×
20.07.2015
216.013.64b7

СПОСОБ ОПРЕДЕЛЕНИЯ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ЧАСТИЦ ОКОМКОВАННОГО И/ИЛИ ГРАНУЛИРОВАННОГО МАТЕРИАЛА В НАСЫПНОМ СЛОЕ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002557330
Дата охранного документа
20.07.2015
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к измерительной технике. Способ определения геометрических размеров частиц окомкованного и/или гранулированного материала в насыпном слое заключается в том, что формируют видимую область каждой частицы, путем выделения ее на растре видеоизображения от соответствующего ей максимума интенсивности отраженного излучения до ближайших к нему минимумов. Затем задают последовательность обработки этих областей от частиц с большей степенью округлости видимой области к меньшей, измеряют расстояние от соответствующего максимума интенсивности отраженного излучения до минимумов, граничащих с видимыми областями частиц, имеющих меньшую степень округлости, и тем самым определяют геометрические размеры частиц окомкованного и/или гранулированного материала.Техническим результатом является повышение точности определения геометрических размеров частиц окомкованного и/или гранулированного материала в насыпном слое. 8 ил., 1 табл.
Основные результаты: Способ определения геометрических размеров частиц окомкованного и/или гранулированного материала в насыпном слое, включающий измерение электромагнитного излучения в виде его двумерного распределения, путем фиксирования его с помощью видеокамеры в виде растра видеоизображения, после чего в распределении интенсивности отраженного излучения определяют максимумы и минимумы, отличающийся тем, что формируют видимую область каждой частицы, путем выделения ее на растре видеоизображения от соответствующего ей максимума интенсивности отраженного излучения до ближайших к нему минимумов, задают последовательность обработки этих областей от частиц с большей степенью округлости видимой области к меньшей, измеряют расстояние от соответствующего максимума интенсивности отраженного излучения до минимумов, граничащих с видимыми областями частиц, имеющих меньшую степень округлости, и тем самым определяют геометрические размеры частиц окомкованного и/или гранулированного материала.
Реферат Свернуть Развернуть

Изобретение относится к измерительной технике, в частности к способу контроля технологического процесса производства гранул, например окатышей, гранулята, камней или зерен, и может быть использовано для определения геометрических размеров частиц окомкованного и/или гранулированного материала в насыпном слое.

Из статей "Improving the accuracy of flotation grade measurements by data reconciliation", Haavisto 0., Kaartinen J., Hyotyniemi H., The 6th International Conference on Intelligent Processing and Manufacturing of Materials - IPMM-2007, Salerno, Italy, 24-29 June, 2007 и "Particle size distributions by laser diffraction - Part 1: Sensitivity of granularmatters trength to analytica loperating procedures" F. Storti, F. Balsamo, "RomaTre" University, Roma, Italy, 2009 известны способы решения задачи оценки гранулометрического состава частиц сыпучего материала, однако данные методы предназначены исключительно для проведения лабораторных исследований и не могут быть использованы в условиях горно-обогатительных комбинатов.

Известен способ определения геометрических размеров частиц окомкованного и/или гранулированного материала (пат. РФ. №2154814, оп. 20.08.2000, бюл. №23, прототип), который подвергают воздействию направленного электромагнитного излучения. Затем измеряют двумерное распределение интенсивности отраженного от частиц излучения, причем в распределении интенсивности отраженного излучения определяют максимумы и минимумы, а также их расстояние друг от друга в 8 или более направлениях. Из расстояний между максимумами и минимумами интенсивности определяют статистическое распределение, которое используют в качестве статистического распределения геометрических размеров частиц. Известный способ обеспечивает достаточно точное измерение геометрических размеров частиц окомкованного и/или гранулированного материала, если они расположены в монослое.

