×
27.08.2015
216.013.7460

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ ТОПЛИВНОГО КОЛЛЕКТОРА С ФОРСУНКАМИ КАМЕРЫ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ОТ ПРОДУКТОВ КОКСОВАНИЯ ТОПЛИВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к машиностроению, в частности к способам очистки коллектора с форсунками камеры сгорания газотурбинного двигателя от продуктов коксования топлива. Способ очистки коллектора с форсунками камеры сгорания газотурбинного двигателя от продуктов коксования топлива включает очистку коллектора с форсунками подачей нагретого реагента и контроль степени очистки форсунок, отличающийся тем, что реагент подают в сверхкритическом состоянии при температуре и давлении, не превышающих допустимые значения температуры и давления из условия прочности коллектора, а степень очистки форсунок контролируют по величине расхода реагента, проходящего через коллектор, который достигает постоянного нормированного значения. Очистку коллектора с форсунками производят в составе двигателя. В качестве реагента подают органическое или неорганическое вещество. Изобретение позволяет производить очистку коллекторов до получения заданных технических характеристик, параметры которых определяются на испытательном оборудовании прокачкой топливом, используемые реагенты не токсичны и инертны по отношению к материалам коллектора, способ обладает экологической чистотой и дешевизной, не требует дорогостоящих подготовительных операций. 3 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к машиностроению, в частности к способам очистки коллектора с форсунками камеры сгорания газотурбинного двигателя от продуктов коксования топлива.

Сужение поперечного сечения каналов и отверстий завихрителей распыливающих форсунок коллектора камеры сгорания является серьезным эксплуатационным дефектом, ограничивающим ресурс и снижающим надежность запуска двигателя. Уменьшение сечения каналов и отверстий завихрителей форсунок происходит из-за отложений на стенках продуктов разложения топлива, так как, проходя по коллектору, топливо нагревается и окисляется кислородом, растворенным в топливе. При этом образуются высокомолекулярные продукты, которые, осаждаясь на стенках каналов и отверстий, преобразуются до твердого состояния, что и является коксовыми отложениями или коксом. Коксовые отложения в коллекторах газотурбинного двигателя являются слабопористой структурой высокой твердости с высокой адгезией.

Наиболее близким техническим решением к заявляемому изобретению является способ очистки топливного коллектора с форсунками камеры сгорания газотурбинного двигателя от продуктов коксования топлива, включающий очистку коллектора с форсунками подачей нагретого реагента и контроль степени очистки форсунок.

/RU 2244126, МПК F02C 7/22. Опубликовано: 20.02.2004/

В известном способе очищаемые поверхности промывают нагретыми органическим и неорганическим растворителями. Основой способа является преобразование плохо растворимых твердых коксовых отложений в более растворимое состояние, которое происходит при продувке горячим озоном. Преобразование кокса происходит только в поверхностном слое отложений в виду его низкой пористости, чему также не способствует низкое давление процесса обработки озоном. Преобразованный поверхностный слой отложений растворяется органическим растворителем, а оставшиеся отложения растворяются другими неорганическими растворителями. Так как скорость растворения отложений низкая, то скорость течения растворителей в каналах форсунок мала и нерастворимые микрочастицы кокса (кварц, металлы) остаются в коллекторе. Эти нерастворимые микрочастицы, высвобождаемые из структуры кокса, удаляются за счет гидродинамического возвратно-поступательного воздействия потока растворителя. Поэтому очистка от коксовых отложений данным методом происходит послойно, так как внутрь структуры отложения растворители не проникают ввиду низкой пористости кокса, высокой вязкости жидкостных растворителей и низкого давления процесса. Процесс очистки многостадийный, сложный, требующий специального оборудования и мероприятий по охране окружающей среды. Озон интенсивно разлагается при повышенных температурах, пожаро- и взрывоопасен и токсичен. Процесс очистки реально реализуется только на коллекторе, снятом с двигателя.

