×
10.08.2015
216.013.6982

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ОБЪЕМА СКВАЖИНЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к горному делу и может быть использовано для определения объема скважины, пробуренной в газоносных породных массивах, а также в измерительной технике для определения объема негерметичной емкости. Сущность способа заключается в том, что при определении объема скважины, пробуренной в газоносных породных массивах, устье скважины с притоками газа закрывают на время нарастания избыточного давления, затем перепускают часть газа в атмосферу с постоянным расходом, при этом объем скважины определяют по формуле, учитывающей измеренные параметры: атмосферное давление, давление в скважине до и после начала перепуска газа, давления в скважине в момент начала и окончания перепуска газа, расход перепускаемого газа, время между измерениями давлений и длительность перепуска газа. Кроме того, при измерении объема малодебитной скважины в нее нагнетают воздух, закрывают устье на время падения избыточного давления и затем перепускают часть воздуха в атмосферу. Способ определения объема скважина характеризуется простотой практической реализации и обеспечивает высокую точность измерений объема скважин, что особенно важно в условиях подземных горных работ при контроле качества дегазационных работ для решении задач безопасности горных работ. Техническим результатом является повышение точности измерений. 1 з.п. ф-лы, 1 ил.

Изобретение относится к горному делу и может быть использовано для определения объема скважины, пробуренной в газоносных породных массивах, а также в измерительной технике для определения объема негерметичной емкости.

Известен способ определения глубины скважин, включающий измерение длины колонны труб при спускоподъемных операциях [1]. Однако способ глубины и объема скважины с помощью колонны труб является длительной и трудоемкой операцией, особенно после технологического обустройства устья дегазационной скважины.

Известен также способ определения объема негерметичной емкости, включающий измерение давления в емкости в течение времени, при этом в емкости создают избыточное давление сжатым воздухом, затем воздух перепускают в отдельную герметизированную эталонную емкость и по величине измеренных давлений рассчитывают объем [2], принятый в качестве аналога.

Недостатком аналога является невысокая точность измерений, что обусловлено невозможностью достижения стабильного давления газа в эталонной емкости, необходимого для вычислений. Кроме того, использование эталонной емкости усложняет практическую реализацию способа, особенно в шахтных условиях, и увеличивает погрешность измерений объема больших полостей.

Наиболее близким техническим решением по назначению является способ определения объема скважины, включающий заполнение полости скважины средой и измерение давления в скважине в течение времени [3], принятый в качестве прототипа.

Недостатком прототипа является невысокая точность определения объема из-за неуправляемой фильтрации заполняющей скважину жидкости в породный массив. Кроме того, при инфильтрации жидкости в поровое пространство породного массива снижается его газопроницаемость и, соответственно, эффективность функционирования дегазационной скважины. Кроме того, недостатком прототипа является высокая трудоемкость реализации, требующая использование воды для закачки в скважину.

Задачей изобретения является повышение точности измерений объема скважины, пробуренной в газоносных угольных пластах и породных массивах, повышение эффективности функционирования дегазационных скважин, а также снижение трудоемкости измерительных операций.

Это достигается тем, что в способе определения объема скважины, включающем заполнение полости скважины средой и измерение давления в скважине в течение времени, устье скважины с притоками газа закрывают на время изменения давления, затем перепускают часть газа в атмосферу с постоянным расходом, при этом измеряют величину давления до и после перепуска газа, а объем скважины определяют по формуле

где Pat - атмосферное давление;

Р0 - давление в скважине в момент времени до перепуска газа;

P1 - давление в скважине в момент времени начала перепуска газа;

Р2 - давление в скважине в момент времени окончания перепуска газа;

P3 - давление в скважине в момент времени после перепуска газа;

Δt1 - время между измерениями значений и Р0 и P1;

Δt2 - длительность перепуска газа;

Δt3 - время между измерениями значений P2 и P3;

G - объемный расход перепускаемого газа в устье скважины.

Кроме того, в малодебитную скважину предварительно нагнетают воздух.

