×
27.08.2015
216.013.74cd

Результат интеллектуальной деятельности: СПОСОБ ЭКСПЛУАТАЦИИ ПОДВОДНОЙ ЛОДКИ, А ТАКЖЕ ПОДВОДНАЯ ЛОДКА

Вид РИД

Изобретение

№ охранного документа
0002561476
Дата охранного документа
27.08.2015
Аннотация: Группа изобретений относится к оборудованию для подводных лодок. При способе эксплуатации подводной лодки используют приводной двигатель, подпитываемый через импульсные вентильные преобразователи частоты. В зависимости от вариантов подключения его фазных обмоток получают два режима его работы для подводного и надводного плавания соответственно. Для первого режима оптимизируют коэффициент полезного действия приводного двигателя и его акустические шумы. Переключение режимов происходит при достижении определенной рабочей точки, определяемой в зависимости от числа оборотов приводного двигателя, тока фазных обмоток, характеристики винта. Подводная лодка содержит приводной двигатель, содержащий обмотку, разделенную на несколько фазных обмоток, которые могут подключаться двумя способами - последовательно и параллельно. Фазные обмотки подсоединены к источнику питания постоянного тока посредством двух полумостов. Для последовательного включения фазных обмоток используют два полумоста и коммутирующий элемент. Обеспечивается оптимизация режимов работы двигателя. 2 н. и 11 з.п. ф-лы, 5 ил.

Изобретение относится к способу эксплуатации подводной лодки согласно ограничительной части пункта 1 формулы изобретения или к подводной лодке согласно ограничительной части пункта 8 формулы изобретения.

Пропульсивная система привода подводной лодки, описанная в патенте WO 2004/068694, содержит электрическую машину, выполненную в виде синхронной машины с ротором с возбуждением от постоянного магнита и со статором с установленной в нем статорной обмоткой, содержащей множество фаз обмотки, например 24 фазы обмотки. При этом для каждой из фазных обмоток имеется соответствующий отдельный однофазный вентильный преобразователь частоты для подпитки фазной обмотки электрическим током. При этом вентильные преобразователи частоты для подпитки фазных обмоток находятся внутри модульных вентильных преобразователей частоты и установлены на стенде преобразователя в осевом направлении между подшипниковыми щитами со сторон А и В. При этом вентильные преобразователи выступают в промежуточное пространство, образованное валом синхронной машины и несущей ротор втулкой ротора, прочно на скручивание закрепленной на валу.

Такие пропульсивные системы привода подводных лодок пользуются большой популярностью за свою большую компактность, за связанную с этим незначительную потребность в месте и за малые шумы, производимые при работе, и сбываются заявителем, например, под фирменным знаком «SINAVY Permasyn».

Однофазный вентильный преобразователь частоты, приданный каждой фазной обмотке, снабжается электроэнергией от источника питания постоянного тока. При этом каждый импульсный вентильный преобразователь частоты обычно содержит два полумоста, каждый с двумя полупроводниковыми переключателями. С помощью соответствующих устройств управления переключатели управляются таким образом, что на выходных зажимах импульсного вентильного преобразователя частоты и тем самым на подсоединенной там фазной обмотке устанавливается желательное напряжение. При этом выходное напряжение возникает как разностное напряжение выходных потенциалов обоих полумостов.

При этом двигатель имеет два рабочих режима или рабочих диапазона:

а) Первый рабочий режим для работы двигателя с оптимальным коэффициентом полезного действия и с акустически оптимальными шумами в режиме малых оборотов двигателя, когда две соответствующие фазные обмотки посредством добавочного дросселя включены последовательно и подпитываются от соответствующего полумоста импульсных вентильных преобразователей частоты, приданных обеим фазным обмоткам. В этом случае все схемы последовательного включения фазных обмоток, вытекающие из этого и подпитываемые постоянным напряжением от общего источника питания постоянного тока, снова в свою очередь включены параллельно друг другу.

б) Второй рабочий режим для работы на сравнительно больших оборотах и для больших приводных мощностей, когда все фазные обмотки подпитываются от соответствующего установленного внутри импульсного вентильного преобразователя частоты, и при этом все фазные обмотки, подпитываемые постоянным напряжением от источника питания постоянного тока, включены параллельно друг другу.

