×
10.08.2015
216.013.6d30

Результат интеллектуальной деятельности: СПОСОБ СИНТЕЗА НАНОКРИСТАЛЛИЧЕСКОГО КАРБИДА КРЕМНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения нанокристаллического карбида кремния. Способ включает плазмодинамический синтез карбида кремния в гиперскоростной струе электроразрядной плазмы, содержащей кремний и углерод в соотношении 3,0:1, которую генерируют коаксиальным магнитоплазменным ускорителем с графитовыми электродами и направляют в замкнутый объем, заполненный газообразным аргоном при нормальном давлении и температуре 20°C, при этом температуру газообразного аргона в замкнутом объеме изменяют в диапазоне от -20°C до 19°C и от 21°C до 60°C. Технический результат - регулирование дисперсности нанокристаллического карбида кремния. 1 ил., 1 табл.
Основные результаты: Способ синтеза нанокристаллического карбида кремния, включающий плазмодинамический синтез карбида кремния в гиперскоростной струе электроразрядной плазмы, содержащей кремний и углерод в соотношении 3,0:1, которую генерируют коаксиальным магнитоплазменным ускорителем с графитовыми электродами и направляют в замкнутый объем, заполненный газообразным аргоном при нормальном давлении и температуре 20°C, отличающийся тем, что температуру газообразного аргона в замкнутом объеме изменяют в диапазоне от -20°C до 19°C и от 21°C до 60°C.

Изобретение относится к физике низкотемпературной плазмы и плазмохимии, а также к области электротехники и электрофизики, а именно к ускорительной технике, и может быть использовано для генерирования высокоэнтальпийных струй электроразрядной плазмы, содержащей углерод и кремний, и получения нанокристаллического карбида кремния.

Известен способ плазмодинамического синтеза нанокристаллического карбида кремния (Сивков А.А., Никитин Д.С. и др. Прямой плазмодинамический синтез ультрадисперсного карбида кремния // Письма в ЖТФ, том 39, вып. 2, 2013, с. 15-20), который осуществляют в гиперскоростной струе, содержащей кремний и углерод электроразрядной плазмы, которую генерируют коаксиальным магнитоплазменным ускорителем с графитовыми электродами и направляют в замкнутый объем, заполненный газообразным аргоном при нормальном давлении и температуре 20°C.

Недостатком известного решения является получение карбида кремния недостаточной чистоты с избыточным содержанием кремния и углерода.

Известен способ синтеза нанокристаллического карбида кремния, выбранный в качестве прототипа (Сивков А.А., Никитин Д.С. и др. Получение ультрадисперсного кристаллического карбида кремния методом плазмодинамического синтеза // Сверхтвердые материалы, №3, 2013, с. 11-18), который осуществляют в гиперскоростной струе электроразрядной плазмы, содержащей кремний и углерод в соотношении 3,0:1, которую генерируют коаксиальным магнитоплазменным ускорителем с графитовыми электродами и направляют в замкнутый объем, заполненный газообразным аргоном при нормальном давлении и температуре 20°C.

Недостатком прототипа является невозможность регулирования дисперсности получаемого нанокристаллического карбида кремния.

Задачей изобретения является создание способа синтеза нанокристаллического карбида кремния, позволяющего регулировать его дисперсность.

Указанную задачу решают тем, что так же, как в прототипе, способ синтеза нанокристаллического карбида кремния осуществляют в гиперскоростной струе электроразрядной плазмы, содержащей кремний и углерод в соотношении 3,0:1, которую генерируют коаксиальным магнитоплазменным ускорителем с графитовыми электродами и направляют в замкнутый объем, заполненный газообразным аргоном при нормальном давлении и температуре 20°C.

Согласно изобретению, температуру газообразного аргона изменяют в диапазоне от -20°C до 19°C и от 21°C до 60°C.

Экспериментально установлено, что изменение температуры в указанном диапазоне обеспечивает регулирование дисперсности получаемого в процессе синтеза нанокристаллического карбида кремния. Это обусловлено изменением времени кристаллизации частиц, что непосредственно влияет на их размер.

На чертеже изображено устройство для реализации способа синтеза нанокристаллического карбида кремния.

В таблице 1 представлены значения основных параметров и результатов экспериментов.