Предложенный способ поясняется схемой, отражающей осуществление способа в газоносных породных массивах.

В породном массиве 1 ранее пробурена скважина 2, обсаженная в устье трубой 3. На выходе из трубы 3 установлены расходомер газа 4, а внутри трубы - вентиль 5, и манометр 6.

Способ осуществляют следующим образом.

Осуществляют заполнение полости скважины средой. При измерении объема скважины в газоносном породном массиве с помощью вентиля 5 перекрывают сечение трубы 3. Таким образом, устье скважины с притоками газа закрывают на время изменения давления. Вследствие поступления газа из породного массива в полость скважины 2 происходит повышение давления до величины Р0, которое фиксируют манометром 6. В соответствии с уравнением Менделева-Клапейрона масса газа в скважине составляет

где m0 - масса газа в скважине;

µ - молярная масса газа;

R - универсальная газовая постоянная;

Т - абсолютная температура газа;

V - объем скважины.

Через последующее время Δt1 от момента измерения давления Р0 до момента начала перепуска газа в атмосферу давление в скважине изменяется до величины Р1. Масса газа в скважине перед перепуском составляет

где m1 - масса газа в скважине перед перепуском газа в атмосферу.

Темп перетока массы газа между скважиной 2 и окружающим породным массивом составляет

Далее с помощью вентиля 5 устье скважины 2 открывают и в течение времени Δt2 перепускают часть газа с постоянным массовым расходом в атмосферу. Показания объемного расхода газа измеряют расходомером газа 4. При этом из скважины через устьевую трубу 3 выходит газ массой

где Δm - масса газа, перепускаемого в атмосферу через устьевую трубу 3;

Pat - атмосферное давление;

G - постоянный объемный расход газа, перепускаемого в атмосферу.

После перепуска газа в атмосферу давление газа в скважине 2 уменьшается до величины P2. Поэтому масса оставшегося газа в скважине 2 составляет

где m2 - масса газа в скважине после перепуска в атмосферу.

Затем через время Δt3 после перепуска газа измеряют величину давления Р3. На этой стадии темп перетока массы газа между скважиной 2 и окружающей средой составляет

Следовательно, средневзвешенный по времени темп перетока массы газа между скважиной 2 и окружающей средой составляет

В течение времени Δt2 истечения газа из устьевой трубы 3 другая часть газа перетекает из скважины 2 через породный массив, а также, в случае плохой герметизацию устья скважины, проходит обход устьевой трубы 3. Масса этого газа составляет

В соответствии с законом сохранения массы выполняется равенство

Из решения уравнения (9) с учетом зависимостей (1-8) получим выражение для расчета объема скважины

Таким образом на основе замеров параметров Р0, Р1, Р2, Р3, Δt1, Δt2, Δt3 и G, выполненных при реализации технологических операций данного способа, определяют объем скважины. Достоинством способа является высокая точность определения объема, поскольку для его реализации требуется минимальное количество оборудования при высокой точности измерений необходимых параметров: времени, давления и расхода газа. Способ характеризуется высокой эффективностью функционирования дегазационной скважины, поскольку в технологических операциях закрытия и открытия устья дегазационных скважин расширяются каналы фильтрации и увеличивается газопроницаемость, что способствует увеличению дебитов метана. Использование в качестве рабочей среды газа метана, поступающего из породного массива, исключает необходимость использования дополнительного оборудования для нагнетания рабочей среды в скважину. Это обеспечивает низкую трудоемкость при реализации.

При определении объема скважины 2 в породных массивах 1 с небольшой газоносностью, для сокращения длительности измерительных операций, в малодебитную скважину 2 предварительно нагнетают воздух, закрывают скважину 2 на время Δt1 падения избыточного давления от величины Р0 до величины Р1, затем перепускают часть воздуха в атмосферу с постоянным расходом G в течение времени Δt2. В конце процесса измеряют давление газа Р2. Затем через время Δt3 после перепуска газа измеряют давление газа Р3. Также как в первом варианте, расчет производят по формуле (10).