Однако в случае необходимости определения геометрических размеров частиц окомкованного и/или гранулированного материала в насыпном слое этот способ теряет свои преимущества. В случае определения размеров гранул в насыпном слое, когда гранулы верхнего слоя частично закрывают гранулы нижних слоев (фиг.2), даже для исследуемых частиц со специфической формой (окатыши, гранулы, форма которых близка к шарообразной) известный метод не позволяет определять их истинные размеры

Таким образом, задачей изобретения является разработка способа определения геометрических размеров частиц окомкованного и/или гранулированного материала в насыпном слое, применяя хорошо зарекомендовавшую себя идею использования неравномерности интенсивности отраженного от гранул излучения на поверхности гранулы и на ее границе, а также с учетом их специфической формы.

Поставленная задача решена предлагаемым, согласно изобретению, способом определения геометрических размеров частиц окомкованного и/или гранулированного материала в насыпном слое, включающим измерение электромагнитного излучения в виде его двумерного распределения, путем фиксирования его с помощью видеокамеры в виде растра видеоизображения, после чего в распределении интенсивности отраженного излучения определяют максимумы и минимумы, отличающимся тем, что формируют видимую область каждой частицы, путем выделения ее на растре видеоизображения от соответствующего ей максимума интенсивности отраженного излучения до ближайших к нему минимумов, задают последовательность обработки этих областей от частиц с большей степенью округлости видимой области к меньшей, измеряют расстояние от соответствующего максимума интенсивности отраженного излучения до минимумов, граничащих с видимыми областями частиц, имеющих меньшую степень округлости, и тем самым определяют геометрические размеры частиц окомкованного и/или гранулированного материала.

В настоящее время из патентной и научной литературы неизвестна совокупность предлагаемых, согласно изобретению, признаков, позволяющих решить изложенную выше техническую задачу.

Итак, согласно изобретению, способ определения геометрических размеров частиц окомкованного и/или гранулированного материала в насыпном слое заключается в первоначальном выделении максимумов и минимумов в отраженном от каждой гранулы (камень, окатыш, зерно) излучении, затем для каждой частицы формируют видимую область, путем выделения ее на растре видеоизображения от соответствующего ей максимума интенсивности отраженного излучения до ближайших к нему минимумов, с последующим определением степени ее округлости. Гранулы, имеющие почти шарообразную форму и расположенные на верхних слоях насыпного слоя, обладают видимой областью практически в виде диска и, соответственно, характеризуются фактором округлости близким к 1. Гранулы, располагающиеся на нижних слоях насыпной массы, частично закрываются верхними гранулами и поэтому имеют видимую область, мало похожую на диски и характеризующуюся фактором округлости меньше 1. Таким образом, чем меньше фактор округлости видимой области, тем на более низком слое располагается соответствующая гранула в насыпной массе. Вот почему необходимо задавать последовательность обработки видимых областей частиц, начиная с частиц с большей степенью округлости видимой области в сторону ее уменьшения, и за истинный размер гранулы принимать то расстояние от максимума интенсивности отраженного излучения до минимумов, которое определяется до границ с частицами, имеющими меньший фактор округлости видимой области, то есть расположенных на более низком слое.

Дальнейшие подробности изобретения следуют из приведенного примера осуществления способа с помощью чертежей.

На них изображены:

Фиг.1 - установка для получения окатышей,

Фиг.2 - двумерное распределение интенсивности,

Фиг.3 - максимумы и минимумы интенсивности отраженного излучения,

Фиг.4 - расстояние от соответствующих максимумов интенсивности отраженного излучения окатышей А и В (фиг.3) до минимумов,

Фиг.5 - размеры окатышей, определенные известным способом,

Фиг.6 - размеры окатышей, определенные предлагаемым способом,

Фиг.7 - гистограмма распределения окатышей, размеры которых определены известным способом,

Фиг.8 - гистограмма распределения окатышей, размеры которых определены предлагаемым способом.

