×
20.08.2015
216.013.710c

Результат интеллектуальной деятельности: СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано на тепловых электрических станциях (ТЭС) для утилизации избыточной тепловой энергии, вырабатываемой системами ТЭС в процессе ее работы. Осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины. Кроме того, проводят утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины. Упомянутые утилизации осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина. В качестве охлаждающей жидкости используют низкокипящее рабочее тело. Сжимают его в конденсатном насосе и нагревают в теплообменнике-рекуператоре теплового двигателя, нагревают в конденсаторе паровой турбины, нагревают в маслоохладителе, нагревают и испаряют в нижнем сетевом подогревателе, нагревают в верхнем сетевом подогревателе паровой турбины, расширяют в турбодетандере теплового двигателя, снижают его температуру в теплообменнике-рекуператоре и конденсируют в теплообменнике-конденсаторе теплового двигателя. Способ обеспечивает повышение коэффициента полезного действия ТЭС за счет полного использования избыточной паровой энергии, вырабатываемой системами ТЭС, а также снижение тепловых выбросов в окружающую среду. 2 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины.

Аналогом является способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, последовательно нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а затем направляют потребителям, охлаждение отработавшего пара производят циркуляционной водой, которую используют в качестве источника низкопотенциальной теплоты для испарителя теплонасосной установки, при этом весь поток сетевой воды после нижнего сетевого подогревателя дополнительно подогревают в конденсаторе теплонасосной установки (патент RU №2269656, МПК F01K 17/02, 10.02.2006).

Прототипом является тепловая электрическая станция, содержащая подающий и обратный трубопроводы сетевой воды, паровую турбину с отопительными отборами пара и конденсатором, к которому подключены напорный и сливной трубопроводы циркуляционной воды, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами сетевой воды и подключенные по греющей среде к отопительным отборам, теплонасосную установку, испаритель которой подключен по греющей среде к сливному трубопроводу циркуляционной воды, при этом конденсатор теплонасосной установки по нагреваемой среде включен в подающий трубопровод сетевой воды после сетевых подогревателей, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом (патент RU №2268372, МПК F01K 17/02, 20.01.2006).

В известном способе сетевую воду, поступающую от потребителей по обратному трубопроводу сетевой воды, с помощью сетевого насоса подают в сетевые подогреватели, где нагревают паром отопительных отборов турбины. Отработавший в турбине пар охлаждают в конденсаторе, для чего подают в него по напорному трубопроводу и отводят по сливному трубопроводу циркуляционную воду. Нагретую в сетевых подогревателях сетевую воду перед подачей потребителям дополнительно нагревают в конденсаторе теплонасосной установки, в качестве низкопотенциального источника теплоты в испарителе теплонасосной установки используют циркуляционную воду из сливного трубопровода. В паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем.

Таким образом, в известном способе работы тепловой электрической станции пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего сетевых подогревателей, сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в нижний сетевой подогреватель и верхний сетевой подогреватель, далее сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, при этом при конденсации отработавшего пара и пара отопительных отборов осуществляют соответственно утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины при помощи охлаждающей жидкости.

Основным недостатком аналога и прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии из-за отсутствия полной утилизации сбросной скрытой теплоты парообразования в конденсаторе паровой турбины, обусловленную наличием вторичного контура (теплонасосной установки), отсутствия утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, а также отсутствия утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины, для дополнительной выработки электроэнергии.

Кроме этого, недостатком является низкий ресурс и надежность работы конденсатора паровой турбины из-за использования технической (циркуляционной) воды, которая загрязняет конденсатор паровой турбины. Из-за повышенных тепловых выбросов циркуляционной воды в водоем-охладитель нарушается его экосистема.

Задачей изобретения является разработка способа утилизации теплоты ТЭС, в котором устранены указанные недостатки аналога и прототипа.

Техническим результатом является повышение коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии, повышение ресурса и надежности работы конденсатора паровой турбины и снижение тепловых выбросов в окружающую среду.

