×
20.08.2015
216.013.7175

Результат интеллектуальной деятельности: СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной выработки электрической энергии. Способ утилизации теплоты тепловой электрической станции (ТЭС) включает подачу пара отопительных параметров из отборов паровой турбины в паровое пространство верхнего и нижнего сетевых подогревателей, подачу сетевой воды от потребителей по обратному трубопроводу сетевой воды в теплообменник-охладитель сетевой воды и в нижний, и верхний сетевые подогреватели, подачу сетевой воды в подающий трубопровод сетевой воды и направление отработавшего пара из паровой турбины в паровое пространство конденсатора, в котором пар конденсируется на поверхности конденсаторных трубок. Конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации. Используют конденсационную установку, имеющую конденсатор паровой турбины с производственным отбором пара. Утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара производственного отбора осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, которое сжимают в конденсатном насосе теплового двигателя, нагревают в теплообменнике-охладителе сетевой воды, испаряют и перегревают в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя. В частных случаях осуществления изобретения в качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения. В качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO. Обеспечивается повышение коэффициента полезного действия ТЭС за счет утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной выработки электрической энергии.

Аналогом является способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а также в конденсаторе теплонасосной установки теплотой, отведенной от обратной сетевой воды в испарителе теплонасосной установки, после чего направляют потребителям, при этом весь поток сетевой воды последовательно нагревают в нижнем сетевом подогревателе, конденсаторе теплонасосной установки и верхнем сетевом подогревателе (патент RU №2275512, МПК F01K 17/02, 27.04.2006).

Прототипом является способ работы тепловой электрической станции, содержащей теплофикационную турбину с отопительными отборами пара, подающий и обратный трубопроводы теплосети, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами теплосети и подключенные по греющей среде к отопительным отборам, теплонасосную установку с испарителем, включенным в обратный трубопровод теплосети, и конденсатором, при этом конденсатор теплонасосной установки включен в подающий трубопровод теплосети после сетевых подогревателей (патент RU №2269014, МПК F01K 17/02, 27.01.2006).

В известном способе возвращаемая от потребителей по обратному трубопроводу теплосети сетевая вода подается сетевым насосом в испаритель теплонасосной установки, где отдает часть теплоты хладагенту теплонасосной установки и охлаждается, затем сетевая вода поступает в сетевые подогреватели, где нагревается паром отопительных отборов турбины. Перед подачей потребителям сетевая вода дополнительно нагревается в конденсаторе теплонасосной установки за счет теплоты хладагента, циркулирующего в контуре теплонасосной установки. Благодаря последовательному включению испарителя теплонасосной установки в обратный трубопровод теплосети до сетевых подогревателей, а конденсатора в подающий трубопровод теплосети после сетевых подогревателей достигается максимальное охлаждение обратной сетевой воды.

Таким образом, в известном способе работы тепловой электрической станции пар отопительных параметров из отборов паровой турбины поступает в паровое пространство верхнего и нижнего сетевых подогревателей, сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в испаритель, выполняющий функцию теплообменника-охладителя сетевой воды, нижний сетевой подогреватель и верхний сетевой подогреватель, далее сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, причем в испарителе, выполняющем функцию теплообменника-охладителя сетевой воды, осуществляют утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды при помощи охлаждающей жидкости.

Основным недостатком аналога и прототипа является то, что утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды осуществляют в целях выработки дополнительной тепловой энергии, а не для дополнительной выработки электрической энергии.

Кроме этого, недостатком аналога и прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии, обусловленный затратами электрической мощности на привод теплонасосной установки.

Задачей изобретения является разработка способа утилизации теплоты ТЭС, в котором устранены указанные недостатки аналога и прототипа.

Техническим результатом является повышение коэффициента полезного действия ТЭС за счет утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии.

Технический результат достигается тем, что в способе утилизации теплоты тепловой электрической станции, включающем подачу пара отопительных параметров из отборов паровой турбины в паровое пространство верхнего и нижнего сетевых подогревателей, подачу сетевой воды от потребителей по обратному трубопроводу сетевой воды в теплообменник-охладитель сетевой воды и в нижний, и верхний сетевые подогреватели, подачу сетевой воды в подающий трубопровод сетевой воды и направление отработавшего пара из паровой турбины в паровое пространство конденсатора, в котором пар конденсируется на поверхности конденсаторных трубок, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, согласно настоящему изобретению, дополнительно используют конденсационную установку, имеющую конденсатор паровой турбины с производственным отбором пара, и осуществляют утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара производственного отбора при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, которое сжимают в конденсатном насосе теплового двигателя, нагревают в теплообменнике-охладителе сетевой воды, испаряют и перегревают в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.

В качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO2.

Таким образом, технический результат достигается за счет утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора из паровой турбины с производственным отбором пара для дополнительной выработки электрической энергии, которые осуществляют путем последовательного нагрева, соответственно, в теплообменнике-охладителе сетевой воды и конденсаторе паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного углекислого газа CO2) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Сущность изобретения поясняется чертежом, на котором представлена тепловая электрическая станция, имеющая тепловой двигатель с теплообменником-конденсатором, теплообменник-охладитель сетевой воды и конденсационную установку.

На чертеже цифрами обозначены:

1 - паровая турбина,

2 - конденсатор паровой турбины,

3 - конденсатный насос конденсатора паровой турбины,

4 - основной электрогенератор,

5 - тепловой двигатель с замкнутым контуром циркуляции,

6 - турбодетандер,

7 - электрогенератор,

8 - теплообменник-конденсатор,

9 - конденсатный насос,

10 - верхний сетевой подогреватель,

11 - нижний сетевой подогреватель,

12 - подающий трубопровод сетевой воды,

13 - обратный трубопровод сетевой воды,

14 - теплообменник-охладитель сетевой воды,

15 - конденсационная установка,

16 - паровая турбина с производственным отбором пара,

17 - электрогенератор паровой турбины с производственным отбором пара,

18 - конденсатор паровой турбины с производственным отбором пара,

19 - конденсатный насос конденсатора паровой турбины с производственным отбором пара.

Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, а также основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 сетевыми подогревателями, включенными по нагреваемой среде между подающим 12 и обратным 13 трубопроводами сетевой воды, и теплообменник-охладитель 14 сетевой воды, включенный по нагреваемой среде в обратный трубопровод 13 сетевой воды перед нижним сетевым подогревателем 11.

В тепловую электрическую станцию введены конденсационная установка 15 и тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.

Конденсационная установка 15 содержит последовательно соединенные паровую турбину 16 с производственным отбором пара, имеющую электрогенератор 17, конденсатор 18 паровой турбины с производственным отбором пара и конденсатный насос 19 конденсатора паровой турбины с производственным отбором пара.

Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер 6 с электрогенератором 7, теплообменник-конденсатор 8 и конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом теплообменника-охладителя 14 сетевой воды, а выход теплообменника-охладителя 14 сетевой воды по нагреваемой среде соединен с входом конденсатора 18 паровой турбины с производственным отбором пара, выход конденсатора 18 паровой турбины с производственным отбором пара соединен по нагреваемой среде с входом турбодетандера 6, образуя замкнутый контур охлаждения.

Способ утилизации теплоты тепловой электрической станции осуществляют следующим образом.

Способ включает в себя подачу пара отопительных параметров из отборов паровой турбины 1 в паровое пространство верхнего 10 и нижнего 11 сетевых подогревателей, подачу сетевой воды от потребителей по обратному 13 трубопроводу сетевой воды в теплообменник-охладитель 14 сетевой воды и в нижний 11, и верхний 10 сетевые подогреватели, подачу сетевой воды в подающий 12 трубопровод сетевой воды и направление отработавшего пара из паровой турбины 1 в паровое пространство

конденсатора 2, в котором пар конденсируется на поверхности конденсаторных трубок, при этом конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины 1 направляют в систему регенерации.

Отличием предлагаемого способа является то, что дополнительно используют конденсационную установку 15, имеющую конденсатор 18 паровой турбины 16 с производственным отбором пара, и осуществляют утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара производственного отбора при помощи теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, которое сжимают в конденсатном насосе 9 теплового двигателя 5, нагревают в теплообменнике-охладителе 14 сетевой воды, испаряют и перегревают в конденсаторе 18 паровой турбины 16 с производственным отбором пара, расширяют в турбодетандере 6 теплового двигателя и конденсируют в теплообменнике-конденсаторе 8 теплового двигателя.

В качестве теплообменника-конденсатора 8 теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO2.