По сравнению с прототипом во втором варианте использование сжатого воздуха в качестве рабочей среды вместо воды также обеспечивает более низкую трудоемкость реализации, исключающей использования габаритных емкостей и нагнетательного оборудования.

Пример реализации 1. Шахта им. С.М. Кирова расположена в Кузнецком угольном бассейне. На шахте применяют дегазацию выемочного столба в пласте "Поленовский" с помощью скважин, пробуренных из вентиляционного и конвейерного штреков. При экспертизе эффективности работы дегазационных скважин необходимо иметь точную информацию об их объеме и длине. С этой целью устье дегазационной скважины обустраивают в соответствии с представленной схемой, при монтаже которой использованы: для измерения объемного расхода газа - ротаметр ЭМИС-МЕТА 210; для измерения давления газа в скважине используют манометр типа ТВ, серия 10; для перекрытия устья скважины - вентиль в виде шарового крана типа 11Б27п. В частом случае при реализации способа выполнены следующие операции. Заполняли полости скважины средой. Устье скважины закрыли и в результате притока газа из угольного пласта в скважине сформировалось избыточное абсолютное давление, значение которого на манометре составляет Р0=2,0 бар. Через Δt1=40 мин после измерения избыточного давления газа его абсолютное давление увеличилось и составило Р1=2,3 бар. Затем с помощью вентиля открыли устье скважины и обеспечили перепуск газа в атмосферу с постоянным расходом газа G=0,03 м3/мин в течение времени Δt2=30 мин. Абсолютное давление в скважине в конце процесса перепуска газа составляет Р2=1,5 бар. Затем через время Δt3=25 мин измерили давление газа в скважине Р3=1,6 бар. Следовательно, расчетный объем скважины по формуле (10) составляет

При диаметре скважины d=93 мм (0,093 м) длина скважины равна

Пример реализации 2. На шахте им. С.М. Кирова по пласту "Болдыревский" ряд дегазационных скважин являются малодебитными, что требует большого времени ожидания для формирования избыточного давления в скважине. Поэтому для сокращения длительности операций по определению объема скважины в нее предварительно закачивают воздух. С помощью манометра измерили избыточное давление Р0=4,0 бар. Затем, через время Δt1=40 мин зафиксировали падение давления до величины Р1=3,8 бар. После этого осуществили перепуск воздуха в атмосферу с постоянным расходом G=0,14 м3/мин в течение времени Δt2=20 мин. Измеренное давление составило Р3=2,4 бар. Затем через время Δt3=30 мин измеряют давление в скважине Р3=2,3 бар. Полученных данных достаточно для выполнения расчета по формуле (10)

Длина скважины при диаметре d=0,093 м составляет

Разработанный способ определения объема скважины обеспечивает высокую точность измерений объема и длины скважины и характеризуется простотой практической реализации, что особенно важно при решении задач горного дела в условиях подземных горных работ при контроле качества дегазационных работ. В частности, своевременный контроль за величиной объема ранее пробуренных дегазационных скважин способствует решению актуальной задачи обеспечения безопасности при разработке газоносных угольных пластов. В целом, реализация разработанного способа сокращает материальные затраты на измерительные операции при высокой точности результата измерений.

Источники информации

1. Патент RU 2215140, кл. Е21В 47/01, Е21В 47/04 от 27.10.2003.

2. Патент РФ №2026533, кл. G01F 17/00 от 09.01.1995.

3. Авт. свид. СССР №533723, кл. Е21В 47/08 от 30.10.1976 (прототип).