Технический результат достигается тем, что в способе утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, включающий отбор пара из паровой турбины, направление отработавшего пара из паровой турбины в паровое пространство конденсатора и его конденсирование на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, после чего направляют полученный конденсат с помощью конденсатного насоса в систему регенерации, а пар отопительных параметров из отборов паровой турбины направляют в паровое пространство нижнего и верхнего сетевых подогревателей и конденсируют на поверхности подогреваемых трубок сетевых подогревателей, внутри которых протекает охлаждающая жидкость, при этом при конденсации отработавшего пара и пара отопительных отборов осуществляют соответственно утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины посредством охлаждающей жидкости, согласно настоящему изобретению, дополнительно используют систему маслоснабжения подшипников паровой турбины, состоящей из маслоохладителя, маслобака и маслонасоса, и дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, причем упомянутые утилизации осуществляют посредством теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, состоящего из турбодетандера с электрогенератором, теплообменника-рекуператора, теплообменника-конденсатора и конденсатного насоса, а в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом упомянутое низкокипящее рабочее тело сжимают в конденсатном насосе и нагревают в теплообменнике-рекуператоре теплового двигателя, нагревают в конденсаторе паровой турбины, нагревают в маслоохладителе системы маслоснабжения подшипников паровой турбины, нагревают и испаряют в нижнем сетевом подогревателе паровой турбины, нагревают в верхнем сетевом подогревателе паровой турбины, расширяют в турбодетандере теплового двигателя, снижают его температуру в теплообменнике-рекуператоре и конденсируют в теплообменнике-конденсаторе теплового двигателя.

В качестве теплообменника-конденсатора теплового двигателя используют конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.

Таким образом, технический результат достигается за счет полной утилизации сбросной низкопотенциальной теплоты (скрытой теплоты парообразования), утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины, которые осуществляют путем последовательного нагрева соответственно в конденсаторе паровой турбины, маслоохладителе и в сетевых подогревателях, низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Сущность изобретения поясняется чертежом, на котором представлена тепловая электрическая станция, имеющая тепловой двигатель с теплообменником-конденсатором, теплообменником-рекуператором, и сетевые подогреватели.

На чертеже цифрами обозначены:

1 - паровая турбина,

2 - конденсатор паровой турбины,

3 - конденсатный насос конденсатора паровой турбины,

4 - основной электрогенератор,

5 - тепловой двигатель с замкнутым контуром циркуляции,

6 - турбодетандер,

7 - электрогенератор,

8 - теплообменник-конденсатор,

9 - конденсатный насос,

10 - верхний сетевой подогреватель,

11 - нижний сетевой подогреватель,

12 - система маслоснабжения подшипников паровой турбины,

13 - сливной трубопровод,

14 - маслобак,

15 - масло насос,

16 - маслоохладитель,

17 - напорный трубопровод,

18 - теплообменник-рекуператор.

Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 сетевыми подогревателями, которые между собой соединены по нагреваемой среде, а также систему 12 маслоснабжения подшипников паровой турбины 1, содержащую последовательно соединенные по греющей среде сливной трубопровод 13, маслобак 14, маслонасос 15 и маслоохладитель 16, выход которого по нагреваемой среде соединен с напорным трубопроводом 17.

В тепловую электрическую станцию введен тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.

Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер 6 с электрогенератором 7, теплообменник-рекуператор 18, теплообменник-конденсатор 8, конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом теплообменника-рекуператора 18, который соединен по нагреваемой среде с входом конденсатора 2 паровой турбины, выход которого соединен по нагреваемой среде с входом маслоохладителя 16, выход маслоохладителя 16 по нагреваемой среде соединен с входом нижнего сетевого подогревателя 11, а выход верхнего сетевого подогревателя 10 соединен по нагреваемой среде с входом турбодетандера 6, выход которого соединен по греющей среде с теплообменником-рекуператором 18, выход теплообменника-рекуператора 18 соединен по греющей среде с теплообменником-конденсатором 8, выход которого соединен по нагреваемой среде с входом конденсатного насоса 9, образуя замкнутый контур охлаждения.

Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, осуществляют следующим образом.