Предложенный способ синтеза нанокристаллического карбида кремния был реализован с использованием коаксиального магнитоплазменного ускорителя (фиг.1), который состоит из цилиндрического электропроводящего ствола, выполненного из двух электропроводящих цилиндров, внутреннего цилиндра 1, выполненного из графита и внешнего цилиндра 2, выполненного из прочного немагнитного металла, например из нержавеющей стали и центрального электрода, состоящего из наконечника 3, выполненного из графита, и хвостовика 4, выполненного из конструкционного металла с высокой электропроводностью, например стали, меди, латуни и т.д. Ствол и центральный электрод соединены электрически плавкой перемычкой 5 из порошкообразного материала, состоящего из смеси кремния и углерода в соотношении 3,0:1. Центральный электрод отделен от цилиндрического электропроводящего ствола изолятором 6. Корпус 7 выполнен из магнитного материала и сопряжен с внешним металлическим цилиндром 2, и перекрывает зону размещения плавкой перемычки 5. Длина части, перекрывающей зону размещения плавкой перемычки 5 составляет 40-50 мм, а ее внешняя поверхность выполнена конусообразной. Соленоид 8 выполнен за одно целое с фланцем 9 и цилиндрической частью 10, в которой размещен корпус 7 и укреплен резьбовой заглушкой 11. Соленоид 8 укреплен прочным стеклопластиковым корпусом 12 и стянут мощными токопроводящими шпильками 13 между фланцем 9 и стеклопластиковым упорным кольцом 14. Токопроводящие шпильки 13 электрически соединены токопроводящим кольцом 15, а к токопроводящим шпилькам 13 присоединен шинопровод 16 внешней схемы электропитания. Второй шинопровод 17 схемы электропитания присоединен к хвостовику 4. Ко второму шинопроводу 17 последовательно присоединены ключ 18 и конденсаторная батарея 19, связанная с шинопроводом 16. На выходе из цилиндрического электропроводящего ствола соосно ему расположена цилиндрическая камера-реактор, выполненная из нержавеющей стали.

Работа устройства заключается в следующем. При замыкании ключа 18 в контуре электропитания ускорителя начинает протекать ток от конденсаторной батареи 19 по шинопроводу 16, токопроводящему кольцу 15, шпилькам 13, фланцу 9, виткам соленоида 8, корпусу 7, внешнему металлическому цилиндру 2, внутреннему графитовому цилиндру 1, плавкой перемычки 5, наконечнику 3, хвостовику 4, второму шинопроводу 17, ключу 18 и конденсаторной батарее 19. При этом плавкая перемычка 5 разогревается, и ее материал переходит в плазменное состояние с образованием дугового разряда, плазма которого содержит углерод и кремний. Конфигурация плазменной структуры типа Z-пинч с круговой плавкой перемычкой задается формой плавкой перемычки 5 и наличием цилиндрического канала в изоляторе 6. Далее плазма разряда сжимается магнитным полем собственного тока и аксиальным полем соленоида 8 и существует в ускорительном канале в виде удлиняющегося Z-пинча с круговой плавкой перемычкой на конце, через которую ток переходит на цилиндрическую поверхность графитового ускорительного канала, в процессе ускорения плавкой перемычки под действием силы Лоренца. Ускоренный плазменный поток истекает из ускорительного канала в замкнутый объем камеры-реактора, заполненный газообразным аргоном при нормальном давлении 105 Па и заданной температуре. Происходит образование продукта синтеза в головном скачке уплотнения плазменной струи и осаждение его на стенках камеры-реактора. В зависимости от температуры газообразного аргона возможно получать продукт различной дисперсности.

Предложенный способ был испытан при следующих параметрах устройства для его реализации: емкость конденсаторной батареи 19 C=6·10-3 Ф; зарядное напряжение Uзар=3,0 кВ; диаметр ускорительного канала во внутреннем цилиндре 1 dук=9,5 мм; внешний диаметр внутреннего цилиндра 1 Dгр=25 мм; длина соленоида lL=150 мм; длина ствола lст=169 мм; диаметр камеры-реактора Dкам=25 мм, длина камеры-реактора lкам=530 мм. В опытах изменяли температура газообразного аргона, которым был заполнен замкнутый объем камеры-реактора. Уменьшение температуры камеры-реактора, а следовательно газообразного аргона, производили с помощью холодильной установки, а увеличение температуры - с помощью строительного фена. Температуру измеряли термопарой, установленной внутри камеры-реактора. Средние параметры генерируемой плазменной струи: амплитуда импульса тока 100 кА, мощность разряда 115 МВт, подведенная энергия 30 кДж.

