массу растворителя составляет 10 мас.%, более предпочтительно 5 мас.%, также более предпочтительно 1 мас.%, также предпочтительно 0,1 мас.%, особенно предпочтительно 0,01 мас.%.

Максимальное содержание воды в процессе превращения предпочтительно составляет 10 мас.%, более предпочтительно 5 мас.%, также более предпочтительно 1 мас.%.

Под «растворителями» подразумевают как чистые растворители, так и смеси разных растворителей.

Стадию (а) предлагаемого в изобретении способа получения предлагаемого в изобретении скелетного материала реализуют в течение по меньшей мере трех часов. Превращение предпочтительно осуществляют в течение по меньшей мере 6 часов, более предпочтительно в течение по меньшей мере 12 часов, более предпочтительно в течение по меньшей мере 18 часов.

Кроме того, предлагаемый в изобретении способ включает стадию (b), на которой осуществляют выделение выпавшего в осадок твердого вещества.

На стадии (а) предлагаемого в изобретении способа происходит выпадение скелетного материала из реакционной смеси в осадок в виде твердого вещества. Выделение осадка осуществляют известными из уровня техники методами, такими как фильтрование или другие методы.

Предлагаемый в изобретении металлорганический скелетный материал может находиться в порошкообразной форме или в виде агломерата.

Предлагаемый в изобретении пористый металлорганический скелетный материал можно использовать как таковой в виде порошка или его можно преобразовать в формованное изделие.

В соответствии с этим другой аспект настоящего изобретения состоит в том, что предлагаемый в изобретении пористый металлорганический скелетный материал находится в виде порошка.

В соответствии с этим другим аспектом настоящего изобретения является формованное изделие, содержащее предлагаемый в изобретении пористый металлорганический скелетный материал.

Изготовление формованных изделий из металлорганических скелетных материалов описано, например, в международной заявке WO-A 03/102000.

При этом предпочтительным методом изготовления формованных изделий является стренгование или таблетирование. При изготовлении формованных изделий скелетный материал может содержать другие материалы, например, такие как связующие вещества, внешние смазки или другие добавки, которые необходимо добавлять в процессе изготовления формованных изделий. В скелетном материале могут присутствовать также другие компоненты, например адсорбенты, такие как активированный уголь, или другие компоненты.

Какие-либо ограничения в отношении возможной конфигурации формованных изделий в основном отсутствуют. Так, например, формованные изделия могут представлять собой, в частности, пеллеты, например дискообразные пеллеты, драже, шарики, гранулы, экструдаты, например, стренги, соты, решетки или полые тела.

Для изготовления указанных формованных изделий в принципе можно использовать любые пригодные методы. Предпочтительными прежде всего являются следующие методы изготовления формованных изделий:

- перемешивание/измельчение на бегунах скелетного материала или скелетного материала совместно по меньшей мере с одним связующим веществом, по меньшей мере с одной пастообразующей добавкой и/или по меньшей мере с одним матричным соединением с получением смеси, формование полученной смеси по меньшей мере одним пригодным методом, например экструдированием, при необходимости промывка, сушка и/или прокаливание экструдата и при необходимости конфекция,

таблетирование совместно по меньшей мере с одним связующим и/или другим вспомогательным веществом,

- нанесение скелетного материала по меньшей мере на одну при необходимости пористую подложку, причем полученный материал может быть подвергнут дальнейшей переработке в формованное изделие указанными выше методами,

- нанесение скелетного материала по меньшей мере на одну при необходимости пористую основу.

Перемешивание/измельчение и формование можно осуществлять любым пригодным методом, описанным, например, в Ullmanns Enzyklopadie der Technischen Chemie, 4-е издание, том 2, с.313 и следующие (1972).

Так, например, перемешивание/измельчение и/или формование можно осуществлять посредством поршневого или валкового пресса в присутствии или в отсутствие по меньшей мере одного связующего вещества, компаундирования, пеллетирования, таблетирования, экструдирования, соэкструдирования, вспенивания, прядения, наслаивания, гранулирования, предпочтительно распылительного гранулирования, распыления, распылительной сушки или комбинации двух или более указанных методов.