Пример конкретного выполнения

Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок. При этом образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации. Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.

Преобразование избыточной низкопотенциальной тепловой энергии обратной сетевой воды и высокопотенциальной тепловой энергии пара производственного отбора из паровой турбины 16, в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.

Таким образом, утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара производственного отбора из паровой турбины с производственным отбором пара осуществляют путем последовательного нагрева, соответственно, в теплообменнике-охладителе 14 сетевой воды и конденсаторе 18 паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного углекислого газа СО2) теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного углекислого газа СО2, который направляют на нагрев в теплообменник-охладитель 14 сетевой воды, куда поступает обратная сетевая вода из обратного трубопровода 13. При этом температура обратной сетевой воды может варьироваться в интервале от 313,15 К до 343,15 К.

В процессе теплообмена обратной сетевой воды с сжиженным углекислым газом СO2 в теплообменнике-охладителе 14 сетевой воды происходит нагрев сжиженного углекислого газа СO2 до критической температуры 304,13 К при сверхкритическом давлении от 7,4 МПа до 25 МПа, и далее его направляют на испарение и перегрев в конденсатор 18 паровой турбины с производственным отбором пара, куда поступает пар производственного отбора из паровой турбины 16 при температуре около 573 К.

Пар, поступающий из производственного отбора паровой турбины 16 в паровое пространство конденсатора 18, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный углекислый газ СO2). Мощность паровой турбины 16 передается соединенному на одном валу основному электрогенератору 17.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 19 конденсатора паровой турбины с производственным отбором пара направляют в систему регенерации.

В процессе конденсации пара производственного отбора в конденсаторе 18 паровой турбины происходит испарение сжиженного углекислого газа СО2 и дальнейший его перегрев до сверхкритической температуры от 304,13 К до 390 К при сверхкритическом давлении от 7,4 МПа до 25 МПа, который направляют в турбодетандер 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации углекислого газа СO2 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 углекислый газ СО2 имеет температуру около 288 К с влажностью, не превышающей 12%.

Далее, при снижении температуры углекислого газа СO2, происходит его сжижение в теплообменнике-конденсаторе 8, выполненного, например, в виде конденсатора воздушного охлаждения, охлаждаемого воздухом окружающей среды в температурном диапазоне от 223,15 К до 283,15 К.

После теплообменника-конденсатора 8 в сжиженном состоянии углекислый газ СO2 направляют для сжатия в конденсатный насос 9 теплового двигателя.

Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.

Использование в работе тепловой электрической станции конденсационной установки 15 позволяет повысить начальные параметры низкокипящего рабочего тела теплового двигателя 5 с замкнутым контуром циркуляции до сверхкритических параметров, что приводит к увеличению теплоперепада на турбодетандере 6.

Использование предлагаемого способа работы тепловой электрической станции позволит, по сравнению с прототипом, повысить коэффициент полезного действия ТЭС за счет утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной выработки электрической энергии.


СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ
Источник поступления информации: Роспатент

Показаны записи 141-150 из 164.
10.04.2016
№216.015.2e8a

Способ розжига топки котла

Изобретение относится к области энергомашиностроения и может быть использовано при автоматическом розжиге топки котлов тепловых электростанций, работающих на газообразном топливе. Способ розжига топки котла импульсным лазерным разрядом включает нагрев и воспламенение газообразного топлива путем...
Тип: Изобретение
Номер охранного документа: 0002580241
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2f56

Способ изготовления оптического модуля светодиодного светильника

Изобретение относится к области светотехнического приборостроения и может быть использовано в осветительных приборах. Технический результат, заключающийся в расширении области применения, достигается тем, что в способе изготовления оптического модуля светодиодного светильника, по которому...
Тип: Изобретение
Номер охранного документа: 0002580178
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3029

Сигнатурное цифровое сглаживающее устройство

Изобретение относится к автоматике и вычислительной технике и может быть использовано в цифровых системах и устройствах для сглаживания стационарных и медленно меняющихся случайных процессов. Техническим результатом является существенное упрощение устройства и повышение эффективности...
Тип: Изобретение
Номер охранного документа: 0002580452
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3151

Способ изготовления светодиода

Изобретение относится к светодиодным источникам света и может быть использовано в оптико-механическом, оптико-электронном и голографическом приборостроении, когда осветительную часть прибора необходимо оснащать источником с повышенной концентрацией светового потока. Согласно изобретению в...
Тип: Изобретение
Номер охранного документа: 0002580215
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.316d