Способ включает в себя отбор пара из паровой турбины 1, направление отработавшего пара из паровой турбины 1 в паровое пространство конденсатора 2 и его конденсирование на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, после чего направляют полученный конденсат с помощью конденсатного насоса 3 в систему регенерации, а пар отопительных параметров из отборов паровой турбины 1 направляют в паровое пространство нижнего 11 и верхнего 10 сетевых подогревателей и конденсируют на поверхности подогреваемых трубок сетевых подогревателей, внутри которых протекает охлаждающая жидкость, при этом при конденсации отработавшего пара и пара отопительных отборов осуществляют соответственно утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара 1 и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины 1 посредством охлаждающей жидкости.

Отличием предлагаемого способа является то, что дополнительно используют систему 12 маслоснабжения подшипников паровой турбины 1, состоящей из маслоохладителя 16, маслобака 14 и маслонасоса 15, и дополнительно осуществляют утилизацию низкопотенциальной теплоты системы 12 маслоснабжения подшипников паровой турбины 1, причем упомянутые утилизации осуществляют посредством теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, состоящего из турбодетандера 6 с электрогенератором 7, теплообменника-рекуператора 18, теплообменника-конденсатора 8 и конденсатного насоса 9, а в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом упомянутое низкокипящее рабочее тело сжимают в конденсатном насосе 9 и нагревают в теплообменнике-рекуператоре 18 теплового двигателя 5, нагревают в конденсаторе 2 паровой турбины 1, нагревают в маслоохладителе 16 системы 12 маслоснабжения подшипников паровой турбины 1, нагревают и испаряют в нижнем 11 сетевом подогревателе паровой турбины 1, нагревают в верхнем 10 сетевом подогревателе паровой турбины 1, расширяют в турбодетандере 6 теплового двигателя, снижают его температуру в теплообменнике-рекуператоре 18 и конденсируют в теплообменнике-конденсаторе 8 теплового двигателя.

В качестве теплообменника-конденсатора 8 теплового двигателя используют конденсатор воздушного охлаждения или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.

Пример конкретного выполнения

Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан C3H8). Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации.

Преобразование сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара и низкопотенциальной тепловой энергии системы 12 маслоснабжения подшипников паровой турбины 1, а также низкопотенциальной тепловой энергии пара отопительных отборов из паровой турбины 1 в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.

Таким образом, утилизацию сбросной низкопотенциальной теплоты (скрытой теплоты парообразования) отработавшего в турбине 1 пара, утилизацию низкопотенциальной теплоты системы 12 маслоснабжения подшипников паровой турбины 1 и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины 1 осуществляют путем последовательного нагрева соответственно в конденсаторе 2 паровой турбины, маслоохладителе 16 и в сетевых подогревателях 11, 10, низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного пропана C3H8, который направляют на нагрев в начале в теплообменник-рекуператор 18, куда поступает перегретый газообразный пропан C3H8 из турбодетандера 6, далее в конденсатор 2 паровой турбины, куда поступает отработавший в турбине 1 пар с температурой в интервале от 300 К до 313,15 К, а затем в маслоохладитель 16, куда поступает нагретое масло системы 12 маслоснабжения подшипников паровой турбины 1. В маслоохладителе 16 циркулирует масло, нагретое в подшипниках паровой турбины 1, с температурой в интервале от 318,15 К до 348,15 К.

В процессе теплообмена перегретого газообразного пропана C3H8 с сжиженным пропаном C3H8 в теплообменнике-рекуператоре 18, а также в процессе конденсации отработавшего в турбине 1 пара в конденсаторе 2 паровой турбины и теплообмена нагретого масла с сжиженным пропаном C3H8 в маслоохладителе 16, происходит нагрев сжиженного пропана C3H8 в пределах критической температуры в интервале от 300 К до 343,15 К при сверхкритическом давлении от 4,2512 МПа до 5,7 МПа, и далее его направляют на нагрев и испарение в нижний сетевой подогреватель 11, куда поступает пар отопительного отбора из паровой турбины 1 при температуре около 380 К.