Задача изобретения - повышение эффективности очистки каналов отверстий и завихрителей форсунок коллекторов.

Ожидаемый технический результат полное удаления продуктов коксования топлива с завихрителей форсунок, снижение материалоемкости и трудозатрат при очистке.

Ожидаемый технический результат достигается тем, что в известном способе очистки топливного коллектора с форсунками камеры сгорания газотурбинного двигателя от продуктов коксования топлива, включающем очистку коллектора с форсунками подачей нагретого реагента и контроль степени очистки форсунок, по данному предложеню реагент подают в сверхкритическом состоянии, а степень очистки форсунок контролируют по увеличению величины расхода реагента, проходящего через коллектор который достигает постоянного нормированного значения. Очистку коллектора с форсунками можно производить в составе двигателя. По предложению, реагент подают при состоянии вещества, при котором исчезает различие между жидкой и газовой фазой при значениях температуры и давления выше критической точки, но не превышающих допустимые значения температуры и давления из условия прочности коллектора. В качестве реагента подают органическое или неорганическое вещество. В качестве реагента можно подавать любое вещество из группы: Диоксид углерода (CO2); Вода (H2O); Метан (CH4); Этан (C2H6); Пропан (C3H8); Этилен (C2H4); Пропилен (C3H6); Метанол (CH3OH); Этанол (C2H5ОН); Ацетон (C3H6O); Аммиак (NH3); Ксенон (Xe) или их смеси. Одновременно с реагентом в сверхкритическом состоянии можно подать сореагенты, усиливающие свойства основного реагента по удалению продуктов коксования топлива.

Сущность способа основана на следующем.

Если создать условия, при которых параметры вещества: давление и температура будут превышать параметры так называемой критической точки, то вещество при этом переходит в сверхкритическое состояние.

Любое вещество в сверхкритическом состоянии обладает более высокой подвижностью по сравнению с традиционными жидкими органическими растворителями.

Несмотря на незначительно более низкую плотность по сравнению с жидкостью, динамическая вязкость сжатых газов соответствует скорее значениям нормального газообразного состояния. Коэффициент диффузии сверхкритического газа более чем в десять раз выше, чем у жидкости.

Из приведенных показателей, очевидно, что параметры зависят от температуры и давления и что простое повышение температуры приведет к повышению вязкости для газовой фазы, но и к понижению вязкости для сверхкритического газа или жидкости.

Таким образом, вещество в сверхкритическом состоянии может принципиально лучше, чем классический жидкий растворитель проникать в мелкопористую структуру кокса, поглощать и транспортировать растворимые составляющие. Применение вещества в сверхкритическом состоянии позволяет полностью отделить его от растворенного кокса в противовес классическим растворителям, которые должны проходить специальную очистку регенерацию. Иными словами реагент в сверхкритическом состоянии и растворенный в нем кокс полностью разделяются при переходе реагента из сверхкритического состояния в естественное при нормальных условиях.

Другой особенностью изобретения является необходимость создания в коллекторе с форсунками режима газодинамического запирания (когда повышение давления газа в коллекторе не вызывает повышения расхода). Это дает возможность создать сверхкритические условия для используемого реагента.

Возможен вариант работы, когда режим газодинамического запирания в коллекторе не наступает, а реагент уже переходит в состояние сверхкритического газа. В этом случае процесс очистки коллектора контролируют по величине, расхода реагента, когда он достигает постоянного нормированного значения.

При реализации способа без снятия коллектора с двигателя в коллектор подается реагент в сверхкритическом состоянии, но с параметрами Ркр и Ткр, не превышающими допустимые значения давления и температуры из условий прочности коллектора, а расход реагента создается из условия получения рабочего давления Рр≥Ркр в каналах самой дальней относительно штуцера подвода топлива в коллектор форсунке и условия «запирания» форсунок (создания сверхзвукового режима истечения).

