×
10.08.2015
216.013.6c91

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ПЛОТНОСТИ В НАНОСЛОЕ

Вид РИД

Изобретение

№ охранного документа
0002559351
Дата охранного документа
10.08.2015
Аннотация: Изобретение относится к области исследований слоистых наноструктур, в частности методике диагностики структуры наносистем. Способ определения пространственного распределения плотности атомов в нанослое состоит в том, что измеряют интенсивности отражения и пропускания через структуру нейтронов и интенсивности вторичных излучений, вызванных поглощением нейтронов в нанослое, при этом последовательно во времени формируют три разного типа зависимости плотности поляризованных нейтронов от координаты в глубь исследуемого слоя и от волнового вектора нейтронов, для этого используют трехслойную структуру, размещенную на подложке, в которой средний слой является исследуемым, следующий за исследуемым слой имеет потенциал взаимодействия нейтронов с веществом, превышающий потенциал исследуемого слоя, слой, покрывающий исследуемый слой, является магнитным с потенциалом взаимодействия для поляризованных нейтронов в направлении вектора магнитной индукции больше, а для нейтронов, поляризованных противоположно - меньше потенциала взаимодействия исследуемого слоя. Технический результат - повышение точности определения распространений атомов изотопов, увеличение диапазона значений толщины исследуемого слоя. 6 ил.
Основные результаты: Способ определения пространственного распределения плотности атомов в нанослое, состоящий в том, что измеряют интенсивности отражения и пропускания через структуру нейтронов и интенсивности вторичных излучений, вызванных поглощением нейтронов в нанослое, отличающийся тем, что последовательно во времени формируют три разного типа зависимости плотности поляризованных нейтронов от координаты в глубь исследуемого слоя и от волнового вектора нейтронов, для этого используют трехслойную структуру, размещенную на подложке, в которой средний слой является исследуемым, следующий за исследуемым слой имеет потенциал взаимодействия нейтронов с веществом, превышающий потенциал исследуемого слоя, слой, покрывающий исследуемый слой, является магнитным с потенциалом взаимодействия для поляризованных нейтронов в направлении вектора магнитной индукции больше, а для нейтронов, поляризованных противоположно - меньше потенциала взаимодействия исследуемого слоя.

Настоящее изобретение относится к области исследований слоистых наноструктур, в частности методике диагностики структуры наносистем, что важно для установления соответствия физических свойств слоистых структур пространственным распределениям ее составляющих изотопов.

Известен способ определения пространственного распределения потенциала взаимодействия нейтронов со слоистой структурой [1], который состоит в регистрации отражения и пропускания нейтронов структурой. В случае структуры, состоящей из нескольких изотопов, невозможно определить распределение плотности отдельных изотопов, поскольку определяющий интенсивность нейтронов потенциал взаимодействия нейтронов со структурой равен сумме потенциалов взаимодействия нейтронов с изотопами, из которых состоит структура.

Известен способ определения пространственного распределения плотности атомов [2], заключающийся в измерении интенсивности вторичного излучения, возникающего в результате рассеяния рентгеновского излучения атомами слоистой структуры. Рентгеновское излучение взаимодействует с электронной оболочкой атома, а не ядром атома. В этой связи нет чувствительности к изотопному составу, и невозможно проследить связь физических свойств структуры с их изотопным составом.

Известен способ определения пространственного распределения плотности атомов [3], который является прототипом, заключающийся в измерении интенсивности отражения и пропускания нейтронов структурой и интенсивности вторичного излучения, возникающего в результате рассеяния нейтронов изотопами атомов слоистой структуры.

Недостатком прототипа является то, что для определения пространственного распределения плотности атомов используется одно пространственное распределение плотности первичного излучения. Это уменьшает диапазон значений толщины исследуемого слоя и снижает точность определения распределений атомов изотопов по сравнению со случаем использования нескольких различных распределений плотности первичного излучения.