Предлагаемый способ определения геометрических размеров частиц окомкованного и/или гранулированного материала в насыпном слое может быть проиллюстрирован на примере установки 1 для получения окатышей из железной руды (фиг.1). Подлежащая окомковыванию смесь из железной руды и бентонита подается через ленточный транспортер 5 и накопитель материала 6 на тарельчатый окомкователь 7. Окомкованный материал отводится через следующий ленточный транспортер 8. Тарельчатые окомкователи 7 управляются и регулируются управлением. Целью этого управления и регулирования является получение окатышей определенного размера из железорудно-бентонитной смеси. Для этого размер окатышей измеряют измерительным блоком 2. Это измерение может производиться тогда, когда окатыши падают на ленточный транспортер 8 или когда они лежат на ленточном транспортере 8. Измерительный блок 2 состоит из электромагнитных источников излучения, равномерно распределенных по окружности, и видеокамеры. Поставляемое камерой изображение (фиг.2) предварительно обрабатывают и через линию данных 3 передают на ЭВМ. Оценка этого переданного сигнала происходит в ЭВМ 4 так, что там может быть получена информация о распределении размеров окатышей, которая является необходимой для регулирования тарельчатых окомкователей 7. На двумерном распределении интенсивности (фиг.2) показано, что окатыши проявляются в качестве областей с более высокой интенсивностью света. За счет выпуклой поверхности на растровом изображении окатышей при многомерном облучении, например путем облучения тремя равномерно распределенными по окружности источниками света, получается различное отражение отдельных областей окатыша. Так свет от центра окатыша отражается сильнее, чем от краев. Таким образом, проводя пороговую обработку растрового изображения (фиг.2), можно получить максимумы и минимумы интенсивности отраженного от насыпного слоя окатышей излучения (фиг.3). Далее производится обработка видимых областей окатышей, начиная с областей с наибольшим фактором округлости в сторону его уменьшения. На фиг.4 для окатышей А и В показаны измеренные по 16 направлениям расстояния от центров соответствующих максимумов интенсивности отраженного излучения до минимумов. В нижеприведенной таблице представлены полученные значения.

Таблица
Радиусы окатышей А и В, измеренные по 16 направлениям
№ измерения Угол направления измерения расстояния от центра максимума интенсивности до минимумов Расстояние от центра максимума интенсивности отраженного излучения окатыша А до минимумов в пикселях Расстояние от центра максимума интенсивности отраженного излучения окатыша В до минимумов в пикселях
1 17,00 8,00
2 22,5° 8,94 10,44
3 45,0° 6,40 21,00
4 67,5° 7,28 14,76
5 90,0° 8,00 13,00
6 112,5° 8,94 10,44
7 135,0° 12,04 14,14
8 157,5° 16,55 9,49
9 180,0° 14,00 9,00
10 202,5° 7,28 8,54
11 225,0° 7,81 10,63
12 247,5° 9,49 11,70
13 270,0° 9,00 15,00
14 292,5° 7,62 16,55
15 315,0° 10,00 7,07
16 337,5° 18,36 8,54
Среднее 10,54 12,05

Согласно известному способу определения размеров окатышей, заключающемуся в усреднении измеренных расстояний, радиус окатыша А будет равен 10,54 пикселя, а окатыша В - 12,05 пикселя. Оценивая размеры окатышей по предлагаемому способу, для окатыша А получаем размер 17,68 пикселя (усредняются только расстояния, определенные для 0° и 337,5°, считая направление 0°, совпадающим с горизонтальной осью, так как в данных направлениях окатыш А граничит с областью С, не имеющей максимума интенсивности и, соответственно, расположенной на самом нижнем слое насыпной массы), а для окатыша В - 21,00 пиксель (расстояние, определенное под углом 45°, так как в этом направлении окатыш В граничит с областью D, также не имеющей максимума интенсивности и находящейся на нижнем слое насыпной массы).

На фиг.7 и фиг.8 представлены гистограммы распределения размеров окатышей в пикселях изображения, рассчитанные известным способом и предлагаемым, соответственно. Согласно гистограмме на фиг.7 средний размер окатышей равен 24.58 пикселей, тогда как по уточненной гистограмме на фиг.8 эта величина равна 26.03 пикселя, что соответствует относительной погрешности в 6%.