Пар, поступающий из отопительного отбора паровой турбины 1 в паровое пространство нижнего сетевого подогревателя 11, конденсируется на поверхности подогреваемых трубок, внутри которых протекает сжиженный пропан C3H8.

В процессе конденсации пара отопительного отбора в нижнем сетевом подогревателе 11 паровой турбины 1 происходит нагрев сжиженного пропана C3H8 до критической температуры 369,89 К, при котором происходит его интенсивное испарение. После нижнего сетевого подогревателя 11 газообразный пропан C3H8 направляют на перегрев в верхний сетевой подогреватель 10, куда поступает пар отопительного отбора из паровой турбины 1 при температуре около 410 К.

Пар, поступающий из отопительного отбора паровой турбины 1 в паровое пространство верхнего сетевого подогревателя 10, конденсируется на поверхности подогреваемых трубок, внутри которых протекает газообразный пропан C3H8.

В процессе конденсации пара отопительного отбора в верхнем сетевом подогревателе 10 паровой турбины 1 происходит перегрев газообразного пропана C3H8 до сверхкритической температуры от 369,89 К до 400 К при сверхкритическом давлении от 4,2512 МПа до 5,7 МПа, который направляют в турбодетандер 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана C3H8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7.

На выходе из турбодетандера 6 газообразный пропан C3H8, имеющий температуру перегретого газа около 288 К, направляют в теплообменник-рекуператор 18 для снижения температуры.

В теплообменнике-рекуператоре 18 в процессе отвода теплоты на нагрев сжиженного пропана C3H8 снижается нагрузка на теплообменник-конденсатор 8, выполненный, например, в виде конденсатора воздушного охлаждения, и затраты мощности на привод вентиляторов воздушного охлаждения.

Далее, при снижении температуры газообразного пропана C3H8 происходит его сжижение в теплообменнике-конденсаторе 8, охлаждаемого воздухом окружающей среды в температурном диапазоне от 223,15 К до 283,15 К.

После теплообменника-конденсатора 8 в сжиженном состоянии пропан C3H8 направляют для сжатия в конденсатный насос 9 теплового двигателя.

Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.

Использование предлагаемого способа работы тепловой электрической станции позволит, по сравнению с прототипом, повысить коэффициент полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты отработавшего пара, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии, повысить ресурс и надежность работы конденсатора паровой турбины и снизить тепловые выбросы в окружающую среду.


СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ
Источник поступления информации: Роспатент

Показаны записи 161-164 из 164.
26.08.2017
№217.015.e418

Способ работы термоэлектрического генератора

Изобретение относится к способу круглогодичной и круглосуточной термоэлектрической генерации, а именно к способу прямого преобразования солнечной радиации в электрическую энергию сочетанием фотоэлектрических и термоэлектрических преобразователей для обеспечения экологически чистым...
Тип: Изобретение
Номер охранного документа: 0002626242
Дата охранного документа: 25.07.2017
19.01.2018
№218.016.00ff

Способ опознавания объекта в когерентном свете

Изобретение может быть использовано для привязки и ориентации на местности при наведении теплового источника излучения на местности. Способ включает формирование первого и второго световых пучков с длинами волн λ и λ с помощью первого и второго коллиматоров, оптические оси которых образует угол...
Тип: Изобретение
Номер охранного документа: 0002629716
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.010e

Адаптивное цифровое прогнозирующее устройство

Изобретение относится к средствам обработки информации для прогнозирования стационарных и нестационарных случайных процессов. Технический результат заключается в повышении точности обработки данных. Для этого в блок прогноза адаптивного цифрового прогнозирующего устройства, содержащий три...
Тип: Изобретение
Номер охранного документа: 0002629643
Дата охранного документа: 30.08.2017
17.02.2018
№218.016.2ca0

Цифровое прогнозирующее устройство

Изобретение относится к средствам обработки информации для прогнозирования стационарных и нестационарных случайных процессов и может быть использовано в цифровых системах контроля и наведения. Техническим результатом является увеличение времени прогноза в пять раз. Устройство содержит три...
Тип: Изобретение
Номер охранного документа: 0002643645
Дата охранного документа: 02.02.2018
Показаны записи 161-170 из 179.
10.04.2016
№216.015.31c3