СПОСОБ ОПРЕДЕЛЕНИЯ ОБЪЕМА СКВАЖИНЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ОБЪЕМА СКВАЖИНЫ
Источник поступления информации: Роспатент

Показаны записи 141-150 из 228.
10.02.2015
№216.013.2422

Сухая композиция для создания самовыравнивающихся быстротвердеющих наливных полов

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления быстротвердеющих самовыравнивающихся литых изделий и конструкций типа наливных полов промышленных и гражданских зданий, торговых и спортивных залов, автопарковок, гаражей. Сухая композиция...
Тип: Изобретение
Номер охранного документа: 0002540703
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.244e

Сухая композиция на основе шунгита для получения материалов с уникальным сочетанием свойств (шунгилит)

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления износостойких водоустойчивых нагревательных покрытий типа самовыравнивающихся теплых безожоговых наливных полов жилых и производственных помещений, спортивных, торговых, выставочных залов,...
Тип: Изобретение
Номер охранного документа: 0002540747
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2451

Комплексный способ предварительной дегазации рабочего угольного пласта, выработанного пространства и пластов-спутников и управляемого обрушения тяжелой кровли

Изобретение относится к горной промышленности, а именно к подземной угледобыче. Техническим результатом является повышение безопасности работы в очистном забое в пластах, опасных по газовому фактору. Предложен комплексный способ предварительной дегазации рабочего угольного пласта, выработанного...
Тип: Изобретение
Номер охранного документа: 0002540750
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2513

Способ изготовления электроконтактного провода и электроконтактный провод

Изобретение относится к технологии получения проводов контактной сети из дисперсионно-твердеющего сплава, а также к самим проводам и может быть, в частности, использовано для высокоскоростного железнодорожного транспорта. Способ получения электроконтактных проводов из сплавов на основе меди...
Тип: Изобретение
Номер охранного документа: 0002540944
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2638

Способ электролитического получения меди

Изобретение относится к металлургической отрасли, в частности к способу получения меди. Способ электролитического получения меди включает электролитическое анодное растворение медьсодержащего сырья в сернокислом медьсодержащем электролите с осаждением меди на катоде. При этом электролит...
Тип: Изобретение
Номер охранного документа: 0002541237
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.263a

Способ переработки железосодержащих материалов в двухзонной печи

Изобретение относится к способу пирометаллургической переработки железосодержащих материалов, включающий загрузку в плавильную зону двухзонной печи железосодержащих материалов, флюсующих добавок и углеродсодержащих материалов, расплавление их в барботируемом кислородсодержащим дутьем...
Тип: Изобретение
Номер охранного документа: 0002541239
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2961

Способ пирометаллургической переработки железосодержащих материалов

Изобретение относится к процессам получения жидкого металла из окисленного железосодержащего сырья, техногенных отходов черной и цветной металлургии, в том числе содержащего примеси цветных металлов. Шихтовые материалы в виде железосодержащих материалов, флюсующих добавок и углеродсодержащих...
Тип: Изобретение
Номер охранного документа: 0002542050
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2a2f

Способ защиты порошков гидридообразующих сплавов для хранения водорода, предотвращающий пассивацию компонентами воздуха и других газообразных сред

Изобретение относится к области технологии создания композиционных полимерных материалов и может быть использовано для предотвращения нежелательной пассивации воздухом или компонентами, содержащимися в технических водородсодержащих газах и других газообразных средах, гидридообразующих сплавов,...
Тип: Изобретение
Номер охранного документа: 0002542256
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.3051

Способ управления движением ковша эксковатра-драглайна и устройство для его осуществления

Изобретение относится к горной промышленности и может быть использовано для управления движением ковша драглайна при копании. Техническим результатом является повышение надежности и долговечности рабочего оборудования и механизмов драглайна, а также повышение его производительности. Предложен...
Тип: Изобретение
Номер охранного документа: 0002543837
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.31cf

Алмазное покрытие и способ его получения

Изобретение относится к области нанотехнологии, а именно к алмазным нанокристаллическим покрытиям и способам его получения с использованием наноалмазов. Алмазное покрытие состоит из подслоя, содержащего наноалмазные частицы с размером от 2 до 30 нм, и нанесенного осаждением из газовой фазы...
Тип: Изобретение
Номер охранного документа: 0002544219
Дата охранного документа: 10.03.2015
Показаны записи 141-150 из 230.
10.02.2015
№216.013.23d2