Еще более предпочтительно изготавливают пеллеты и/или таблетки.

Перемешивание и/или формование можно выполнять при повышенных температурах, например, в диапазоне от комнатной температуры до 300°С, и/или при повышенном давлении, например, в диапазоне от нормального давления до давления, составляющего несколько сот бар, и/или в атмосфере защитного газа, например, в присутствии по меньшей мере одного благородного газа, азота или смеси двух или более указанных газов.

Согласно другому варианту осуществления изобретения перемешивание и/или формование выполняют с добавлением по меньшей мере одного связующего вещества, в качестве которого в принципе можно использовать любое химическое соединение, которое придает подлежащей перемешиванию и/или формованию массе необходимую для осуществления этих процессов вязкость. В соответствии с этим связующими веществами согласно изобретению могут являться соединения, которые как повышают, так и уменьшают вязкость.

Предпочтительными связующими веществами прежде всего являются, например, содержащие оксид алюминия вещества, описанные, например, в международной заявке WO 94/29408, диоксид кремния, описанный, например, в европейской заявке на патент ЕР 0592050 А1, смеси диоксида кремния с оксидом алюминия, описанные, например, в международной заявке WO 94/13584, глинистые минералы, описанные, например, в японской патентной заявке JP 03-037156 А, в частности, монтмориллонит, каолин, бентонит, галлуазит, диккит, накрит и аноксит, алкоксисиланы, описанные, например, в европейском патенте ЕР 0102544 В1, в частности, тетраал-коксисиланы, например, тетраметоксисилан, тетраэтоксисилан, тетрапропоксисилан, тетрабутоксисилан или, например, триалкоксисиланы, в частности, триметоксисилан, триэтоксисилан, трипропоксисилан и трибутоксисилан, алкоксититанаты, в частности, тетраалкоксититанаты, например, тетраметоксититанат, тетраэтоксититанат, тетрапропоксититанат, тетрабутоксититанат или, например, триалкоксититанаты, в частности, триметок-сититанат, триэтоксититанат, трипропоксититанат и трибутоксититанат, алкоксицирконаты, в частности, тетраалкоксицирконаты, например, тетраметоксицирконат, тетраэтоксицирконат, тетрапропоксицирконат, тетрабутоксицирконат или, например, триалкоксицирконаты, в частности, триметоксицирконат, триэтоксицирконат, трипропоксицирконат и трибутоксицирконат, а также силиказоли, амфифильные вещества и/или графиты.

Помимо указанных выше соединений в качестве соединения, дополнительно повышающего вязкость, при необходимости можно использовать, например, также органическое соединение и/или гидрофильный полимер, например целлюлозу или производное целлюлозы, в частности метилцеллюлозу, полиакрилат, полиметакрилат, поливиниловый спирт, поливинилпирролидон, полиизобутилен, политетрагидрофуран и/или полиэтиленоксид.

В качестве пастообразующей добавки предпочтительно можно использовать, в частности, воду, по меньшей мере один спирт, например, одноатомный спирт с 1-4 атомами углерода, в частности, метанол, этанол, н-проавнол, изопропанол, 1-бутанол, 2-бутанол, 2-метил-1-пропанол или 2-метил-2-пропанол, смесь воды по меньшей мере с одним из указанных спиртов или многоатомный спирт, например, такой как гликоль, предпочтительно смешивающийся с водой многоатомный спирт, используемый как таковой или в виде смеси с водой и/или по меньшей мере с одним из указанных выше одноатомных спиртов.

Другими добавками, которые можно использовать для перемешивания и/или формования, являются, в частности, амины или производные аминов, например, соединения тетраалкиламмония или аминоспирты, а также соединения, содержащие карбонат, например карбонат кальция. Указанные другие добавки описаны, например, в европейских заявках на патент ЕР 0389041 А1 и ЕР 0200260 А1, а также в международной заявке WO 95/19222.