Решение технической задачи достигается тем, что в способе определения пространственного распределения плотности атомов в нанослое измеряют интенсивности отражения и пропускания через структуру нейтронов и интенсивности вторичных излучений, вызванных поглощением нейтронов в нанослое, при этом последовательно во времени формируют три разного типа зависимости плотности поляризованных нейтронов от координаты в глубь исследуемого слоя и от волнового вектора нейтронов, для этого используют трехслойную структуру, размещенную на подложке, в которой средний слой является исследуемым, следующий за исследуемым слой имеет потенциал взаимодействия нейтронов с веществом, превышающий потенциал исследуемого слоя, слой, покрывающий исследуемый слой, является магнитным с потенциалом взаимодействия для поляризованных нейтронов в направлении вектора магнитной индукции больше, а для нейтронов, поляризованных противоположно - меньше потенциала взаимодействия исследуемого слоя.

Физическая сущность изобретения заключается в том, что в слое, в котором определяется пространственное распределение изотопа, формируется неоднородная плотность нейтронов n(z,k) (z - координата от поверхности слоя в глубину, k - волновой вектор нейтрона) и измеряются одновременно интенсивности отраженных (коэффициент пропускания R(k)) и прошедших слой (коэффициент пропускания T(k)) нейтронов и интенсивность вторичного излучения J (пропорциональна коэффициенту поглощения нейтронов M(k)).

Из коэффициентов отражения и пропускания нейтронов определяется плотность нейтронов n(z,k), а из интенсивности вторичного излучения и плотности нейтронов n(z,k) определяется пространственное распределение ядер изотопа N(z). Для коэффициентов поглощения нейтронов M(k) и Mj,f(k), где j - изотоп и f - тип вторичного излучения и интенсивности вторичного излучения Jj,f(k) выполняются соотношения

где σj,f - парциальный коэффициент поглощения нейтронов, Nj(z) - плотность j - изотопа, ν, ν - перпендикулярная компонента скорости и скорость нейтронов, соответственно, J0 - поток нейтронов, падающих на структуру, Ai,f - аппаратный коэффициент, учитывающий выход вторичного излучения из глубины z образца, угловое распределение вторичного излучения, телесный угол видимости детектора и эффективность регистрации вторичного излучения детектором.

Неоднородная плотность нейтронов n(z,k) формируется тремя возможными способами. Для формирования трех разных распределений плотности нейтронов в структуре используют нейтроны, поляризованные против направления магнитного поля (поляризация нейтронов P=-1), и нейтроны, поляризованные по направлению магнитного поля (поляризация нейтронов P=+1). Вся слоистая структура состоит из трех слоев длиной L1, L2 и L3. На рисунке 1-а и 1-б приведены потенциалы взаимодействия нейтрона со структурой из трех слоев в случае поляризации нейтронов -1 и +1, соответственно. Первый слой является исследуемым, а второй и третий - вспомогательными. Слой 2 выполняет роль отражателя нейтронной волны, в результате чего в слое 1 формируются стоячие нейтронные волны. Роль отражателя может выполнять слой меди, имеющей потенциал 172 нэВ. При этом исследуемым слоем должен быть слой с меньшим, чем у отражателя потенциалом, например, слой алюминия с потенциалом 55 нэВ. Зависимости Рис. 1 связаны с тем, что слой 3 является магнитным. Его состав подобран так, чтобы потенциал взаимодействия U3 нейтронов с поляризацией P=-1, равный разности ядерного Uя и магнитного Uм потенциалов, был меньше потенциала исследуемого слоя или равен нулю. Таким веществом является, например, магнитный сплав Fe0.38Co0.62, имеющий для P=-1 потенциал, равный нулю. В результате, для нейтронов с P=-1 слой 3, за исключением составляющего 10-2-10-1 поглощения нейтронов, практически не отражает нейтроны. Нейтроны при энергии E<U1 испытывают полное отражение от слоя 1, в результате чего в слое 1 формируется первый режим нейтронного волнового поля, которому соответствует экспоненциальная в глубину плотность нейтронов. В этом случае в слое зондируется приповерхностный слой толщиной 1-10 нм. Нейтроны при энергии U1<Е<U2 испытывают полное отражение от слоя 2, в результате чего в слое 1 формируется второй режим нейтронного волнового поля, а именно нейтронные стоячие волны, которому соответствует периодическая в глубину плотность нейтронов. В этом случае зондируется глубинный прилегающий к слою 2 слой вещества толщиной 20-40 нм. Для нейтронов с P=+1 потенциал слоя 3 равен сумме ядерного и магнитного слоев. Так, например, для слоя потенциал равен 230 нэВ, что больше потенциала исследуемого слоя. В результате, в исследуемом слое реализуется третий режим нейтронного волнового поля, а именно усиленные стоячие волны, которому соответствует периодическая и резонансная зависимость плотности нейтронов. В этом случае зондируется поверхностный прилегающий к слою 3 слой вещества толщиной до 50 нм.