Электрическая схема такого переключения описана, например, в патентах ЕР 0334112 В1 и DE 3345271 А.

При этом определена рабочая точка, по достижении которой происходит переключение с первого режима работы на второй или наоборот. Рабочая точка может быть определена, например, пороговой величиной числа оборотов приводного двигателя, причем эта пороговая величина в свою очередь определена максимально допустимым номинальным током в схеме последовательного включения фазных обмоток.

Поскольку в случае судна или лодки приводная мощность и тем самым нагрузочный ток связаны с числом оборотов согласно характеристике винта, можно получить число оборотов, начиная с которого наступает превышение допустимого номинального тока.

Если двигатель находится в первом рабочем режиме и пороговая величина для числа оборотов превышается, приводной двигатель переключается устройством управления на второй рабочий режим. Если двигатель, наоборот, находится во втором рабочем режиме и пороговая величина для числа оборотов превышается, приводной двигатель переключается устройством управления со второго рабочего режима на первый.

Исходя из этого задачей настоящего изобретения при способе согласно ограничительной части пункта 1 формулы изобретения или при подводной лодке согласно ограничительной части пункта 8 формулы изобретения является достижение возможно более длительной работы двигателя в первом рабочем режиме, т.е. при оптимизации, например, в отношении коэффициента полезного действия и акустических шумов.

Решение задачи, относящейся к способу, удается согласно отличительной части пункта 1 формулы изобретения за счет того, что при надводном плавании подводной лодки для переключения выбирается иная рабочая точка, нежели чем при подводном плавании подводной лодки.

При этом за основу берется понимание того, что до сих пор рабочую точку для переключения приходилось получать по характеристике винта для надводного плавания, поскольку она имеет более крутой ход, чем характеристика винта для подводного плавания, и что таким образом она является «более критической», т.е. с увеличением числа оборотов приводит к большим токам в фазной обмотке, чем при подводном плавании. Однако при учете режима плавания подводной лодки могут учитываться, соответственно, связанные с этим разные характеристики винта для надводного и подводного плаваний и тем самым могут получаться рабочая точка для переключения при надводном плавании и отличная от нее рабочая точка для переключения при подводном плавании. Поскольку ход характеристики винта при подводном плавании является более пологим, чем ход характеристики винта при надводном плавании, существует диапазон числа оборотов, при котором двигатель в случае подводного плавания еще находится в первом рабочем режиме, однако в случае надводного плавания уже во втором рабочем режиме. Таким образом с помощью способа согласно изобретению в случае подводного плавания работа в первом рабочем режиме, т.е., например, при оптимизации в отношении коэффициента полезного действия и акустических шумов, может продлеваться. При этом особым преимуществом является то, что это возможно без необходимости в серьезных конструктивных изменениях двигателя.

Предпочтительно, первым рабочим режимом является режим, в котором приводной двигатель оптимизирован в отношении своего коэффициента полезного действия и своих акустических шумов.

Рабочий режим для переключения может быть особенно просто определен пороговой величиной числа оборотов приводного двигателя. Однако пороговые величины возможны также для других рабочих параметров.

Пороговая величина числа оборотов может быть получена по пороговой величине для максимально допустимого номинального тока за счет соответствующего числа последовательно включенных фазных обмоток, т.е. за счет схемы последовательного включения фазных обмоток, и по характеристике винта.

Режим плавания особенно просто может быть определен путем регистрации глубины погружения подводной лодки. Для этого в распоряжении имеются разные возможности, известные специалисту. Предпочтительно регистрация глубины погружения осуществляется системой автоматизации более высокого уровня иерархии.

В одном из конструктивно особенно простых вариантов осуществления фазные обмотки посредством двух соответствующих полумостов подсоединены к источнику питания постоянного тока.

Для простоты изготовления схемы последовательного включения соответствующего числа фазных обмоток два соответствующих полумоста из этих фазных обмоток могут быть соединены друг с другом коммутирующим элементом.

Решение задачи, относящейся к подводной лодке, согласно отличительной части пункта 8 формулы изобретения удается за счет того, что устройство управления выполнено таким образом, что во время надводного плавания подводной лодки оно выбирает иную рабочую точку для переключения, нежели чем при подводном плавании подводной лодки.

Согласно предпочтительной форме исполнения подводной лодки первым рабочим режимом является режим, в котором приводной двигатель оптимизирован в отношении своего коэффициента полезного действия и своих акустических шумов.