Последовательность введения добавок при формовании и перемешивании, включая матричные соединения, связующие вещества, пастообразующие веществ и вещества, повышающие вязкость, в принципе не является критичной.

В соответствии с другим предпочтительным вариантом осуществления изобретения формованное изделие, полученное в результате перемешивания и/или формования, подвергают по меньшей мере сушке, которую в общем случае выполняют в температурном интервале от 25 до 500°С, предпочтительно от 50 до 500°С, особенно предпочтительно от 100 до 350°С. Сушку можно осуществлять также в вакууме, в атмосфере защитного газа или в виде распылительной сушки.

Согласно особенно предпочтительному варианту в процессе подобной сушки из формованного изделия удаляют по меньшей мере часть по меньшей мере одного из соединений, используемых в качестве добавки.

Предлагаемый в изобретении металлорганический скелетный материал, а также предлагаемое в изобретении формованное изделие пригодны для аккумуляции газа.

Таким образом, другим аспектом настоящего изобретения является применение указанного металлорганического скелетного материала и указанного формованного изделия для аккумуляции газа.

В соответствии с этим другим аспектом настоящего изобретения является также метод аккумуляции газа, включающий стадию, на которой реализуют контакт газа с предлагаемым в изобретении скелетным материалом или предлагаемым в изобретении формованным изделием.

Для аккумуляции, в частности, пригоден водород.

Кроме того, предлагаемый в изобретении скелетный материал, соответственно предлагаемое в изобретении формованное изделие, пригодны для выделения газа из газовой смеси.

Таким образом, другим аспектом настоящего изобретения является применение предлагаемого в изобретении скелетного материала, соответственно предлагаемого в изобретении формованного изделия, для выделения газа из газовой смеси.

В соответствии с этим другим аспектом настоящего изобретения является также метод выделения газа из газовой смеси, включающий стадию, на которой реализуют контакт предлагаемого в изобретении скелетного материала или предлагаемого в изобретении формованного изделия с газовой смесью.

Под газовой смесью, в частности, подразумевают газовую смесь, содержащую диоксид углерода и монооксид углерода. Согласно изобретению из газовой смеси предпочтительно удаляют диоксид углерода.

Кроме того, газовой смесью может являться смесь, содержащая метан и воду. Из подобной газовой смеси предпочтительно удаляют газообразную воду. Подобной газовой смесью может являться, например, содержащий воду природный газ.

Изобретение более подробно поясняется на прилагаемых к настоящему описанию чертежах и приведенных ниже примерах.

На Фиг.1 показана адсорбция и десорбция при 40°С для предлагаемого в изобретении металлорганического скелетного материала (алюминия-2,5-фурандикарбоновой кислоты). На Фиг.1 представлена зависимость количества адсорбируемого газа (N) в мг/г скелетного материала от абсолютного давления (р) в мбар.

Как показано на Фиг.1, выделение диоксида углерода возможно в связи с отличием изотермы его адсорбции.

На Фиг.2 показана адсорбция водорода при 77 К скелетным материалом (алюминием-2,5-фурандикарбоновой кислотой) из примера 1, подвергнутым предварительному активированию в течение 4 часов при 130°С (давление водорода Ро при температуре 77 К составляет 94632,4 мм рт.ст.). На Фиг.2 представлена зависимость количества поглощенного водорода (в см3/г при стандартной температуре и давлении) (левая шкала), соответственно массовой доли водорода (% масс.) (правая шкала), от относительного давления (р/ро).

На Фиг.3 показана абсорбция газообразной воды скелетным материалом (алюминием-2,5-тиофендикарбоновой кислотой) при варьируемых значениях относительной влажности (RH). На Фиг.3 представлена зависимость количества W поглощенной воды (в мас.%) от относительной влажности RH (в %).