На рис. 2 показаны зависимости от волнового вектора нейтронов в вакууме k0-1) коэффициента поглощения нейтронов MB в слое с 1% содержанием ядер изотопа 10В для случая потенциала, показанного на рис. 1-а. Зависимости 1, 2 и 3 соответствуют координате слоя Бора толщиной 1 нм, равной z=0.5 нм, 5.5 нм и 10.5 нм, соответственно. В области 0<k0<0.005 Å-1 реализуется полное отражение от слоя алюминия и зависимости гладкие, при этом большим значениям z соответствуют меньшие значения коэффициента MB. В области 0.005 Å-1<k0<0.009 Å-1, в которой формируются стоячие нейтронные волны, значениям z=0.5 нм, 5.5 нм и 10.5 нм соответствуют разные зависимости MB(k0) с максимумами при k0=0.00655, 0.00684 и 0.00713 Å-1 и k0=0.00838, 0.00868 и 0.00897 Å-1. Из этого следует, что изменению z на 1 нм соответствует изменение k0 на 1.8%, что легко определимо при разрешении (относительном среднеквадратичном отклонении) меньше 1%.

На рис. 3 показаны зависимости от волнового вектора нейтронов k0-1) коэффициента поглощения нейтронов MB в слое с 1% содержанием ядер изотопа 10В для случая потенциала, показанного на рис. 1-б. Зависимости 1 и 2 соответствуют координате слоя Бора толщиной 1 нм равной z=0.5 нм и 10.5 нм, соответственно. В этом случае коэффициент поглощения в максимумах вырос в порядка 10 раз, а в минимумах, соответственно, уменьшился. При этом положение поглощающего слоя Бора определяется по соотношению величины коэффициента поглощения в максимумах и по изменению положения минимумов.

Таким образом, используя нейтроны с поляризацией +1 и поляризацией -1, мы реализуем три разных режима нейтронного волнового поля, которым соответствуют три разных зависимости от волнового вектора коэффициента поглощения нейтронов и интенсивности вторичного излучения (заряженные частицы, гамма-кванты, осколки деления ядер). В результате, один исследуемый слой, толщина которого может составлять 1-104 нм, зондируется с использованием трех разных распределений плотности нейтронов.

Технически данный способ реализуется следующим образом. Подложка толщиной 1-5 мм и размерами в плоскости больше чем 5 мм × 5 мм изготавливается из полированной пластины кремния, окисла магния или стекла. Далее, на подложку наносятся последовательно слои структуры. Для качественного изготовления структуры, когда шероховатость на границах раздела невелика, нужно использовать или метод магнетронного распыления, или метод молекулярной эпитаксии.

В случае регистрации, например, заряженных частиц, используется ионизационная камера (Рис. 4), внутри которой помещен исследуемый образец. Это обеспечивает 2π телесный угол регистрируемых заряженных частиц и большую эффективность регистрации.

Пучок нейтронов входит в ионизационную камеру через одно окно, отражается от исследуемого образца, выходит через второе окно и регистрируется детектором. Кроме интенсивности заряженных частиц определяется также энергия заряженной частицы Е=Е0-∫L[δE/δz]dz. Это дополнительно повышает надежность измерений пространственного положения L ядер изотопа.