Предпочтительно рабочая точка определена пороговой величиной числа оборотов приводного двигателя.

Предпочтительно пороговая величина числа оборотов получается из пороговой величины максимально допустимого номинального тока с помощью последовательно включенных фазных обмоток и характеристики винта.

Фазные обмотки посредством двух соответствующих полумостов, предпочтительно, подсоединены к источнику питания постоянного тока.

Согласно другому предпочтительному варианту осуществления для последовательного включения соответствующего числа фазных обмоток два соответствующих полумоста их этих фазных обмоток соединяются друг с другом коммутирующим элементом.

Преимущества, указанные для способа согласно изобретению и его предпочтительных вариантов осуществления, относятся, соответственно, к подводной лодке согласно изобретению и к ее соответствующим предпочтительным формам исполнения.

Ниже изобретение, а также его другие предпочтительные варианты осуществления более подробно поясняются на примерах выполнения на фигурах, на которых

Фиг.1 изображает местный разрез принципиального варианта осуществления пропульсивной системы привода для подводной лодки с синхронной машиной с возбуждением от постоянного магнита и с импульсными вентильными преобразователями частоты, установленными в корпусе машины,

Фиг.2 - подводную лодку с пропульсивной системой привода на Фиг.1,

Фиг.3 - принципиальную схему расположения фазных обмоток и импульсных вентильных преобразователей частоты приводного двигателя на Фиг.1,

Фиг.4 - принципиальную схему питания двух фазных обмоток, включенных параллельно и последовательно, и

Фиг.5 - диаграмму с характеристиками винта для надводного и подводного плавания.

На Фиг.1 в принципиальном виде в местном разрезе изображена пропульсивная система 1 привода подводной лодки, которая, как показано на Фиг.2, обычно установлена в кормовой части 102 подводной лодки 100 и приводит во вращение винт 101 для привода подводной лодки 100. В случае подводной лодки 100 речь идет, например, об обычной подводной лодке с экипажем от 50 до 100 человек. Пропульсивная система 1 привода имеет, например, мощность 0,5-2 МВт.

Пропульсивная система 1 привода подводной лодки содержит выполненный в виде синхронной машины приводной двигатель 2 с ротором 3 с возбуждением от постоянного магнита и со статором 4 со статорной обмоткой 5. При этом статорная обмотка 5, как это, в частности, вытекает из принципиальной схемы на Фиг.3, делится на множество фазных обмоток 6, 6', из которых в случае стандартной обмотки 5, в принципе изображенной на Фиг.3, предусмотрены 24 фазных обмотки 6, 6'.

Приводной двигатель 2 содержит корпус 10 машины, окружающий внутреннее пространство 19, в котором установлены ротор 3 и статор 4. Корпус 10 машины формируется в осевом направлении, т.е. в направлении оси вращения вала 9 машины, подшипниковыми щитами 11 и 12 со сторон А и В.

При этом для каждой из фазных обмоток 6, 6' имеется соответствующий отдельный импульсный вентильный преобразователь 7 частоты для подпитки соответствующей фазной обмотки 6, 6' электрическим током (см. Фиг.3). При этом подсоединение каждой отдельной фазной обмотки 6, 6' к приданному ей вентильному преобразователю 7 частоты осуществляется посредством соединительных проводов 8.

Вентильные преобразователи 7 частоты, питающие статорную обмотку 5, установлены внутри двигателя 2 между подшипниковыми щитами 11 и 12 со сторон А и В на стенде 13 преобразователя и находятся в преобразовательных модулях 14. При этом преобразовательные модули 14 выступают в промежуточное пространство 20, образованное между валом 9 двигателя 2 и прочно на скручивание закрепленной на нем колоколообразной втулкой 21 ротора, несущей ротор 3. Вместо колоколообразной втулки 21 ротора может быть использована также Т-образная втулка ротора, образующая по обе стороны вала 9 ротора соответствующее промежуточное пространство 20, в которое выступают преобразовательные модули 14.

В примере выполнения, изображенном на Фиг.3, в один преобразовательный модуль 14 собраны по два вентильных преобразователя 7 частоты, выполненных в качестве инверторов, а именно вентильные преобразователи WR101 и WR102, WR103 и WR104, WR105 и WR106, WR107 и WR108, WR109 и WR110, WR111 и WR112, WR201 и WR202, WR203 и WR204, WR205 и WR206, WR207 и WR208, WR209 и WR210, WR211 и WR212.