Примеры

Условия выполнения примера

Пример 1
Алюминий-2,5-фурандикарбоновая кислота
Исходное вещество Молярное количество Расчетное количество Экспериментально определенное количество
1) Хлорид алюминия·6Н2О 48,75 ммоль 11,8 г 11,8 г
2) 2,5-Фурандикарбоновая кислота 82,87 ммоль 12,9 г 12,9 г
3) Диметилформамид 6,8 моль 500,0 г 500,0 г

В четырехгорлой колбе объемом 2 литра в диметилформамиде суспендируют фурандикарбоновую кислоту и хлорид алюминия. Содержащий твердое вещество раствор в течение 24 часов кипятят при 130°С, причем образуется белая суспензия. После охлаждения белый осадок отделяют фильтрованием и подвергают однократной промывке 200 мл диметилформамида и четырехкратной промывке 200 мл метанола. Фильтровальный осадок в течение 16 часов сушат в вакууме при комнатной температуре.

Получают 10,3 г белого продукта.

Концентрация твердого вещества 2,0%,

выход на единицу объема в единицу времени 19,6 кг/м2/день,

выход в пересчете на алюминий 91%.

Анализы

Удельная поверхность по Ленгмюру OF (предварительное активирование при 130°С) 1153 м2/г (удельная поверхность по БЭТ 850 м2/г).

Результаты химического анализа:

ионы хлора 0,47 г/100 г
углерод 34,7 г/100 г
кислород 51,0 г/100 г
азот 0,9 г/100 г
водород 2,4 г/100 г
алюминий 11,7 г/100 г

Адсорбция воды (комнатная температура, относительная влажность 75%) 35 мас.%.

Условия выполнения примера

Пример 2
Магний-2,5-фурандикарбоновая кислота
Исходное вещество Молярное количество Расчетное количество Экспериментально определенное количество
1) Нитрат магния·6Н2О 73,1 ммоль 18,7 г 18,7 г
2) 2,5-Фурандикарбоновая кислота 82,87 ммоль 12,9 г 12,9 г
3) Диметилформамид 6,8 моль 500,0 г 500,0 г

В четырехгорлой колбе объемом 1 литр в диметилформамиде суспендируют фурандикарбоновую кислоту и нитрат магния. Содержащий твердое вещество раствор в течение 24 часов кипятят при 130°С, причем образуется белая суспензия. После охлаждения белый осадок отделяют фильтрованием и подвергают однократной промывке 200 мл диметилформамида и четырехкратной промывке 200 мл метанола. Фильтровальный осадок в течение 16 часов сушат в высоком вакууме при комнатной температуре.

Получают 17,5 г белого продукта.

Концентрация твердого вещества 2,9%,

выход на единицу объема в единицу времени 29,3 кг/м2/день,

выход в пересчете на магний 79,5%.

Анализы

Удельная поверхность по Ленгмюру OF (предварительное активирование при 130°С) 10 м2/г (удельная поверхность по БЭТ 7 м2/г).

Результаты химического анализа:

углерод 43,2 г/100 г
кислород 38,7 г/100 г
азот 5,8 г/100 г
водород 4,1 г/100 г
магний 8,1 г/100 г

Адсорбция воды (комнатная температура, относительная влажность 75%) 41 мас.%.

Условия выполнения примера

Пример 3
Железо-2,5-фурандикарбоновая кислота
Исходное вещество Молярное количество Расчетное количество Экспериментально определенное количество
1) Нитрат железа·9Н2О 48,7 ммоль 19,6 г 19,6 г
2) 2,5-Фурандикарбоновая кислота 82,87 ммоль 12,9 г 12,9 г
3) Диметилформамид 6,8 моль 500,0 г 500,0 г

В четырехгорлой колбе объемом 1 литр в диметилформамиде суспендируют фурандикарбоновую кислоту и нитрат железа. При нагревании до температуры 130°С раствор загустевает, превращаясь в темнокоричневый вязкий гель. При увеличении скорости вращения мешалки гель легко разжижается. Гель в течение 24 часов кипятят при 130°С. После охлаждения темнокоричневый осадок отделяют фильтрованием и подвергают однократной промывке 200 мл диметилформамида и четырехкратной промывке 200 мл метанола. Фильтровальный осадок в течение 16 часов сушат в высоком вакууме при комнатной температуре.