На Рис. 5 в качестве примера технической реализации представлены экспериментальные зависимости коэффициента отражения нейтронов R(λ) от структуры 6LiF (19 нм) / Ti (200 нм) / Cu (100 нм) и выхода альфа-частиц и тритонов I(λ), регистрируемого ионизационной камерой и образованного захватом нейтронов ядрами изотопа 6Li (сечение захвата нейтронов при λ=1.8 Å равно σ=945 барн). Выход заряженных частиц коррелирует с захватом нейтронов. Обе зависимости отражают наличие периодической зависимости плотности нейтронов в слое титана толщиной 200 нм. Из зависимости R(λ) определяются плотность нейтронов и распределение плотности всех атомов структуры. Из зависимости I(λ) определяется распределение плотности атомов изотопа 6Li.

На Рис. 6 представлен профиль плотности амплитуды рассеяния нейтронов (пропорциональна потенциалу взаимодействия и плотности атомов) в зависимости от координаты Z в глубь от поверхности структуры. В дипазоне z=0-550 Å профиль амплитуды рассеяния нейтронов соответствует профилю плотности атомов изотопа 6Li.

Итак, отличительными признаками нового способа измерений является:

1) большой диапазон анализа по глубине (1 нм - 10 мкм)

2) надежность определения пространственной структуры исследуемого нанослоя, связанная с использованием трех различных способов формирования неоднородного распределения плотности нейтронов.

Литература:

1. В.Л. Аксенов, Ю.В. Никитенко, Нейтронная поляризационная рефлектометрия на импульсном реакторе ИБР-2. Кристаллография, 2007, Том 52, №3, с. 593-602.

2. М.В. Ковальчук, В.Г. Кон, Рентгеновские стоячие волны - новый метод исследования структуры кристаллов, УФН, Том. 149, вып. 1 с. 69-103.

3. Ю.В. Никитенко, "Нейтронные стоячие волны в слоистых системах", Автореферат диссертации на соискание ученой степени доктора физико-математических наук, УДК 538.97, Дубна, 2008.

Способ определения пространственного распределения плотности атомов в нанослое, состоящий в том, что измеряют интенсивности отражения и пропускания через структуру нейтронов и интенсивности вторичных излучений, вызванных поглощением нейтронов в нанослое, отличающийся тем, что последовательно во времени формируют три разного типа зависимости плотности поляризованных нейтронов от координаты в глубь исследуемого слоя и от волнового вектора нейтронов, для этого используют трехслойную структуру, размещенную на подложке, в которой средний слой является исследуемым, следующий за исследуемым слой имеет потенциал взаимодействия нейтронов с веществом, превышающий потенциал исследуемого слоя, слой, покрывающий исследуемый слой, является магнитным с потенциалом взаимодействия для поляризованных нейтронов в направлении вектора магнитной индукции больше, а для нейтронов, поляризованных противоположно - меньше потенциала взаимодействия исследуемого слоя.
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ПЛОТНОСТИ В НАНОСЛОЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ПЛОТНОСТИ В НАНОСЛОЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ПЛОТНОСТИ В НАНОСЛОЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ПЛОТНОСТИ В НАНОСЛОЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ПЛОТНОСТИ В НАНОСЛОЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ПЛОТНОСТИ В НАНОСЛОЕ
Источник поступления информации: Роспатент

Показаны записи 41-42 из 42.
10.04.2019
№219.017.0903

Способ получения пучка ионов высокой зарядности

Изобретение относится к области получения пучков многозарядных ионов и может быть использовано для решения научных и прикладных задач, в частности использоваться в ускорителях. Интенсивный импульсный поток тяжелых ионов в данном способе создается за счет многократной ионизации тяжелых ионов во...
Тип: Изобретение
Номер охранного документа: 0002448387
Дата охранного документа: 20.04.2012
19.04.2019
№219.017.3420

Дрейфовая камера для работы в вакууме

Изобретение относится к ионизационным многопроволочным координатным детекторам и может быть использовано в экспериментальной ядерной физике для регистрации ядерного излучения. Сущность изобретения заключается в том, что используют в качестве основы камеры цельное кольцо с парными отверстиями на...
Тип: Изобретение
Номер охранного документа: 0002465620
Дата охранного документа: 27.10.2012
Показаны записи 31-38 из 38.
25.08.2017
№217.015.c5ba