Шесть преобразовательных модулей 14 для подпитки фазных обмоток 6 подключены посредством предусмотренной для них соединительной линии 15 к части 17 сети источника питания постоянного тока подводной лодки, здесь - бортовой сети постоянного тока подводной лодки. Шесть преобразовательных модулей 14 для подпитки фазных обмоток 6' подсоединены посредством предусмотренной для них соединительной линии 16 к части 18 сети источника питания постоянного тока.

Вместо двух вентильных преобразователей 7 частоты в каждом модульном преобразователе 14 частоты в один преобразовательный модуль 14 могут быть сведены более двух вентильных преобразователя 7 частоты.

При этом двигатель имеет один первый рабочий режим, при котором каждые две фазные обмотки 6 и 6' соединены последовательно, и второй рабочий режим, при котором все фазные обмотки 6 и 6' соединены параллельно друг другу.

В принципиальной схеме на Фиг.4 изображена подпитка двух соответствующих фазных обмоток 6 в качестве примера для вентильных преобразователей частоты WR101 и WR102. Соответствующая функциональность имеет место и для других вентильных преобразователей частоты или пар вентильных преобразователей частоты системы 1 привода.

Вентильные преобразователи частоты WR101 и WR102 с помощью токопроводящих и находящихся под напряжением линий 15, 15' с положительным потенциалом +UDC и с отрицательным потенциалом -UDC подсоединены к источнику питания постоянного тока.

Однофазные импульсные вентильные преобразователи частоты WR101 и WR102 содержат по два соответствующих полумоста W1, W1' и W2, W2'. Каждый из полумостов W1, W1', W2, W2' содержит по одному полупроводниковому переключателю (например, в виде биполярного транзистора с изолированным затвором) установленному, соответственно, во входной и выходной ветвях. В случае полумостов W1 и W1' это переключатели SE1 и SA1, SE1' и SA1', соответственно. В случае полумостов W2 и W2' это переключатели SE2 и SA2, SE2' и SA2', соответственно. При этом индекс «Е» означает переключатель, установленный во входной ветви, а индекс «А» переключатель, установленный в выходной ветви.

Посредством соответствующего подходящего устройства 30 управления для каждого из вентильных преобразователей частоты WR101, WR102 переключатели SE1, SA1, SE1', SA1' и SE2, SA2, SE2', SA2', соответственно, управляются таким образом, чтобы на выходных зажимах вентильных преобразователей WR101 и WR102 частоты и тем самым на соответствующих подключенных там фазных обмотках 6 устанавливалось желательное напряжение.

При этом фазная обмотка 6, относящаяся к вентильному преобразователю WR101 частоты, посредством переключателя S1 отключается от второго полумоста W1' вентильного преобразователя WR101 частоты, а фазная обмотка 6, сама по себе относящаяся к вентильному преобразователю WR102 частоты, посредством переключателя S2 отключается от первого полумоста W2 вентильного преобразователя WR102 частоты. Кроме того, посредством переключателя S3 фазная обмотка 6, относящаяся к вентильному преобразователю WR101 частоты, по цепи 31, в которую включен добавочный дроссель 32, включается последовательно с фазной обмоткой 6, относящейся к вентильному преобразователю WR102 частоты. Таким образом обе фазные обмотки 6 по схеме последовательного включения могут снабжаться электрической энергией через первый полумост W1 первого вентильного преобразователя WR101 частоты и через второй полумост W2´ второго вентильного преобразователя WR102 частоты. Добавочный дроссель 32 служит для сглаживания тока во избежание высших гармоник и вызываемых ими моментов качания двигателя.

Посредством устройств 30 управления переключатели SE1, SA1, SE2', SA2' управляются таким образом, чтобы в схеме последовательного включения фазных обмоток 6 устанавливалось желательное напряжение.

Если обе фазные обмотки 6 работают по схеме последовательного включения, приводной двигатель для оптимизации коэффициента полезного действия и акустических шумов находится в первом рабочем режиме двигателя.