Получают 17,5 г темнокоричневого продукта.

Концентрация твердого вещества 3,2%,

выход на единицу объема в единицу времени 32,3 кг/м2/день,

выход в пересчете на железо 69,1%.

Анализы

Удельная поверхность по Ленгмюру OF (предварительное активирование при 130°С) 419 м2/г (удельная поверхность по БЭТ 303 м2/г).

Результаты химического анализа:

углерод 37,9 г/100 г
кислород 33,9 г/100 г
азот 7,1 г/100 г
водород 4,1 г/100 г
магний 15,0 г/100 г

Условия выполнения примера

Пример 4
Цинк-2,5-фурандикарбоновая кислота
Исходное вещество Молярное количество Расчетное количество Экспериментально определенное количество
1) Нитрат цинка·4Н2О 73,1 ммоль 19,5 г 19,5 г
2) 2,5-Фурандикарбоновая кислота 82,87 ммоль 12,9 г 12,9 г
3) Диметилформамид 6,8 моль 500,0 г 500,0 г

В четырехгорлой колбе объемом 1 литр в диметилформамиде суспендируют фурандикарбоновую кислоту и нитрат цинка. Содержащий твердое вещество раствор в течение 24 часов кипятят при 130°С, причем образуется белая суспензия. После охлаждения белый осадок отделяют фильтрованием и подвергают однократной промывке 200 мл диметилформамида и четырехкратной промывке 200 мл хлороформа. Фильтровальный осадок в течение 16 часов сушат в высоком вакууме при комнатной температуре.

Получают 15,6 г белого продукта.

Концентрация твердого вещества 2,9%,

выход на единицу объема в единицу времени 29,3 кг/м2/день,

выход в пересчете на цинк 54,1%.

Анализы

Удельная поверхность по Ленгмюру OF (предварительное активирование при 130°С) 3 м2/г (удельная поверхность по БЭТ 2 м2/г).

Результаты химического анализа:

углерод 39,2 г/100 г
кислород 33,9 г/100 г
азот 5,7 г/100 г
водород 3,9 г/100 г
цинк 17,1 г/100 г

Условия выполнения примера

Пример 5
Медь-2,5-фурандикарбоновая кислота
Исходное вещество Молярное количество Расчетное количество Экспериментально определенное количество
1) Хлорид меди·2Н2О 73,1 ммоль 12,5 г 12,5 г
2) 2,5-Фурандикарбоновая кислота 82,87 ммоль 12,9 г 12,9 г
3) Диметилформамид 6,8 моль 500,0 г 500,0 г

В четырехгорлой колбе объемом 1 литр в диметилформамиде суспендируют фурандикарбоновую кислоту и хлорид меди. Содержащий твердое вещество раствор в течение 24 часов кипятят при 130°С, причем образуется синяя суспензия. После охлаждения синий осадок отделяют фильтрованием и подвергают однократной промывке 200 мл диметилформамида и четырехкратной промывке 200 мл метанола. Фильтровальный осадок в течение 16 часов сушат в высоком вакууме при комнатной температуре.

Получают 2,5 г синего продукта.

Концентрация твердого вещества 0,5%,

выход на единицу объема в единицу времени 7,6 кг/м2/день,

выход в пересчете на медь 9,6%.

Анализы

Удельная поверхность по Ленгмюру OF (предварительное активирование при 130°С) 307 м2/г (удельная поверхность по БЭТ 227 м2/г).