Способ синхронного ускорения заряженных частиц в постоянном магнитном поле

Изобретение относится к cпособу ускорения заряженных частиц. В заявленном способе инжектированные в ускоритель частицы ускоряются импульсами индукционного электрического поля, которые синхронизированы с импульсами тока ускоряемого пучка. Синхронизация импульсов осуществляется с помощью датчиков...
Тип: Изобретение
Номер охранного документа: 0002618626
Дата охранного документа: 05.05.2017
29.12.2017
№217.015.fd44

Способ профилактики нарушений психоневрологического статуса при острой лучевой болезни в эксперименте

Изобретение относится к экспериментальной медицине и может найти применение в космонавтике для поддержания на высоком уровне операторской деятельности космонавтов в условиях не прогнозированного воздействия радиации, а также реабилитации пациентов после протонной терапии опухолей головного...
Тип: Изобретение
Номер охранного документа: 0002638270
Дата охранного документа: 12.12.2017
20.01.2018
№218.016.0fff

Устройство для эмиссионного и массового спектрального анализа органических веществ

Изобретение относится к устройствам для спектрального анализа элементного состава вещества. Заявленное устройство для эмиссионного и массового спектрального анализа органических веществ содержит штуцер для подачи рабочего газа, плазменную горелку, плазмообразующий электрод, дополнительный...
Тип: Изобретение
Номер охранного документа: 0002633657
Дата охранного документа: 16.10.2017
20.01.2018
№218.016.10d7

Способ фокусировки пучков заряженных частиц

Изобретение относится к области и к способу фокусировки пучков заряженных частиц. В заявленном способе формируют систему магнитных полей, поочередно отклоняют ими частицы к оси и от оси системы, осуществляя таким образом жесткую фокусировку частиц, отклонение частиц проводят полями диполей с...
Тип: Изобретение
Номер охранного документа: 0002633770
Дата охранного документа: 18.10.2017
13.02.2018
№218.016.212a

Способ медленного вывода пучка заряженных частиц

Изобретение относится к ускорительной технике, в частности к способам вывода частиц из кольцевых систем ускорителей и накопителей заряженных частиц, которые используют байпасные системы. Предлагаемый способ решает задачу уменьшения потерь частиц при медленном выводе с использованием байпасной...
Тип: Изобретение
Номер охранного документа: 0002641658
Дата охранного документа: 19.01.2018
11.06.2018
№218.016.6164

Способ понижения вязкости промодулированным ультразвуком в условиях резонансных частот жидкости

Изобретение относится к технологическим процессам перекачки, добычи и транспортировки нефти и других вязких продуктов. Способ понижения вязкости нефти, согласно которому на структуру нефти оказывают ультразвуковое воздействие на первой несущей частотной гармоники продольной волной, излучаемой...
Тип: Изобретение
Номер охранного документа: 0002657205
Дата охранного документа: 08.06.2018
13.10.2018
№218.016.9158

Способ определения пространственных профилей ядерного и магнитного потенциалов взаимодействия поляризованных нейтронов со слоистой структурой

Использование: для определения пространственных профилей ядерного и магнитного потенциалов взаимодействия поляризованных нейтронов со слоистой структурой. Сущность изобретения заключается в том, что осуществляют измерение в недеполяризующем нейтроны магнитном поле соответствующих четырем...
Тип: Изобретение
Номер охранного документа: 0002669543
Дата охранного документа: 11.10.2018
23.05.2023
№223.018.6d7d

Способ измерения вероятности поглощения нейтронов при их подбарьерном отражении от поверхности и структура для его осуществления

Использование: для измерения вероятности поглощения нейтронов при их подбарьерном отражении от поверхности. Сущность изобретения заключается в том, что осуществляют измерение вероятности отражения нейтронов от трехслойной структуры, в которой крайние слои выполняют из веществ с положительным...
Тип: Изобретение
Номер охранного документа: 0002761053
Дата охранного документа: 02.12.2021
+ добавить свой РИД