Таким образом, технический результат изобретения заключается в повышении точности определения геометрических размеров частиц окомкованного и/или гранулированного материала в насыпном слое.

Способ определения геометрических размеров частиц окомкованного и/или гранулированного материала в насыпном слое, включающий измерение электромагнитного излучения в виде его двумерного распределения, путем фиксирования его с помощью видеокамеры в виде растра видеоизображения, после чего в распределении интенсивности отраженного излучения определяют максимумы и минимумы, отличающийся тем, что формируют видимую область каждой частицы, путем выделения ее на растре видеоизображения от соответствующего ей максимума интенсивности отраженного излучения до ближайших к нему минимумов, задают последовательность обработки этих областей от частиц с большей степенью округлости видимой области к меньшей, измеряют расстояние от соответствующего максимума интенсивности отраженного излучения до минимумов, граничащих с видимыми областями частиц, имеющих меньшую степень округлости, и тем самым определяют геометрические размеры частиц окомкованного и/или гранулированного материала.
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ЧАСТИЦ ОКОМКОВАННОГО И/ИЛИ ГРАНУЛИРОВАННОГО МАТЕРИАЛА В НАСЫПНОМ СЛОЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ЧАСТИЦ ОКОМКОВАННОГО И/ИЛИ ГРАНУЛИРОВАННОГО МАТЕРИАЛА В НАСЫПНОМ СЛОЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ЧАСТИЦ ОКОМКОВАННОГО И/ИЛИ ГРАНУЛИРОВАННОГО МАТЕРИАЛА В НАСЫПНОМ СЛОЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ЧАСТИЦ ОКОМКОВАННОГО И/ИЛИ ГРАНУЛИРОВАННОГО МАТЕРИАЛА В НАСЫПНОМ СЛОЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ЧАСТИЦ ОКОМКОВАННОГО И/ИЛИ ГРАНУЛИРОВАННОГО МАТЕРИАЛА В НАСЫПНОМ СЛОЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ЧАСТИЦ ОКОМКОВАННОГО И/ИЛИ ГРАНУЛИРОВАННОГО МАТЕРИАЛА В НАСЫПНОМ СЛОЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ЧАСТИЦ ОКОМКОВАННОГО И/ИЛИ ГРАНУЛИРОВАННОГО МАТЕРИАЛА В НАСЫПНОМ СЛОЕ
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ ЧАСТИЦ ОКОМКОВАННОГО И/ИЛИ ГРАНУЛИРОВАННОГО МАТЕРИАЛА В НАСЫПНОМ СЛОЕ
Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
20.06.2015
№216.013.56a8

Способ измерения кубатуры круглого леса

Изобретение относится к заготовке, обработке и транспортировке лесоматериалов и может быть использовано для определения объемов круглого леса. Согласно способу производят фотосъемку торцов штабеля бревен цифровым устройством. На основе полученного изображения строят модель штабеля бревен. На...
Тип: Изобретение
Номер охранного документа: 0002553714
Дата охранного документа: 20.06.2015
Показаны записи 1-2 из 2.
20.06.2015
№216.013.56a8

Способ измерения кубатуры круглого леса

Изобретение относится к заготовке, обработке и транспортировке лесоматериалов и может быть использовано для определения объемов круглого леса. Согласно способу производят фотосъемку торцов штабеля бревен цифровым устройством. На основе полученного изображения строят модель штабеля бревен. На...
Тип: Изобретение
Номер охранного документа: 0002553714
Дата охранного документа: 20.06.2015
10.07.2019
№219.017.b13b

Способ определения производительности плавильного агрегата

Изобретение относится к измерительной технике для контроля технологического процесса производства теплоизоляционных изделий из минеральной ваты в промышленности строительных материалов, в частности к способу для определения производительности плавильного агрегата. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002469962
Дата охранного документа: 20.12.2012
+ добавить свой РИД