Результаты химического анализа:

углерод 36,2 г/100 г
кислород 32,7 г/100 г
азот 5,6 г/100 г
водород 3,9 г/100 г
медь 17,9 г/100 г

Аппаратура

Четырехгорлая колба объемом 500 мл

Высокоэффективный холодильник

Масляная баня

Мешалка с покрытием из политетрафторэтилена

Термометр

Атмосфера азота

Исходная смесь

Пример 6
Алюминий-2,5-тиофендикарбоновая кислота
Молекулярная масса Количество Примечание
2,5-Тиофендикарбоновая кислота 172,16 г/моль 23,20 ммоль 3,99 г
Хлорид алюминия·6Н2О 241,43 г/моль 13,65 ммоль 3,33 г w=99%
Диметилформамид 73,0 г/моль 1904 ммоль 138,99 г 146 мл
Плотность 0,95 г/см3

Осуществление процесса

В четырехгорлую колбу загружают 146 мл N,N диметилформамида и при комнатной температуре и перемешивании добавляют 3,99 г тиофендикарбоновой кислоты (1) и 3,33 г хлорида алюминия х 6Н2О (2). Образуется бесцветный раствор. Затем реакционную смесь нагревают с обратным холодильником до 130°С. После 24-часового нагревания при указанной температуре реакционную смесь охлаждают до комнатной температуры.

Белую суспензию/осадок легко отфильтровывают на стеклянном нутчфильтре номер 3.

Промывка диметилформамидом

Фильтровальный осадок в течение 15 минут взмучивают в 100 мл N,N-диметилформамида, а затем отсасывают на фильтре. Указанную процедуру реализуют дважды, используя по 100 мл диметилформамида.

Промывка метанолом

Затем фильтровальный осадок в течение 15 минут взмучивают в 100 мл метанола (чистого для анализа), после чего отсасывают на фильтре. Указанную процедуру реализуют четырежды, используя по 100 мл метанола (чистого для анализа).

Сушка

Фильтровальный осадок в течение 24 часов сушат в вакуумном сушильном шкафу при температуре 130°С и давлении менее 20 мбар.

Получают 3,1 г бесцветного продукта.

Анализ

Удельная поверхность по БЭТ/Ленгмюру 1021/1375 м2/г.

Общие характеристики

Выход (сшитый материал) 62,5%

Выход (соль металла) 105,8%

Содержание твердого вещества (продукт) 2,2 мас.%

Выход на единицу объема в единицу времени 21,2 кг/м3/день.


МЕТАЛЛОРГАНИЧЕСКИЕ СКЕЛЕТНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ 2,5-ФУРАНДИКАРБОНОВОЙ ИЛИ 2,5-ТИОФЕНДИКАРБОНОВОЙ КИСЛОТЫ
МЕТАЛЛОРГАНИЧЕСКИЕ СКЕЛЕТНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ 2,5-ФУРАНДИКАРБОНОВОЙ ИЛИ 2,5-ТИОФЕНДИКАРБОНОВОЙ КИСЛОТЫ
МЕТАЛЛОРГАНИЧЕСКИЕ СКЕЛЕТНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ 2,5-ФУРАНДИКАРБОНОВОЙ ИЛИ 2,5-ТИОФЕНДИКАРБОНОВОЙ КИСЛОТЫ
Источник поступления информации: Роспатент

Показаны записи 231-240 из 657.
12.01.2017
№217.015.6266

Способ получения пропиленоксида

Предложен непрерывный способ получения пропиленоксида, включающий взаимодействие пропена с пероксидом водорода в метанольном растворе в присутствии катализатора силикалита титана-1. В соответствии с изобретением сырье для реакции, содержащее пропен, метанол и пероксид водорода, вводят в...
Тип: Изобретение
Номер охранного документа: 0002588575
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6931

Способ и устройство для изготовления ацетилена и синтез-газа

Изобретение касается улучшенного способа изготовления ацетилена и синтез-газа. Предложен способ получения ацетилена и синтез-газа путем частичного окисления углеводородов кислородом, причем исходные газы, в состав которых входит поток, содержащий углеводород, и поток, содержащий кислород,...
Тип: Изобретение
Номер охранного документа: 0002591940
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6941

Способ получения полиэфироспиртов

Настоящее изобретение относится к способу получения простых полиэфироспиртов путем реакции друг с другом следующих исходных компонентов: a) одного или нескольких алкиленоксидов и при необходимости диоксида углерода, а также b) одной или нескольких стартовых субстанций с водородной...
Тип: Изобретение
Номер охранного документа: 0002591208
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6bb8