В качестве реагента можно подавать любое вещество из группы, приведенной выше. Одновременно с реагентом в сверхкритическом состоянии можно подать сореагенты, усиливающие свойства основного реагента по удалению продуктов коксования топлива. Способ предусматривает предварительную подборку реагентов для различных типов коксовых отложений.

Пример очистки первого каскада форсунок коллектора газотурбинного двигателя.

На чертеже - схема подключения коллектора к системе подвода и отвода реагента без снятия с двигателя.

Коллектор 1 с форсунками 2 установлен на двигателе и соединен разъемным соединением 3 с магистралью подачи реагента и сореагента с установленными на ней датчиком температуры 4, и датчиком давления 5, и датчиком давления 6, и температуры 7 на последних относительно входного штуцера форсунках.

Данный коллектор имеет форсунки, в которых расположены завихрители 1-го и 2-го каскадов. Каждый каскад форсунок коллектора имеет один штуцер для подключения. В первую очередь коксованию подвергается 1-ый каскад коллектора.

Пример 1

Проверялась возможность удаления реальных коксовых отложений с завихрителей форсунок 1-го и 2-го каскадов топливного коллектора газотурбинного двигателя после эксплуатации, реагентом в сверкритическом состоянии с добавлением сореагента. В качестве реагента использовался чистый CO2 с добавлением 5% сореагента в виде чистого ацетона. При нормальных условиях CO2 - это газ, а ацетон - жидкость, которые с твердыми коксующимися отложениями в реакцию не вступают. Гравиметрический и фотометрический способы контроля показали, что при TPКР CM=90°C и Рр>Ркр см=8,5 МПа и времени очистки 2,5 часа с расходом смеси около 20 г/мин, с поверхности завихрителей форсунок удаляется около 79% отложений.

Данное сочетание реагента и сореагента не исчерпывает всего многообразия смесей в сверхкритическом состоянии, которые могут быть использованы для очистки от коксующихся отложений.

Поиск состава реагента в сверхкритическом состоянии, для которого выполняются условия (давление в коллекторе больше, чем Ркр, но меньше, чем допустимое давление из условий прочности коллектора Рд=10 МПа при эффективной очистке от кокса) с учетом требований минимальной стоимости, доступности и простоты получения смеси выполняли экспериментально.

Пример 2.

К штуцеру первого каскада подключается источник реагента, например пропана, который в сверкритическом состоянии имеет параметры Ткр=95°C и Ркр=4,25 МПа. Источник имеет возможность измерять создаваемый расход реагента и создавать рабочее давление Рр больше, чем давление критическое Ркр при расходе реагента через первый каскад коллектора.

Величина давления Рр, обеспечивающего газодинамическое запирание при Ткр, определяется экспериментально, путем подключения к источнику сверкритического реагента чистого коллектора вне двигателя и получения величины давления Рр>Ркр реагента в незакоксованных каналах завихрителя форсунки, наиболее удаленной от входного штуцера. Одновременно определяется нормированная величина расхода Qн, создаваемая источником реагента, которая должна обеспечивать как запирание завихрителей при Ткр, так и рабочее давление смеси, равное Ркр, в каналах форсунки наиболее удаленной от входного штуцера. Таким образом, становятся известны величины Ркр, Ткр, Рр, Тр и Qh, причем Ркр<Рр<Рд для чистого коллектора.

Очистка коллектора на двигателе производится подключением коллектора (по схеме 1) к источнику сверхкритического пропана и созданием на входе в очищаемый коллектор рабочего давления Рр, при Тр>95°C при этом контролируется расход пропана Q. Двигающийся в каналах коллектора и завихрителях, сверхкритический пропан растворяет коксовые отложения и выходит через завихрители форсунок. При истечении из завихрителя форсунки в камеру сгорания сверхкритический пропан переходит в газообразное состояние и уходит в атмосферу, а растворенные в сверхкритическом пропане коксовые отложения выпадают в виде микрочастиц внутри камеры сгорания, которые удаляются воздушным потоком при запуске газотурбинного двигателя. Нерастворимые микрочастицы кварца и металлов также выносятся пропаном, т.к. скорость движения сверкритического пропана в коллекторе высокая, а плотность пропана ρкр≥0,217 г/см3. Очистка сверхкритическим пропаном производится до тех пор, пока при Рр и Тр на входе в коллектор расход пропана не станет равным нормированному расходу Qн чистого коллектора. Время очистки зависит от исходной закоксованности коллектора и определяется экспериментально. Получено при ТКР СМ=95°C и Ркр см=4,25 МПа, время очистки 3,5 часа расход смеси 35 г/мин, с поверхности завихрителей форсунок удаляется около 99% отложений.

