×
20.08.2015
216.013.6f3c

Результат интеллектуальной деятельности: КЕРАМИЧЕСКИЙ ОКИСЛИТЕЛЬНО-СТОЙКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к области керамических композиционных материалов, армированных дисперсными частицами тугоплавких соединений, а также теплонагруженных изделий из данных материалов, и может быть использована в энергетическом машиностроении и аэрокосмической технике, в частности для деталей горячего тракта газотурбинных двигателей (ГТД). Предложенный керамический композиционный материал, содержащий армирующий наполнитель в виде углеродного рубленого волокна, кремний, карбид кремния, диоксид гафния, дополнительно содержит бор, оксид иттрия и диборид гафния, при следующем соотношении компонентов, мас.%: Si 10-15; SiC 30-40; HfB 10-15; бор 1-5; YO 1-5; углерод (волокно) 5-10; HfO - остальное. Предложено также изделие, выполненное из данного керамического композиционного материала. Технический результат изобретения - состав керамического композиционного материала обеспечивает убыль массы не более чем на 3 мас.% в атмосфере воздуха при температуре 1800°С в течение 500 ч, а также стойкость в дозвуковом высокоэнтальпийном потоке диссоциированного воздуха при температуре 2000°С в течение 600 с, т.е. обладает высокой стойкостью к окислению при экстремальных условиях. 2 н. и 1 з.п. ф-лы, 3 табл.

Группа изобретений относится к области разработки керамических композиционных материалов, армированных дисперсными частицами тугоплавких соединений, а также теплонагруженных изделий из данных материалов, обладающих высокой стойкостью к окислению при рабочей температуре до 1800°С, и может быть использована в энергетическом машиностроении, авиационной и аэрокосмической технике, в частности для деталей горячего тракта газотурбинных двигателей (ГТД).

Одним из недостатков высокотемпературных керамических композиционных материалов, в частности углеродных материалов, и изделий из них, является относительно невысокая стойкость к окислению. Так, уже при температуре 400°С и выше происходит окисление углерод-углеродных композиционных материалов. Более высокую способность к окислению имеют C-SiC-, SiC-SiC-композиционные материалы, однако, и они уже при температурах порядка 1500°С подвержены процессу окисления, в результате чего происходит резкое снижение их физико-механических характеристик. Для повышения антиокислительных свойств керамических композиционных материалов применяют внешнюю защиту в виде покрытия (системы покрытий), объемную защиту или комплексную систему защиты. Обычно в случае применения покрытий толщина внешней защиты составляет от нескольких десятков до сотен микрометров, что обеспечивает работоспособность защищаемой конструкции в течение непродолжительного периода времени, особенно в случае сильного механического воздействия и интенсивной абляции. При этом показателем стойкости к окислению, как правило, служит отношение изменения массы образца к площади его внешней поверхности (Δm/S, г/м2) или изменение его массы по отношению к исходному значению массы образца (Δm/m, мас.%).

Известен керамический композиционный материал с повышенной термо- и окислительной стойкостью, содержащий пористую заготовку SiC, пропитанную композицией, имеющей формулу Mo(AlxSi1-x)2, где 0,1<x<0,5 (US 5585313, опубл. 17.12.1996 г.). Данный материал обладает способностью работать при температуре 1500°С в окислительной среде в течение не менее 22 ч благодаря образованию оксидной пленки на его поверхности, препятствующей дальнейшему окислению материала. Тем не менее, недостатком данного керамического композиционного материала является необходимость проведения жидкофазной пропитки термообработанной заготовки материала при температуре порядка 2000°С, обеспечивающей значительный перегрев расплава для достижения его низкой вязкости, а значит, высокой капиллярной способности. К недостаткам данного материала также можно отнести неудовлетворительную термостойкость, в том числе стойкость к окислению, при температуре выше 1500°С, а также при кратковременных (в течение 600 с) забросах температуры до 2000°С.

Известен материал покрытия для детали из углерод-углеродного композиционного материала в виде композиции, содержащей суспензию коллоидного диоксида кремния, бор или соединение бора в виде порошка, карбид кремния в виде порошка и по меньшей мере один сверхжаропрочный оксид, причем композиция дополнительно содержит кремний в виде порошка, а также изделие (деталь), снабженное таким покрытием (RU 2506251 С2, опубл. 10.02.2014 г.). Недостатком указанного материала покрытия является неудовлетворительная стойкость к окислению при температуре выше 1500°С в течение более 1,5 часов, а также при кратковременных забросах температуры до 2000°С. Кроме того, применение данного материала покрытия для тормозных дисков из углерод-углеродного материала возможно только для нетрущихся поверхностей изделий на его основе.