Если переключатели 3 разомкнуты, а переключатели S1 и S2 замкнуты, то каждая фазная обмотка 6 подпитывается через приданный ей вентильный преобразователь WR101 или WR102 частоты. В этом случае все фазные обмотки включены параллельно друг другу, а приводной двигатель 2 находится во втором рабочем режиме.

Устройство 40 управления служит для переключения приводного двигателя 2 с первого рабочего режима на второй или наоборот, когда приводной двигатель 2 достигает определенной рабочей точки. Для этого устройство 40 управления регистрирует с помощью автоматизированной системы подводной лодки 100 информацию о режиме плавания подводной лодки 100 (например, в виде информации о глубине Т погружения подводной лодки) и о числе n оборотов приводного двигателя и в зависимости от этой информации подает устройствам 30 управления вентильных преобразователей WR101 или WR102 частоты, а также переключателям S1, S2, S3 команды управления.

При этом устройство 40 управления выполнено таким образом, что при надводном плавании подводной лодки она имеет иную рабочую точку для переключения, нежели чем при подводном плавании подводной лодки.

Рабочая точка для переключения в примере выполнения определяется пороговой величиной числа оборотов приводного двигателя 2. Эта пороговая величина в свою очередь определяется допустимым номинальным током, протекающим через схему последовательного включения фазных обмоток 6. Допустимый номинальный ток в свою очередь в решающей степени определяется токовой нагрузкой на дроссель 32.

Как показано на Фиг.5, для судна или лодки приводная мощность Р и тем самым нагрузочный ток связаны с числом n оборотов приводного двигателя через характеристику винта. При этом через Ps обозначается характеристика винта для надводного плавания, а через Pt - характеристика винта для подводного плавания. Таким образом удается получать число оборотов, начиная с которого превышается максимально допустимый номинальный ток. Однако при этом учитывается, находится ли подводная лодка в подводном или надводном плавании. При надводном плавании на основе характеристики Ps винта при надводном плавании для максимальной приводной мощности Pmax, соответствующей максимальному току, при работе двигателя 2 в первом рабочем режиме получается максимальное число ns,max. Соответственно, при подводном плавании на основе характеристики Pt винта при подводном плавании для максимальной приводной мощности Pmax, соответствующей максимальному току, при работе двигателя 2 в первом рабочем режиме получается максимальное число nt,max. Пороговые величины ns,max и nt,max записываются в устройстве 30 управления. В этом случае для чисел n < ns,max или nt,max оборотов двигатель 2 находится в первом рабочем режиме, а в случае чисел n > ns,max или nt,max оборотов двигатель 2 находится во втором рабочем режиме.

Если двигатель 2 находится в первом рабочем режиме, устройство 40 управления в случае надводного плавания при увеличении чисел оборотов по достижении числа ns,max оборотов, а в случае подводного плавания по достижении числа nt,max оборотов вызывает переключение на второй рабочий режим.

Если двигатель 2, наоборот, находится во втором рабочем режиме, устройство 40 управления в случае надводного плавания при уменьшении чисел оборотов по достижении числа ns,max оборотов, а в случае подводного плавания по достижении числа nt,max оборотов вызывает переключение на первый рабочий режим, поскольку характеристика Ps винта для надводного плавания проходит круче, чем характеристика Pt винта для подводного плавания, nt,max > ns,max. Таким образом с учетом режима плавания подводной лодки 100 при подводном плавании для чисел оборотов в диапазоне от ns,max до nt,max еще обеспечивается работа в первом рабочем режиме, в то время как при надводном плавании она больше невозможна.


СПОСОБ ЭКСПЛУАТАЦИИ ПОДВОДНОЙ ЛОДКИ, А ТАКЖЕ ПОДВОДНАЯ ЛОДКА
СПОСОБ ЭКСПЛУАТАЦИИ ПОДВОДНОЙ ЛОДКИ, А ТАКЖЕ ПОДВОДНАЯ ЛОДКА
СПОСОБ ЭКСПЛУАТАЦИИ ПОДВОДНОЙ ЛОДКИ, А ТАКЖЕ ПОДВОДНАЯ ЛОДКА
СПОСОБ ЭКСПЛУАТАЦИИ ПОДВОДНОЙ ЛОДКИ, А ТАКЖЕ ПОДВОДНАЯ ЛОДКА
СПОСОБ ЭКСПЛУАТАЦИИ ПОДВОДНОЙ ЛОДКИ, А ТАКЖЕ ПОДВОДНАЯ ЛОДКА
Источник поступления информации: Роспатент