Реагент (пропан) в сверхкритическом состоянии настолько сильно изменяет физические свойства: вязкость, плотность и другие, что это влечет за собой изменение химических свойств таких, как растворяющая способность. Таким образом, реагент в сверхкритическом состоянии имеет высокую проникающую способность - как у газа, а растворяющую способность - как у жидкости. Для усиления химической активности реагента в сверхкритическом состоянии в малых дозах добавляется сореагент.

Так как все форсунки коллектора представляют собой узкие каналы и сопла, которые при достижении рабочим телом в канале форсунки сверхзвукового режима течения, «запираются», то наступает момент, когда увеличение давления на входе в коллектор больше не увеличивает расход рабочего тела через него. Так как конструкция и размеры форсунок коллектора одинаковы, то они имеют практически одинаковое гидравлическое сопротивление, что позволяет рассчитать давление на входе в коллектор Рр, при котором смесь реагент и сореагент будет находиться в сверхкритическом состоянии в каналах самой дальней относительно штуцера подвода топлива в коллектор форсунке.

Соотношение масс и химическая чистота реагента и сореагента будут изменять параметры Ткр и Ркр, что определяется соотношениями работы влияет на растворяющую способность и определяется экспериментально.

Допустимое давление в топливных коллекторах газотурбинного двигателя разных конструкций варьируется в пределах 3-15 МПа, что дает возможность варьировать химический состав реагентов в смеси и подобрать наиболее активные из них.

Применение изобретения позволяет производить очистку коллекторов до получения заданных технических характеристик, параметры которых определяются на испытательном оборудовании прокачкой топливом, используемые реагенты не токсичны и инертны по отношению к к материалам коллектора, способ обладает экологической чистотой и дешевизной, не требует дорогостоящих подготовительных операций.


СПОСОБ ОЧИСТКИ ТОПЛИВНОГО КОЛЛЕКТОРА С ФОРСУНКАМИ КАМЕРЫ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ОТ ПРОДУКТОВ КОКСОВАНИЯ ТОПЛИВА
Источник поступления информации: Роспатент

Показаны записи 161-170 из 302.
10.11.2015
№216.013.8c54

Центробежно-шестеренный насос

Изобретение относится к области машиностроения и касается устройства насосов, применяемых в маслосистемах авиационных газотурбинных двигателей (ГТД) для подачи и откачки масла. Центробежно-шестеренный насос содержит расположенные в расточках корпуса и находящиеся в зацеплении шестерни, одна из...
Тип: Изобретение
Номер охранного документа: 0002567531
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8c55

Центробежно-шестеренный насос

Изобретение относится к области машиностроения, в частности к насосам, применяемым в маслосистемах авиационных газотурбинных двигателей, предназначенных к установке на сверхзвуковые самолеты, летающие при скоростях М>2,3 и высотах Н>25 км. Особенностью предложенного центробежно-шестеренного...
Тип: Изобретение
Номер охранного документа: 0002567532
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8c56

Центробежно-шестеренный насос наружного зацепления

Изобретение относится к области машиностроения и касается устройства центробежно-шестеренных насосов наружного зацепления, применяемых, в частности, в маслосистемах авиационных газотурбинных двигателей. Насос содержит корпус с установленным в нем в опорных подшипниках ведущим и ведомым...
Тип: Изобретение
Номер охранного документа: 0002567533
Дата охранного документа: 10.11.2015
10.12.2015
№216.013.9643