Наиболее близким аналогом предлагаемого технического решения, принятым за прототип, является керамический композиционный материал, включающий кремний, углерод, тетраборид кремния, диоксид кремния, диоксид гафния и карбид кремния, при следующем соотношении компонентов, мас.%:

Si 20-35
С 25-40
SiB4 2-4
SiO2 0,1-0,9
HfO2 1-3
SiC остальное

(RU 2392250 С1, опубл. 20.06.2010 г.).

Недостатком керамического композиционного материала, известного из прототипа, является относительно низкая рабочая температура, составляющая 1600°С. Высокая концентрация кремния в данном материале приводит к его «выпотеванию» (вытеканию на поверхность) при температуре 1800°С и образованию открытой пористости на внешней поверхности изделий из данного материала, что в значительной степени снижает их стойкость к окислению. При этом высокая концентрация углерода в материале способствует его заметному выгоранию из-за диффузии кислорода через систему транспортных пор, образовавшихся в результате выделения газообразных веществ. Кроме того, метод холодного статического прессования с последующей термообработкой, применяемый для изготовления материала, известного из прототипа, не позволяет получить высокоплотный материал, и, следовательно, добиться его высоких прочностных свойств. Уплотнение данного материала золем диоксида кремния и диоксида гафния методом пропитки без приложения давления позволяет заполнить лишь объем пор в приповерхностной зоне материала, оставляя незаполненными золем внутреннюю часть и объем закрытой пористости.

Технической задачей предлагаемой группы изобретений является получение керамического композиционного материала и изделия, выполненного из него, работоспособных в условиях окислительных сред при повышенных температурах. Техническим результатом группы изобретений является разработка состава керамического композиционного материала, а также изделия, выполненного из этого материала, обеспечивающих изменение массы не более чем на 3 мас.% в атмосфере воздуха при температуре 1800°C в течение 100 ч, а также в дозвуковом высокоэнтальпийном потоке диссоциированного воздуха при температуре 2000°C в течение 600 с.

Дополнительным преимуществом предлагаемой группы изобретений является возможность получения керамического композиционного материала и изделия, выполненного из него, с плотностью не ниже 90% от теоретической плотности с высокими прочностными свойствами, проявляющих «самозалечивающий» эффект.

Предлагаемый окислительно-стойкий керамический композиционный материал содержит армирующий наполнитель в виде углеродного рубленого волокна, кремний, карбид кремния, диоксид гафния и дополнительно бор, оксид иттрия и диборид гафния, при следующем соотношении компонентов, мас.%:

Si 10-15
SiC 30-40
HfB2 10-15
В 1-5
Y2O3 1-5
Св 5-10
HfO2 остальное

Отношение длины углеродного рубленого волокна к его диаметру предпочтительно составляет не более 30.

Высокой окислительной стойкостью обладает также изделие, выполненное из предложенного керамического композиционного материала.

При температуре до 1800°C процесс окисления керамического композиционного материала существенно тормозится за счет образования боросиликатного стекла на внешней поверхности керамического композиционного материала, компонентами которого являются борный ангидрид и оксид кремния, образовавшиеся в результате окисления кремний- и борсодержащих соединений, а также аморфного бора, присутствующих в заявленных соотношениях в предложенном керамическом композиционном материале.

Авторами в результате проведенного эксперимента установлено, что при температуре 1800°C одновременное наличие карбида кремния и оксида иттрия в заявленных соотношениях позволяет повысить окислительную стойкость керамического композиционного материала за счет формирования высокотемпературной стеклокерамической фазы на его внешней поверхности, препятствующей проникновению кислорода вглубь материала. Наличие свободного кремния в заявленном соотношении позволяет связывать диффундирующий кислород за счет образования дополнительной стеклофазы.

Введение в состав предлагаемого материала углеродного рубленого волокна позволяет повысить его прочностные свойства, а также увеличить его термостойкость при высоких температурах за счет высокой теплопроводности углеродного волокна. Кроме того, при высоких температурах спекания углеродное волокно способно частично взаимодействовать с кремнием, входящим в состав композиционногоматериала, формируя в объеме композиционного материала включения в виде SiC - волокон, обладающих более высокой окислительной стойкостью, чем исходные углеродные волокна. Авторами установлено, что содержание углеродного волокна в заявленном количестве не приводит к существенному изменению параметра (Δm/m, мас.%) в процессе термической обработки предлагаемого материала при 1800°C. Напротив, увеличение содержания углеродного волокна в материале до 20-40 мас.% приводит к заметному выгоранию волокна в результате диффузии кислорода через систему транспортных пор, образовавшихся при выделении газообразных веществ.