Оболочечный катализатор из полой цилиндрической несущей подложки и нанесенной на ее наружную поверхность каталитически активной оксидной массы

Изобретение относится к способу повышения селективности при получении акриловой кислоты с помощью оболочечного катализатора для частичного газофазного окисления акролеина до акриловой кислоты, состоящего из полой цилиндрической несущей подложки длиной от 2 до 10 мм, наружным диаметром от 4 до...
Тип: Изобретение
Номер охранного документа: 0002592607
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6c44

Низкомолекулярные фосфорсодержащие полиакриловые кислоты и их применение в качестве диспергаторов

Изобретение относится к низкомолекулярным полиакриловым кислотам и их применению в качестве диспергаторов. Способ получения водных растворов полимеров акриловой кислоты со среднемассовой молекулярной массой от 3500 до 12000 г/моль осуществляют путем полимеризации акриловой кислоты в режиме...
Тип: Изобретение
Номер охранного документа: 0002592704
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6c6d

Способ получения 2-(2-трет.бутиламино-этокси)-этанола (трет.бутиламинодигликоля, tbadg)

Изобретение относится к усовершенствованному способу получения 2-(2-трет.-бутиламино-этокси)-этанола (трет.-бутиламинодигликоля). Продукт используют, например, для промывки газа, для избирательного разделения кислых газов, например при отделении HS от газовых потоков, содержащих смеси кислых...
Тип: Изобретение
Номер охранного документа: 0002592847
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6d3d

Применение, при необходимости, окисленных простых тиоэфиров алкоксилатов спирта в моющих и чистящих средствах

Настоящее изобретение относится к применению (окисленных) тиоэфиров алкоксилатов спиртов в моющих и чистящих средствах, особенно, в посудомоечных средствах, и к моющему и чистящему средству, особенно посудомоечному средству, содержащему (окисленный) тиоэфир алкоксилатов спирта. При этом эти...
Тип: Изобретение
Номер охранного документа: 0002597014
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.728f

Композиция для химико-механического полирования, содержащая поливинилфосфоновую кислоту и ее производные

Изобретение главным образом относится к композиции для химико-механического полирования (ХМП) и ее применению в полирующих субстратах полупроводниковой промышленности. Композиция содержит (A) неорганические частицы, органические частицы или их смесь, или их композит, (B) по меньшей мере один...
Тип: Изобретение
Номер охранного документа: 0002598046
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.74d1

Способ получения жестких полиуретановых пенопластов

Настоящее изобретение относится к способу получения жестких полиуретановых пенопластов посредством взаимодействия полиизоцианатов с по меньшей мере тремя различными соединениями, каждое с по меньшей мере двумя способными к реакции с изоцианатными группами атомами водорода в присутствии...
Тип: Изобретение
Номер охранного документа: 0002597931
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.74f2

Способ получения водных растворов трехосновных солей щелочного металла метилглицин-n,n-диуксусной кислоты

Изобретение относится к способу получения водных растворов трехосновных солей щелочного металла метилглицин-N,N-диуксусной кислоты путем синтеза по Штрекеру исходя из водного раствора α-аланина путем реакции с формальдегидом и синильной кислотой с получением α-аланин-N,N-диацетонитрила в одной...
Тип: Изобретение
Номер охранного документа: 0002598850
Дата охранного документа: 27.09.2016
Показаны записи 231-240 из 399.
20.08.2016
№216.015.4b59

Способ получения аминополикарбоксилатов

Изобретение относится к способу получения аминополикарбоксилатов путем окислительного дегидрирования соответствующих полиалканоламинов в присутствии катализатора, содержащего от 1 до 90 мас.% меди в пересчете на его общую массу, при использовании основания. Способ характеризуется тем, что...
Тип: Изобретение
Номер охранного документа: 0002594884
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.518f

Низкомолекулярные фосфорсодержащие полиакриловые кислоты и их применение в качестве диспергаторов