Рабочее колесо ротора газотурбинного двигателя с демпфированием вибрационных колебаний

Изобретение относится к области турбомашиностроения и, в частности, может быть реализовано в конструкции роторов осевых компрессоров и турбин. Рабочее колесо ротора газотурбинного двигателя содержит диск ротора с кольцевой канавкой, в которой посредством хвостовиков закреплены лопатки ротора,...
Тип: Изобретение
Номер охранного документа: 0002570087
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9644

Рабочее колесо ротора газотурбинного двигателя с компенсацией центробежных нагрузок

Изобретение относится к области турбомашиностроения и, в частности, может быть реализовано в конструкции роторов барабанно-дискового типа осевых компрессоров и турбин. Рабочее колесо ротора газотурбинного двигателя содержит лопатки, закрепленные на диске ротора с помощью кольцевых замков...
Тип: Изобретение
Номер охранного документа: 0002570088
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.9fa7

Теплообменный модуль системы кондиционирования воздуха самолета

Теплообменный модуль системы кондиционирования воздуха самолета содержит воздухо-воздушный теплообменник, соединенный трубопроводами на входе с запорно-регулирующим устройством и с одной из ступеней компрессора высокого давления в двигателе, а на выходе соединенный трубопроводом с системой...
Тип: Изобретение
Номер охранного документа: 0002572513
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a0b9

Способ получения палладиевого катализатора гидрирования ацетилена

Изобретение относится к способу получения палладиевого катализатора гидрирования ацетилена на основе комплекса палладия. Получение проводят путем растворения комплекса палладия в диоксиде углерода в сверхкритическом состоянии в интервале температур 305-353 K с последующим нанесением на...
Тип: Изобретение
Номер охранного документа: 0002572787
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a324

Способ изготовления вала ротора компрессора низкого давления турбореактивного двигателя (варианты), вал ротора компрессора низкого давления турбореактивного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к компрессорам низкого давления авиационных турбореактивных двигателей (КНД ТРД). Вал ротора КНД ТРД выполняют барабанно-дисковым, собирая четырехступенчатую по числу дисков конструкцию. Изготовление вала выполняют в три...
Тип: Изобретение
Номер охранного документа: 0002573406
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a326

Секция вала ротора компрессора низкого давления турбореактивного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения. Секция вала ротора компрессора низкого давления (КНД) турбореактивного двигателя (ТРД), включающего корпус с проточной частью, выполнена в качестве первой секции вала ротора по ходу воздушного потока в КНД. Секция включает цапфу...
Тип: Изобретение
Номер охранного документа: 0002573408
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a32b

Способ изготовления вала ротора компрессора низкого давления турбореактивного двигателя (варианты), вал ротора компрессора низкого давления турбореактивного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения. Вал ротора КНД ТРД выполняют барабанно-дисковым, собирая четырехступенчатую по числу дисков конструкцию. Изготовление вала выполняют в три стадии. На первой стадии изготавливают сборочные единицы, включая цапфы передней и задней...
Тип: Изобретение
Номер охранного документа: 0002573413
Дата охранного документа: 20.01.2016
Показаны записи 161-170 из 390.
10.11.2015
№216.013.8c55

Центробежно-шестеренный насос

Изобретение относится к области машиностроения, в частности к насосам, применяемым в маслосистемах авиационных газотурбинных двигателей, предназначенных к установке на сверхзвуковые самолеты, летающие при скоростях М>2,3 и высотах Н>25 км. Особенностью предложенного центробежно-шестеренного...
Тип: Изобретение
Номер охранного документа: 0002567532
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8c56