Как видно из таблицы 1, при увеличении температуры от -20°C до 60°C происходит рост среднего размера частиц карбида кремния от 50 до 120 нм.

Способ синтеза нанокристаллического карбида кремния, включающий плазмодинамический синтез карбида кремния в гиперскоростной струе электроразрядной плазмы, содержащей кремний и углерод в соотношении 3,0:1, которую генерируют коаксиальным магнитоплазменным ускорителем с графитовыми электродами и направляют в замкнутый объем, заполненный газообразным аргоном при нормальном давлении и температуре 20°C, отличающийся тем, что температуру газообразного аргона в замкнутом объеме изменяют в диапазоне от -20°C до 19°C и от 21°C до 60°C.
СПОСОБ СИНТЕЗА НАНОКРИСТАЛЛИЧЕСКОГО КАРБИДА КРЕМНИЯ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 144.
10.11.2014
№216.013.0411

Комплекс для проверки скважинных инклинометров на месторождении

Изобретение относится к области исследования и испытания инклинометров в полевых условиях. Техническим результатом является повышение точности и оперативности проверки магнитных и гироскопических скважинных инклинометров в полевых условиях. Предложен комплекс для проверки скважинных...
Тип: Изобретение
Номер охранного документа: 0002532439
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0453

Способ определения равновесности химического состава болотных вод от их гидродинамических условий

Изобретение относится к гидродинамическим и гидрохимическим исследованиям вод торфяных почв. Техническим результатом является определение изменения химического состава болотных вод по глубине торфяной залежи в условиях их гидродинамического режима во времени. В способе определяют закономерность...
Тип: Изобретение
Номер охранного документа: 0002532505
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04af

Способ визуализации ультразвуковой дефектоскопии трехмерного изделия

Использование: для визуализации ультразвуковой дефектоскопии трехмерного изделия. Сущность изобретения заключается в том, что размещают пьезопреобразователи антенной решетки на объекте контроля, причем расстояние между соседними положениями антенной решетки, при которой получают одно...
Тип: Изобретение
Номер охранного документа: 0002532597
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04b8

Устройство ультразвуковой томографии

Использование: для визуализации ультразвуковой дефектоскопии трехмерного изделия. Сущность изобретения заключается в том, что устройство ультразвуковой томографии содержит антенную решетку с n приемно-передающими элементами, каждый из которых соединен с выходом соответствующего генератора...
Тип: Изобретение
Номер охранного документа: 0002532606
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.08b4

Способ определения частотных границ полезного сигнала и полос пропускания цифровых частотных фильтров

Изобретение относится к области цифровой обработки сигналов и может быть использовано для решения задач неразрушающего контроля и диагностики оборудования на основе корреляционного анализа. Техническим результатом является определение частотных границ полезного сигнала и полос пропускания...
Тип: Изобретение
Номер охранного документа: 0002533629
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0cf1

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования-контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытания на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002534730
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0cf3

Способ количественного определения афлатоксина в1 методом дифференциальной вольтамперометрии

Изобретение относится к области аналитической химии и может быть использовано в фармакокинетических исследованиях, для контроля кормов и кормовых добавок, в пищевой промышленности для определения фальсификации и др. Способ определения афлатоксина B1, включающий следующие операции: афлатоксин...
Тип: Изобретение
Номер охранного документа: 0002534732
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0d2f

Способ получения фторида водорода из отходов алюминиевого производства

Изобретение может быть использовано в химической промышленности. Способ получения фторида водорода из отходов алюминиевого производства включает сернокислотное разложение криолитсодержащих отходов. В качестве отходов алюминиевого производства берут пыль электрофильтров. Отходы предварительно...
Тип: Изобретение
Номер охранного документа: 0002534792
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0d82

Шихта для получения пинкового пигмента со структурой оловянного сфена

Изобретение относится к керамическому производству, в частности, к получению керамических пигментов. Техническим результатом изобретения является понижение температуры синтеза пигмента, удешевление керамических пигментов и утилизация отхода производства глинозема. Шихта для получения пинкового...
Тип: Изобретение
Номер охранного документа: 0002534875
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0e6c