Введение в композицию Y2O3 и HfO2 позволяет получить тугоплавкую стекловидную фазу. Кроме того, Y2O3 стабилизирует HfO2, позволяет свести к минимуму структурный переход HfO2 при высоких температурах, что, видимо, также повышает окислительную стойкость материала.

Заявленное соотношение длины углеродного рубленого волокна к его диаметру улучшает окислительную стабильность материала и изделия из него за счет уменьшения числа контактов между отдельными волокнами, размещенными в матрице, что позволяет уменьшить выгорание волокна, а также повысить теплопроводность материала.

Пример осуществления группы изобретений.

Для получения шихты предложенного керамического композиционного материала проводили предварительное измельчение кускового кремния на щековой дробилке ВВ-100. Для получения требуемой фракции порошка кремния, равной 1-5 мм, измельченный кремний рассеивали при помощи сита с соответствующим размером ячеек.

Затем порошки кремния, карбида кремния, диборида гафния, аморфного бора, оксида иттрия и диоксида гафния, рубленое углеродноеволокно марки УКНП-5000 просушивали в сушильном шкафу при температуре 60-80°C для удаления влаги.

Для получения тонкодисперсных порошков исходных компонентов измельчение каждого из них проводили в планетарной высокоскоростной шаровой мельнице РМ-400 в среде изопропилового спирта в течение 3 часов, а затем просеивали через сито фракции 100 мкм.

Прессование шихты проводилось на гидравлическом прессе модели HPW 400/500-2200-2500-PS/BK с применением графитовой пресс-формы в вакууме при температуре формования 1650°C и времени выдержки 1,5 ч, удельном давлении формования 30 МПа. Выход на заданную температуру осуществлялся в течение 50 мин.

Были изготовлены керамический композиционный материал трех составов в рамках предложенного диапазона, а также керамический композиционный материал состава, известного из прототипа. Содержание химических элементов и соединений в данных составах приведено в таблице 1.

Из полученного горячим изостатическим прессованием керамического композиционного материала при помощи механической обработки были изготовлены изделия в виде квадратных плиток с длиной стороны ℓ=65 мм, высотой h=5 мм, а также в виде круглых пластинок с диаметром Ǿ=100 мм, высотой h=5 мм для использования в деталях горячего тракта ГТД.

Испытания полученного керамического композиционного материала и материала, известного из прототипа, на окислительную стойкость в атмосфере воздуха проводили в камерной высокотемпературной печи Nabertherm НТ 16/18 с нагревателями из дисилицида молибдена. Изменение массы образцов рассчитывали с помощью электронных аналитических весов модели GR-200. Полученные экспериментальные данные по изменению массы образцов (Δm/m, мас.%, Δm=m1-m0, где m0 - масса исходного образца, m1 - масса образца после испытания в высокотемпературной печи) предложенного керамического композиционного материала при 1800°C в атмосфере воздуха в сравнении с материалом, известным из прототипа, при различном времени выдержки t приведены в таблице 2. Из приведенных данных следует, что с увеличением длительности изотермической выдержки до 40 часов масса образцов предложенного керамического композиционного материала претерпевает значительное увеличение вследствие образования оксидной высокотемпературной пленки на поверхности материала. Затем происходит некоторая стабилизация формирования стеклофазы в течение приблизительно 20 часов. Дальнейшее увеличение времени изотермической выдержки приводит к уменьшению массы образцов.

Испытания полученного керамического композиционного материала и материала, известного из прототипа, на окислительную стойкость вдозвуковом высокоэнтальпийном потоке диссоциированного воздуха при температуре 2000°C проводили на установке с высокотемпературной аэродинамической трубой ВАТ-104, оснащенной индукционным плазмотроном. Полученные экспериментальные данные по изменению массы образцов предложенного керамического композиционного материала и материала, известного из прототипа, при 2000°C в дозвуковом высокоэнтальпийном потоке диссоциированного воздуха приведены в таблице 3.

Из таблиц 2 и 3 следует, что максимальное изменение массы предлагаемого керамического композиционного материала в обеих окислительных средах не превышает 2,1 мас.%, в то время как изменение массы керамического композиционного материала, известного из прототипа, составляет 3,0 мас.% и более при проведении эксперимента на окислительную стойкость в атмосфере воздуха при температуре лишь 1600°C, что на 200°C ниже температуры проведения эксперимента в отношении заявленного материала. В процессе испытания образца материала, известного из прототипа, при 2000°C в дозвуковом высокоэнтальпийном потоке диссоциированного воздуха в течение 600 с происходит его разрушение.