Изобретение относится к низкомолекулярным фосфорсодержащим полиакриловым кислотам, водным растворам полимеров акриловой кислоты, способу их получения и их применению в качестве диспергаторов. Водный раствор полимеров акриловой кислоты со среднемассовой молекулярной массой от более 3620 до 20000...
Тип: Изобретение
Номер охранного документа: 0002596196
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.5191

Вспененные материалы из полиуретана в качестве основного материала для получения лопастей, в частности, для ветросиловых установок

Настоящее изобретение относится к полиуретановому вспененному материалу повышенной прочности с плотностью от более 50 до 300 г/л, с не зависящей от плотности прочностью на сжатие более 7,5·10 МПа (л/г), с не зависящим от плотности модулем упругости при сжатии более 1,7·10 МПа (л/г), с не...
Тип: Изобретение
Номер охранного документа: 0002596189
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.5624

Низкомолекулярные, содержащие фосфор полиакриловые кислоты и их применение в качестве ингибиторов отложений в водопроводящих системах

Изобретение относится к низкомолекулярным, содержащим фосфор полиакриловым кислотам, к содержащим их водным растворам, способу их получения, а также к их применению в качестве ингибиторов отложений в водопроводящих системах. Описан водный раствор полимеров акриловой кислоты со средним...
Тип: Изобретение
Номер охранного документа: 0002593591
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.57cf

Сополимеризат и его применение для улучшения свойств текучести при низких температурах среднедистиллятных топлив

Изобретение относится к сополимеру, который применяют для улучшения свойств текучести среднедистиллятных топлив при низких температурах . Сополимеризат состоит из (i) от 10 до 90 мол.% повторяющихся звеньев структуры W1: в которой переменные значения R и R представляют собой...
Тип: Изобретение
Номер охранного документа: 0002588493
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5967

Многостадийные полимерные дисперсии, способ их получения и их применение

Изобретение относится к водным многостадийным полимерным дисперсиям, получаемым радикально инициируемой водной эмульсионной полимеризацией. Предложена водная многостадийная дисперсия полимеризатов, содержащая мягкую и твердую фазы, причем отношение твердой фазы к мягкой составляет 25-95% мас. к...
Тип: Изобретение
Номер охранного документа: 0002588130
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5be4

Водная полирующая композиция и способ химико-механического полирования подложек, имеющих структурированные или неструктурированные диэлектрические слои с низкой диэлектрической постоянной

Изобретение направлено на новую полирующую композицию, которая особенно хорошо подходит для полирования подложек, имеющих структурированные или неструктурированные диэлектрические слои с низкой или ультранизкой диэлектрической постоянной. Водная полирующая композиция содержит (A) абразивные...
Тип: Изобретение
Номер охранного документа: 0002589482
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6004

Стабильное при хранении жидкое моющее или чистящее средство, содержащее протеазу и амилазу

Изобретение относится к области биохимии. Представлено применение модифицированной протеазы в качестве средства для повышения стабильности при хранении амилазы в жидком моющем или чистящем средстве, включающем амилазу и протеазу. Изобретение обеспечивает пониженную дезактивацию амилазы...
Тип: Изобретение
Номер охранного документа: 0002590648
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.620e

Водная полирующая композиция и способ химико-механического полирования подложек, содержащих пленки на основе оксидкремниевого диэлектрика и на основе поликремния

Изобретение относится к новым водным полирующим композициям, которые особенно подходят для полирования полупроводниковых подложек, содержащих пленки на основе оксидкремниевого диэлектрика и поликремния, необязательно содержащих пленки на основе нитрида кремния. Композиция содержит (A)...
Тип: Изобретение
Номер охранного документа: 0002588620
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6266

Способ получения пропиленоксида

Предложен непрерывный способ получения пропиленоксида, включающий взаимодействие пропена с пероксидом водорода в метанольном растворе в присутствии катализатора силикалита титана-1. В соответствии с изобретением сырье для реакции, содержащее пропен, метанол и пероксид водорода, вводят в...
Тип: Изобретение
Номер охранного документа: 0002588575
Дата охранного документа: 10.07.2016
+ добавить свой РИД