Способ формирования высококачественных гетероструктур светоизлучающих диодов

Изобретение относится к области полупроводниковой оптоэлектроники и может быть использовано для создания высококачественных полупроводниковых светоизлучающих диодов (СИД) на основе гетероструктур соединений AB. Способ включает операцию облучения пластин с гетероструктурами интегральным потоком...
Тип: Изобретение
Номер охранного документа: 0002540623
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.23fb

Способ получения наночастиц платиновых металлов

Изобретение относится к области нанотехнологий и может быть использовано в медицине, фармацевтике, косметологии. Наночастицы платиновых металлов получают в прозрачной жидкости на водной основе 7 при разрушении мишени 6 из платинового металла или сплава кавитацией, возникающей путем доставки...
Тип: Изобретение
Номер охранного документа: 0002540664
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2422

Сухая композиция для создания самовыравнивающихся быстротвердеющих наливных полов

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления быстротвердеющих самовыравнивающихся литых изделий и конструкций типа наливных полов промышленных и гражданских зданий, торговых и спортивных залов, автопарковок, гаражей. Сухая композиция...
Тип: Изобретение
Номер охранного документа: 0002540703
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.244e

Сухая композиция на основе шунгита для получения материалов с уникальным сочетанием свойств (шунгилит)

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления износостойких водоустойчивых нагревательных покрытий типа самовыравнивающихся теплых безожоговых наливных полов жилых и производственных помещений, спортивных, торговых, выставочных залов,...
Тип: Изобретение
Номер охранного документа: 0002540747
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2451

Комплексный способ предварительной дегазации рабочего угольного пласта, выработанного пространства и пластов-спутников и управляемого обрушения тяжелой кровли

Изобретение относится к горной промышленности, а именно к подземной угледобыче. Техническим результатом является повышение безопасности работы в очистном забое в пластах, опасных по газовому фактору. Предложен комплексный способ предварительной дегазации рабочего угольного пласта, выработанного...
Тип: Изобретение
Номер охранного документа: 0002540750
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2513

Способ изготовления электроконтактного провода и электроконтактный провод

Изобретение относится к технологии получения проводов контактной сети из дисперсионно-твердеющего сплава, а также к самим проводам и может быть, в частности, использовано для высокоскоростного железнодорожного транспорта. Способ получения электроконтактных проводов из сплавов на основе меди...
Тип: Изобретение
Номер охранного документа: 0002540944
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2638

Способ электролитического получения меди

Изобретение относится к металлургической отрасли, в частности к способу получения меди. Способ электролитического получения меди включает электролитическое анодное растворение медьсодержащего сырья в сернокислом медьсодержащем электролите с осаждением меди на катоде. При этом электролит...
Тип: Изобретение
Номер охранного документа: 0002541237
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.263a

Способ переработки железосодержащих материалов в двухзонной печи

Изобретение относится к способу пирометаллургической переработки железосодержащих материалов, включающий загрузку в плавильную зону двухзонной печи железосодержащих материалов, флюсующих добавок и углеродсодержащих материалов, расплавление их в барботируемом кислородсодержащим дутьем...
Тип: Изобретение
Номер охранного документа: 0002541239
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2961

Способ пирометаллургической переработки железосодержащих материалов

Изобретение относится к процессам получения жидкого металла из окисленного железосодержащего сырья, техногенных отходов черной и цветной металлургии, в том числе содержащего примеси цветных металлов. Шихтовые материалы в виде железосодержащих материалов, флюсующих добавок и углеродсодержащих...
Тип: Изобретение
Номер охранного документа: 0002542050
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2a2f

Способ защиты порошков гидридообразующих сплавов для хранения водорода, предотвращающий пассивацию компонентами воздуха и других газообразных сред

Изобретение относится к области технологии создания композиционных полимерных материалов и может быть использовано для предотвращения нежелательной пассивации воздухом или компонентами, содержащимися в технических водородсодержащих газах и других газообразных средах, гидридообразующих сплавов,...
Тип: Изобретение
Номер охранного документа: 0002542256
Дата охранного документа: 20.02.2015
+ добавить свой РИД