Источник поступления информации: Роспатент

Показаны записи 291-300 из 369.
19.04.2019
№219.017.2dba

Способ получения литого трубного катода из сплавов на основе алюминия для ионно-плазменного нанесения покрытий

Изобретение относится к области металлургической промышленности. Способ включает плавление сплава из шихты и его заливку расплава в предварительно нагретую литейную форму в вакууме, осуществляемые в вакуумно-индукционной печи. Шихта содержит алюминий и один или несколько элементов, выбранных из...
Тип: Изобретение
Номер охранного документа: 0002340426
Дата охранного документа: 10.12.2008
19.04.2019
№219.017.2dc0

Способ защиты стальных деталей машин от солевой коррозии

Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом турбиностроении, преимущественно для защиты деталей компрессора газотурбинного двигателя от солевой коррозии. Способ включает последовательное нанесение на поверхность детали...
Тип: Изобретение
Номер охранного документа: 0002344198
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dc6

Способ получения литых трубных изделий из сплавов на основе никеля и/или кобальта

Изобретение относится к области металлургической промышленности. Способ включает плавление шихтовых материалов и заливку расплава в предварительно нагретую литейную форму, осуществляемые в двухкамерной вакуумно-индукционной печи. Заливку литейной формы расплавом осуществляют со скоростью 20-50...
Тип: Изобретение
Номер охранного документа: 0002344019
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dce

Способ получения алюминидного покрытия на поверхности изделия из жаропрочного сплава

Изобретение относится к металлургии и может быть использовано в авиационном и энергетическом турбиностроении для защиты лопаток турбин от высокотемпературного окисления и сульфидной коррозии. Размещают изделие и сплав на основе алюминия в зоне обработки. Создают вакуум в зоне обработки, подают...
Тип: Изобретение
Номер охранного документа: 0002348739
Дата охранного документа: 10.03.2009
19.04.2019
№219.017.2de0

Способ защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к способам получения алюминидных покрытий, и может быть использовано в авиационном и энергетическом турбиностроении для защиты от высокотемпературного окисления внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных...
Тип: Изобретение
Номер охранного документа: 0002349678
Дата охранного документа: 20.03.2009
19.04.2019
№219.017.2de1

Состав для получения покрытия

Изобретение относится к области машиностроения и металлургии и может использоваться в авиационном и энергетическом турбостроении для защиты деталей из сталей, никелевых и титановых сплавов от солевой и фреттинг-коррозии и контактного износа. Состав для получения покрытия на деталях,...
Тип: Изобретение
Номер охранного документа: 0002349681
Дата охранного документа: 20.03.2009
19.04.2019
№219.017.2e20

Керамический композиционный материал

Изобретение относится к керамическим композиционным материалам и может быть использовано в авиационной технике и машиностроении при изготовлении теплонагруженных деталей газотурбинных установок и двигателей газо-, нефтеперекачивающих, энергетических и транспортных систем и др., эксплуатируемых...
Тип: Изобретение
Номер охранного документа: 0002397969
Дата охранного документа: 27.08.2010
19.04.2019
№219.017.2e2a

Припой на основе никеля

Изобретение может найти применение при изготовлении деталей из деформированных и литых жаропрочных никелевых сплавов, в частности, для горячего тракта газотурбинных двигателей, таких как направляющие аппараты компрессоров и сопловые аппараты турбин. Припой имеет следующий состав, мас.%: Cr...
Тип: Изобретение
Номер охранного документа: 0002393074
Дата охранного документа: 27.06.2010
19.04.2019
№219.017.2e2f

Способ получения отливок

Изобретение относится к литейному производству. Способ включает заливку расплава в форму с последующим его охлаждением, предварительную механическую обработку отливок. Для создания разрежения отливку подвергают вакуумной обработке в автоклаве. Затем отливку под давлением 0,1-0,8 МПа пропитывают...
Тип: Изобретение
Номер охранного документа: 0002393053
Дата охранного документа: 27.06.2010
19.04.2019
№219.017.2e73

Композиционный материал и изделие, выполненное из него

Изобретение относится к композиционным материалам, а именно к композиционным материалам на основе стекломатриц, армированных углеродными волокнистыми наполнителями, используемым для изготовления теплонагруженных деталей, например бандажных колец, применяющихся в авиационной, космической технике...
Тип: Изобретение
Номер охранного документа: 0002310628
Дата охранного документа: 20.11.2007
Показаны записи 291-300 из 337.
27.04.2019
№219.017.3bf1

Антибликовый экран на основе силикатного стекла, антибликовое и антибликовое электрообогревное покрытия для него