Показаны записи 271-280 из 1 427.
20.09.2014
№216.012.f45b

Устройство для аккумулирования электроэнергии, включающее батарею оксидно-ионных аккумуляторных элементов и модульные конфигурации

Заявленное изобретение относится к перезаряжаемому устройству для аккумулирования электроэнергии. При этом в одном из вариантов осуществления используется электролит с анионной проводимостью и перенос ионов между двумя электродами, где один из электродов предпочтительно является металлическим...
Тип: Изобретение
Номер охранного документа: 0002528388
Дата охранного документа: 20.09.2014
27.09.2014
№216.012.f729

Динамоэлектрическая машина с собственным вентилятором

Изобретение относится к динамоэлектрической машине. Динамоэлектрическая машина имеет большое количество полюсов и содержит собственный вентилятор, который с помощью фрикционной планетарной передачи соединен с валом (2). Наружное кольцо (9) первого подшипника (5) качения фрикционной планетарной...
Тип: Изобретение
Номер охранного документа: 0002529110
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f93f

Система и способ для определения состояния подшипника

Изобретение относится к измерительной технике, в частности для определения состояния подшипника электрической машины. Способ заключается в том, что посредством сенсорного блока (20) определяют измеренное значение (21). Измеренное значение передают на блок (22) моделирования. Посредством блока...
Тип: Изобретение
Номер охранного документа: 0002529644
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f9ba

Способ для генерации пара с высоким кпд

Изобретение относится к генерации пара из рабочего тела парогенератора, который предпочтительно выполнен как парогенератор на отходящем тепле. Предлагается способ преобразования в пар рабочего тела парогенератора, при котором в теплообменнике для преобразования в пар рабочего тела тепловая...
Тип: Изобретение
Номер охранного документа: 0002529767
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f9c0

Быстродействующая дистанционная защита для сетей энергоснабжения

Изобретение относится к способу для распознавания короткого замыкания (16) в линии (10) многофазной электрической сети энергоснабжения с заземленной нейтралью. Сущность: принимаются значения выборок тока и напряжения и формируется сигнал неисправности, если выполненная электрическим устройством...
Тип: Изобретение
Номер охранного документа: 0002529773
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fa7c

Топливная трубка для горелки

Топливная трубка для горелки, в частности для горелки газовой турбины, содержит конец, который имеет поверхность под форсунки, а также, по меньшей мере, две топливные форсунки. Поверхность под форсунки снабжена шлицами между топливными форсунками и выполнена в виде конической кольцевой...
Тип: Изобретение
Номер охранного документа: 0002529970
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fd46

Подставка для горелки камеры сгорания газовой турбины и газовая турбина

Изобретение относится к энергетике. Камера сгорания газовой турбины, у которой предусмотрены вставка для горелки, которая имеет стенку с холодной и горячей сторонами и край, ограничивающий стенку вставки для горелки. Край имеет, по меньшей мере, частично охватывающее, выступающее над холодной...
Тип: Изобретение
Номер охранного документа: 0002530684
Дата охранного документа: 10.10.2014
20.10.2014
№216.012.fe6c

Электрический контактный элемент с главной осью

Изобретение относится к электрическому контактному элементу. Электрический контактный элемент имеет главную ось (2). Главная ось (2) пересекает многоугольную базовую поверхность (1) контактного элемента. Вокруг главной оси (2) расположена контактная втулка (3). Входное отверстие контактной...
Тип: Изобретение
Номер охранного документа: 0002530988
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fed6

Переходный канал газотурбинного двигателя и способ его изготовления, а также газотурбинный двигатель

Переходный канал для соединения камеры сгорания и турбинной части газотурбинного двигателя содержит оболочку, включающую первую и вторую поверхности. Первая и вторая поверхности оболочки соединены пробиванием, а оболочка переходного канала выполнена по меньшей мере из одного листа,...
Тип: Изобретение
Номер охранного документа: 0002531094
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.00ed