Способ получения нанопорошков металлов с повышенной запасенной энергией

Изобретение относится к порошковой металлургии, в частности к получению нанопорошков металлов с повышенной запасенной энергией. Может использоваться для повышения реакционной способности нанопорошков при спекании, горении, в энергосберегающих технологиях. Образец нанопорошка металла облучают...
Тип: Изобретение
Номер охранного документа: 0002535109
Дата охранного документа: 10.12.2014
Показаны записи 51-60 из 248.
20.10.2013
№216.012.75ac

Способ управления погружением подводного объекта и устройство для его осуществления

Группа изобретений относится к автоматическому управлению подводными объектами с использованием судовых спускоподъемных устройств. Способ заключается в изменении длины частей гибкой механической связи между подводным объектом и судном-носителем. Основное перемещение подводного объекта по...
Тип: Изобретение
Номер охранного документа: 0002495784
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.78a8

Способ предварительной подготовки нефти на промыслах при многоступенчатой сепарации

Изобретение относится к области промысловой подготовки нефти. Способ предварительной подготовки нефти на промыслах при многоступенчатой сепарации, включающий закачку реагента-деэмульгатора в трубопровод, подачу на вход первого сепаратора воды, нагретой до 100°С тепловой энергией, выделяемой...
Тип: Изобретение
Номер охранного документа: 0002496550
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.78bc

Способ получения сорбента для очистки воды от ионов железа и марганца

Изобретение относится к получению неорганических сорбентов. Способ получения сорбента включает обработку диоксида титана, состоящего из кристаллических фаз анатаза и рутила, ультразвуком в 0,2 н. растворе NaOH или НСl в течение 10 мин. Сорбент промывают декантацией не менее 3 раз и сушат при...
Тип: Изобретение
Номер охранного документа: 0002496570
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.79b5

Травитель для титана

Изобретение предназначено для подготовки поверхности титана перед нанесением биоактивных покрытий на поверхность имплантата. Травитель для титановых имплантатов содержит фосфорную кислоту, окислитель и воду при следующих количественных соотношениях компонентов, мас.%: фосфорная кислота 23-65,...
Тип: Изобретение
Номер охранного документа: 0002496819
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7eed

Устройство для индивидуального теплоснабжения

Изобретение относится к теплоэнергетике, а именно к устройствам газификации твердого топлива, используемым для обеспечения потребителя теплом и горячим водоснабжением. Устройство содержит бункер для твердого топлива с расположенными в нем колосниковой решеткой и загрузочным люком,...
Тип: Изобретение
Номер охранного документа: 0002498166
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f60

Термоэлектрический способ неразрушающего контроля качества поверхностного слоя металла

Использование: для неразрушающего контроля качества поверхностного слоя металла. Сущность: заключается в том, что используют две группы одинаково нагретых электродов из одного материала, устанавливают одну группу нагреваемых электродов на контролируемое изделие, а другую па эталонный образец,...
Тип: Изобретение
Номер охранного документа: 0002498281
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f61

Способ определения содержания водорода в титане

Изобретение может быть использовано для контроля материалов, изначально свободных и защищенных от водорода для космических аппаратов, активных зон водоохлаждаемых ядерных энергетических установок (ЯЭУ), вентиляторов двигателей самолетов, дисков турбин высокого и низкого давления, их планетарных...
Тип: Изобретение
Номер охранного документа: 0002498282
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f68

Способ определения платины в рудах по пику селективного электроокисления сu из интерметаллического соединения ptcu методом инверсионной вольтамперометрии

Изобретение может быть использовано в различных геологических разработках при поиске и разведке в случае анализа руд, рудных концентратов и пород. Способ определения платины в рудах по пику селективного электроокисления Cu из интерметаллического соединения PtCu методом инверсионной...
Тип: Изобретение
Номер охранного документа: 0002498289
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f69

Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления меди из rhcu

Изобретение относится к аналитической химии, а именно к способам определения содержания ионов металлов для определения в питьевых и природных водах методом инверсионной вольтамперометрии (ИВ). Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику...
Тип: Изобретение
Номер охранного документа: 0002498290
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7f8b

Способ определения наличия гармонических составляющих и их частот в дискретных сигналах

Изобретение относится к области цифровой обработки сигналов и может быть использовано для определения наличия гармонических составляющих и их частот в сигналах различного происхождения при решении задач неразрушающего контроля и диагностики оборудования на основе корреляционного анализа....
Тип: Изобретение
Номер охранного документа: 0002498324
Дата охранного документа: 10.11.2013
+ добавить свой РИД