Способ изготовления фильтра интерференционного

Способ изготовления фильтра интерференционного включает в себя оптическое соединение между собой N цилиндрических оптических элементов с образованием многокомпонентного интерференционного фильтра. На боковую поверхность каждого оптического элемента наносят интерференционное покрытие, на входной...
Тип: Изобретение
Номер охранного документа: 0002580179
Дата охранного документа: 10.04.2016
20.08.2016
№216.015.4e61

Установка для подземной газификации топлива

Изобретение относится к устройствам для выработки тепловой и электрической энергии по месту их генерации путем преобразования твердых углеводородных топлив в газообразное топливо за счет осуществления внутрипластовой подземной огневой газификации. Установка содержит газовую турбину,...
Тип: Изобретение
Номер охранного документа: 0002595126
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.67e6

Теплообменная труба

Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах. В теплообменной трубе со скругленными выемками на наружной поверхности и соответствующими им скругленными выступами высотой h на внутренней поверхности, которые нанесены с шагом S, скругленные...
Тип: Изобретение
Номер охранного документа: 0002591376
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.73d8

Способ бесконтактной дистанционной диагностики состояния высоковольтных изоляторов

Изобретение относится к электроизмерительной технике и может быть использовано для бесконтактного дистанционного контроля рабочего состояния опорных высоковольтных изоляторов. Технический результат: обеспечение возможности определения момента возникновения преддефектного состояния за счет...
Тип: Изобретение
Номер охранного документа: 0002597962
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.82fe

Способ получения брикетов

Изобретение раскрывает способ получения брикетов, включающий обезвоживание шлама и последующее его прессование при давлении 30-35 МПа, характеризующийся тем, что используют высушенный замазученный карбонатный шлам химводоочистки тепловых электрических станций с влажностью не более 4%,...
Тип: Изобретение
Номер охранного документа: 0002601316
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.83ad

Установка подготовки твердого топлива к сжиганию

Изобретение относится к теплоэнергетике и может быть использовано для подготовки твердого топлива к сжиганию на тепловых электрических станциях (ТЭС). Установка подготовки твердого топлива к сжиганию содержит технологически соединенные между собой тракт сырого топлива, бункер сырого топлива,...
Тип: Изобретение
Номер охранного документа: 0002601399
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8c9e

Установка для производства пиролизного топлива

Изобретение относится к области низкотемпературного быстрого пиролиза и может быть использовано для производства топлива из биомассы мелкораздробленной древесины. Установка содержит технологически связанные между собой накопительный бункер исходного дисперсного сырья (ИДС) (25), камеру горения...
Тип: Изобретение
Номер охранного документа: 0002604845
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9a79

Способ оптического контроля состояния изолирующей конструкции

Изобретение относится к электрическим измерениям и предназначено для выявления дефектной изолирующей конструкции, например гирлянды изоляторов высоковольтной линии электропередачи, при осуществлении дистанционного контроля. заявленный способ оптического контроля состояния изолирующей...
Тип: Изобретение
Номер охранного документа: 0002609823
Дата охранного документа: 06.02.2017
25.08.2017
№217.015.a26f

Устройство адсорбционно-биологической очистки сточных вод промышленных предприятий

Изобретение относится к биологической очистке сточных вод и может быть использовано на очистных сооружениях промышленных предприятий. Устройство адсорбционно-биологической очистки сточных вод промышленных предприятий содержит технологически связанные между собой линию подачи сточных вод 12,...
Тип: Изобретение
Номер охранного документа: 0002606989
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.ba9c

Установка для получения нагретых газов из углеродсодержащего материала

Изобретение относится к области получения нагретых газов из твердых углеродсодержащих веществ и может быть использовано в энергетике. Установка для получения нагретых газов из углеродсодержащего материала содержит реактор кипящего слоя 1 для конверсии углерода с трубопроводом 6 подачи...
Тип: Изобретение
Номер охранного документа: 0002615690
Дата охранного документа: 06.04.2017
+ добавить свой РИД