Каскадный ускоритель

Заявленное изобретение относится к ускорительной технике. В заявленном каскадном ускорителе предусмотрено два набора конденсаторов, соответственно соединенных последовательно и включенных через диоды. Каскадный ускоритель содержит образованный посредством отверстий в электродах конденсаторов...
Тип: Изобретение
Номер охранного документа: 0002531635
Дата охранного документа: 27.10.2014
Показаны записи 271-280 из 943.
27.07.2014
№216.012.e4d1

Способ и устройство для увеличения добычи в месторождении

Изобретение относится к способу и устройству для повышения добычи в месторождении, содержащем породу, которая включает в себя по меньшей мере один раскрываемый путем размельчения породы минерал ценного материала и по меньшей мере один другой минерал. Способ включает следующие этапы: выполнение...
Тип: Изобретение
Номер охранного документа: 0002524367
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e4fc

Способ функционирования рельсового транспортного средства

Изобретение относится к рельсовым транспортным средствам. Способ функционирования рельсового транспортного средства, при котором на участке пути установлена точка движения по инерции, при достижении которой отключают тягу транспортного средства и оно движется по инерции до конца участка пути....
Тип: Изобретение
Номер охранного документа: 0002524410
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e57b

Способ и система для режима медленного проворачивания турбоагрегата

Изобретение касается системы и способа для медленного проворачивания валопровода. Технический результат заключается в обеспечении возможности медленного проворачивания валопровода на электростанции без применения при этом внешнего масляного гидромотора. Система для режима медленного...
Тип: Изобретение
Номер охранного документа: 0002524537
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e5ae

Энергетическая установка, работающая на органическом топливе, с устройством для отделения диоксида углерода и способ эксплуатации такой установки

Изобретение относится к энергетике. Энергетическая установка, работающая на органическом топливе, включает в себя котельный агрегат, установленную следом за котельным агрегатом через горячий трубопровод промежуточного перегрева паровую турбину и устройство для отделения диоксида углерода,...
Тип: Изобретение
Номер охранного документа: 0002524588
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e64a

Способ и устройство для определения скорости потока магнитных или ферромагнитных частиц и их применение

Настоящее изобретение относится к способу и устройству для определения скорости потока магнитных или ферромагнитных частиц (8) в суспензии (3), протекающей через контрольные зоны. Посредством измерительной катушки (4), окружающей первую контрольную зону (2), измеряется магнитный поток Фв...
Тип: Изобретение
Номер охранного документа: 0002524747
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e6b8

Способ работы подстанции системы электроснабжения

Группа изобретений относится к устройствам подстанций для подстанций систем электроснабжения. Технический результат заключается в обеспечении устройства подстанции, требующего меньших усилий по реконфигурированию в случае замены устройства. Для этого упомянутое устройство подстанции выполнено с...
Тип: Изобретение
Номер охранного документа: 0002524857
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.ea81

Защита параллельных линий электрической сети энергоснабжения

Изобретение относится к области электротехники и может быть использовано для защиты электрической сети энергоснабжения. Технический результат - повышение надежности и избирательности решений о рабочих состояниях параллельных линий многофазной электрической сети энергоснабжения. При защите...
Тип: Изобретение
Номер охранного документа: 0002525841
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.eb1c

Способ дооборудования работающей на ископаемом топливе энергоустановки устройством отделения диоксида углерода

Изобретение относится к энергетике. Способ дооборудования энергоустановки, работающей на ископаемом топливе, содержащей многокорпусную паровую турбину и конденсатор, устройством отделения диоксида углерода, при котором поглощающая способность паровой турбины согласуется с технологическим паром,...
Тип: Изобретение
Номер охранного документа: 0002525996
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.eb3b

Переходной элемент герметизированного корпуса

Изобретение относится к электротехнике, к герметизированным корпусам. Технический результат состоит в обеспечении универсальности использования переходного элемента герметизированного корпуса. Переходной элемент герметизированного корпуса имеет первый фланец (1), а также второй фланец. Второй...
Тип: Изобретение
Номер охранного документа: 0002526027
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ec5f

Модуль подшипника с сенсорным устройством

Изобретение относится к модулю подшипника, который представляет собой стационарный сменный конструктивный блок для установки в подшипниках вала, особенно электрической машины. Модуль содержит несущий элемент (4), подшипниковое устройство (5), которое закреплено на несущем элементе (4), для...
Тип: Изобретение
Номер охранного документа: 0002526319
Дата охранного документа: 20.08.2014
+ добавить свой РИД