Изобретение относится к области антибликового остекления приборов радиоэлектронной техники. Антибликовое покрытие содержит первый внутренний слой из TiO толщиной 10-17 нм, второй слой из SiO толщиной 27-36 нм, третий слой из TiO толщиной 102-120 нм и четвертый слой из SiO толщиной 87-95 нм....
Тип: Изобретение
Номер охранного документа: 0002685887
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3ca1

Теплостойкое термореактивное связующее для полимерной оснастки из полимерных композиционных материалов

Изобретение относится к теплостойкому связующему для полимерной оснастки из полимерных композиционных материалов, которое может быть использовано в изделиях авиакосмической техники. Теплостойкое термореактивное бисмалеимидное связующее содержит, мас.% от общей массы компонентов: бисмалеимид -...
Тип: Изобретение
Номер охранного документа: 0002686036
Дата охранного документа: 23.04.2019
29.04.2019
№219.017.4540

Сплав на основе интерметаллида nial

Изобретение относится к области металлургии, а именно к литейным сплавам на основе интерметаллида NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической и направленной столбчатой структурами, таким как, например, сопловые лопатки, блоки сопловых лопаток,...
Тип: Изобретение
Номер охранного документа: 0002405851
Дата охранного документа: 10.12.2010
08.05.2019
№219.017.48f9

Металлокерамический композиционный материал на основе интерметаллидной матрицы и способ его получения

Изобретение относится к металлургии, а именно к высокотемпературным композиционным материалам на основе интерметаллидной матрицы для обеспечения двигателей повышенной мощности и ресурса. Металлокерамический композиционный материал с интерметаллидной матрицей на основе NiAl содержит, масс.%: Al...
Тип: Изобретение
Номер охранного документа: 0002686831
Дата охранного документа: 30.04.2019
09.05.2019
№219.017.4a54

Состав для удаления лакокрасочных покрытий с внешних металлических поверхностей

Изобретение относится к области материалов для лакокрасочной промышленности. Описан состав для удаления полимерных лакокрасочных покрытий с внешних металлических поверхностей, включающий растворитель метиленхлорид, загуститель, замедлитель испарения и разрыхлитель, который дополнительно...
Тип: Изобретение
Номер охранного документа: 0002686928
Дата охранного документа: 06.05.2019
18.05.2019
№219.017.5447

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение может быть использовано для получения деталей турбин авиационного и энергетического назначения. Устройство содержит вакуумную камеру, загрузочную шлюзовую камеру, направляющие для перемещения литейных форм, печь подогрева форм и плавильно-заливочную печь, расположенные в вакуумной...
Тип: Изобретение
Номер охранного документа: 0002267380
Дата охранного документа: 10.01.2006
18.05.2019
№219.017.5683

Полиимидное связующее для армированных пластиков, препрег на его основе и изделие, выполненное из него

Изобретение относится к области получения полиимидов, а именно к области получения полиимидного связующего для армированных пластиков. Полиимидное связующее представляет собой продукт взаимодействия диангидрида бензофенон-3,3′-4,4′-тетракарбоновой кислоты и м-фенилендиамина и модифицирующую...
Тип: Изобретение
Номер охранного документа: 0002394857
Дата охранного документа: 20.07.2010
18.05.2019
№219.017.56b8

Способ получения пористо-волокнистого металлического материала

Изобретение относится к способам получения пористых материалов из металлических волокон, а именно к способам получения волокнистых металлических материалов с высокой пористостью (до 95%) из жаростойких сплавов для звукопоглощающих конструкций горячего тракта газотурбинного двигателя на рабочие...
Тип: Изобретение
Номер охранного документа: 0002311262
Дата охранного документа: 27.11.2007
18.05.2019
№219.017.576d

Устройство для получения отливок из жаропрочных сплавов с монокристаллической структурой

Изобретение относится к области литейного производства. Устройство содержит керамическую форму, в основании которой выполнены затравочная полость с размещенной в ней монокристаллической затравкой, полость кристалловода и коническая стартовая полость, соединенная с полостью формы, образующей...
Тип: Изобретение
Номер охранного документа: 0002353471
Дата охранного документа: 27.04.2009
18.05.2019
№219.017.5826

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к созданию титановых сплавов, предназначенных для изготовления деталей и узлов авиакосмической и ракетной техники: баллонов, шпангоутов, лонжеронов, стрингеров, нервюр, деталей крепления и др. Сплав имеет следующий химический состав, мас.%: алюминий 4,3-6,8; ванадий...
Тип: Изобретение
Номер охранного документа: 0002304178
Дата охранного документа: 10.08.2007
+ добавить свой РИД