Устройство и способ испытания изделий на случайные вибрации

Изобретение относится к области испытаний изделий на случайную вибрацию и может быть использовано при определении вибронадежности машин, приборов и аппаратуры. Устройство содержит цепи формирования, каждая из которых включает первый генератор шума (ГШ), подключенный к его выходу первый фильтр...
Тип: Изобретение
Номер охранного документа: 0002580182
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31c3

Способ изготовления фильтра интерференционного

Способ изготовления фильтра интерференционного включает в себя оптическое соединение между собой N цилиндрических оптических элементов с образованием многокомпонентного интерференционного фильтра. На боковую поверхность каждого оптического элемента наносят интерференционное покрытие, на входной...
Тип: Изобретение
Номер охранного документа: 0002580179
Дата охранного документа: 10.04.2016
20.08.2016
№216.015.4e61

Установка для подземной газификации топлива

Изобретение относится к устройствам для выработки тепловой и электрической энергии по месту их генерации путем преобразования твердых углеводородных топлив в газообразное топливо за счет осуществления внутрипластовой подземной огневой газификации. Установка содержит газовую турбину,...
Тип: Изобретение
Номер охранного документа: 0002595126
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.67e6

Теплообменная труба

Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах. В теплообменной трубе со скругленными выемками на наружной поверхности и соответствующими им скругленными выступами высотой h на внутренней поверхности, которые нанесены с шагом S, скругленные...
Тип: Изобретение
Номер охранного документа: 0002591376
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.73d8

Способ бесконтактной дистанционной диагностики состояния высоковольтных изоляторов

Изобретение относится к электроизмерительной технике и может быть использовано для бесконтактного дистанционного контроля рабочего состояния опорных высоковольтных изоляторов. Технический результат: обеспечение возможности определения момента возникновения преддефектного состояния за счет...
Тип: Изобретение
Номер охранного документа: 0002597962
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.82fe

Способ получения брикетов

Изобретение раскрывает способ получения брикетов, включающий обезвоживание шлама и последующее его прессование при давлении 30-35 МПа, характеризующийся тем, что используют высушенный замазученный карбонатный шлам химводоочистки тепловых электрических станций с влажностью не более 4%,...
Тип: Изобретение
Номер охранного документа: 0002601316
Дата охранного документа: 10.11.2016
Показаны записи 141-150 из 179.
27.11.2015
№216.013.93db

Способ работы тепловой электрической станции

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС). В способе работы тепловой электрической станции, по которому отработавший пар поступает из первой паровой турбины в паровое пространство конденсатора, конденсируется на поверхности...
Тип: Изобретение
Номер охранного документа: 0002569470
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.95e5

Способ работы тепловой электрической станции

Изобретение относится к области энергетики. В способе работы тепловой электрической станции с первой паровой турбиной с охладителем масла в станции используют конденсационную установку, имеющую конденсатор второй паровой турбины и систему маслоснабжения ее подшипников с маслоохладителем,...
Тип: Изобретение
Номер охранного документа: 0002569993
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.95e6

Способ работы тепловой электрической станции

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из первой паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость,...
Тип: Изобретение
Номер охранного документа: 0002569994
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.966f

Способ работы тепловой электрической станции

Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Проводят утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды и системы маслоснабжения подшипников...
Тип: Изобретение
Номер охранного документа: 0002570131
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9670

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной...
Тип: Изобретение
Номер охранного документа: 0002570132
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9671

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной...
Тип: Изобретение
Номер охранного документа: 0002570133
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9996

Способ работы тепловой электрической станции

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из первой паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость,...
Тип: Изобретение
Номер охранного документа: 0002570943
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.99a8

Способ работы тепловой электрической станции

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из первой паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость,...
Тип: Изобретение
Номер охранного документа: 0002570961
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9adf

Способ работы тепловой электрической станции

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из паровой турбины в паровое пространство конденсатора, а пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и...
Тип: Изобретение
Номер охранного документа: 0002571272
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9ae2

Способ работы тепловой электрической станции

Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из паровой турбины в паровое пространство конденсатора, а пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и...
Тип: Изобретение
Номер охранного документа: 0002571275
Дата охранного документа: 20.12.2015
+ добавить свой РИД