Центробежно-шестеренный насос наружного зацепления

Изобретение относится к области машиностроения и касается устройства центробежно-шестеренных насосов наружного зацепления, применяемых, в частности, в маслосистемах авиационных газотурбинных двигателей. Насос содержит корпус с установленным в нем в опорных подшипниках ведущим и ведомым...
Тип: Изобретение
Номер охранного документа: 0002567533
Дата охранного документа: 10.11.2015
10.12.2015
№216.013.9643

Рабочее колесо ротора газотурбинного двигателя с демпфированием вибрационных колебаний

Изобретение относится к области турбомашиностроения и, в частности, может быть реализовано в конструкции роторов осевых компрессоров и турбин. Рабочее колесо ротора газотурбинного двигателя содержит диск ротора с кольцевой канавкой, в которой посредством хвостовиков закреплены лопатки ротора,...
Тип: Изобретение
Номер охранного документа: 0002570087
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9644

Рабочее колесо ротора газотурбинного двигателя с компенсацией центробежных нагрузок

Изобретение относится к области турбомашиностроения и, в частности, может быть реализовано в конструкции роторов барабанно-дискового типа осевых компрессоров и турбин. Рабочее колесо ротора газотурбинного двигателя содержит лопатки, закрепленные на диске ротора с помощью кольцевых замков...
Тип: Изобретение
Номер охранного документа: 0002570088
Дата охранного документа: 10.12.2015
20.01.2016
№216.013.9fa7

Теплообменный модуль системы кондиционирования воздуха самолета

Теплообменный модуль системы кондиционирования воздуха самолета содержит воздухо-воздушный теплообменник, соединенный трубопроводами на входе с запорно-регулирующим устройством и с одной из ступеней компрессора высокого давления в двигателе, а на выходе соединенный трубопроводом с системой...
Тип: Изобретение
Номер охранного документа: 0002572513
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a0b9

Способ получения палладиевого катализатора гидрирования ацетилена

Изобретение относится к способу получения палладиевого катализатора гидрирования ацетилена на основе комплекса палладия. Получение проводят путем растворения комплекса палладия в диоксиде углерода в сверхкритическом состоянии в интервале температур 305-353 K с последующим нанесением на...
Тип: Изобретение
Номер охранного документа: 0002572787
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a324

Способ изготовления вала ротора компрессора низкого давления турбореактивного двигателя (варианты), вал ротора компрессора низкого давления турбореактивного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к компрессорам низкого давления авиационных турбореактивных двигателей (КНД ТРД). Вал ротора КНД ТРД выполняют барабанно-дисковым, собирая четырехступенчатую по числу дисков конструкцию. Изготовление вала выполняют в три...
Тип: Изобретение
Номер охранного документа: 0002573406
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a326

Секция вала ротора компрессора низкого давления турбореактивного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения. Секция вала ротора компрессора низкого давления (КНД) турбореактивного двигателя (ТРД), включающего корпус с проточной частью, выполнена в качестве первой секции вала ротора по ходу воздушного потока в КНД. Секция включает цапфу...
Тип: Изобретение
Номер охранного документа: 0002573408
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a32b

Способ изготовления вала ротора компрессора низкого давления турбореактивного двигателя (варианты), вал ротора компрессора низкого давления турбореактивного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения. Вал ротора КНД ТРД выполняют барабанно-дисковым, собирая четырехступенчатую по числу дисков конструкцию. Изготовление вала выполняют в три стадии. На первой стадии изготавливают сборочные единицы, включая цапфы передней и задней...
Тип: Изобретение
Номер охранного документа: 0002573413
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a32e

Способ изготовления вала ротора компрессора низкого давления турбореактивного двигателя (варианты), вал ротора компрессора низкого давления турбореактивного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к компрессорам низкого давления (КНД) авиационных турбореактивных двигателей (ТРД). Вал ротора КНД ТРД выполняют барабанно-дисковым, собирая четырехступенчатую по числу дисков конструкцию. Изготовление вала выполняют в три...
Тип: Изобретение
Номер охранного документа: 0002573416
Дата охранного документа: 20.01.2016
+ добавить свой РИД