×
20.07.2015
216.013.64b0

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ЭЛАСТОМЕРОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к испытаниям материалов, а именно к способам определения динамических характеристик эластичных материалов. Сущность: испытываемые образцы эластомеров в виде цилиндрических втулок, надетых на валы рычагов, устанавливают в симметрично расположенные относительно оси столика вибратора отверстия приспособления. Приспособление обеспечивает возможность синхронного изменения и фиксации равных углов наклона рычагов к поверхности столика вибратора в интервале от 0° до 90°. Испытываемые образцы эластомеров вулканизацией или склеиванием жестко прикрепляют к валам рычагов и внутренней поверхности отверстий приспособления. Над испытываемыми образцами эластичного материала устанавливают груз. Приводят столик вибратора с нагруженными образцами эластомеров в вертикальное колебательное движение, плавно изменяют частоту колебаний и определяют частоту резонанса f, при которой амплитуда ускорения груза становится максимальной. По частоте резонанса f вычисляют динамический модуль упругости. Изменяя массу груза, определяют в перечисленной последовательности значения динамического модуля упругости. Испытания в той же последовательности проводят для других отобранных образцов рассматриваемой партии эластичных материалов, последовательно изменяют и фиксируют с помощью приспособления угол наклона рычагов к поверхности столика вибратора, при каждом установленном значении угла наклона рычагов определяют в перечисленной последовательности значение динамического модуля упругости, а для каждой партии материала - среднее арифметическое значение величин модуля упругости. Технический результат: возможность получения зависимости динамического модуля упругости Еэластомера от угла наклона рычагов к поверхности столика вибратора и массы груза. 2 ил.
Основные результаты: Способ определения динамических характеристик эластичных материалов, заключающийся в том, что испытываемые образцы материала устанавливают на столик электродинамического вибратора, над испытываемыми образцами материала устанавливают груз, приводят столик вибратора с нагруженными образцами материала в вертикальное колебательное движение, плавно изменяют частоту колебаний, определяют частоту резонанса, при которой амплитуда ускорения груза становится максимальной, по частоте резонанса по формуле вычисляют динамический модуль упругости, изменяя массу груза, определяют в перечисленной последовательности значение динамического модуля упругости, испытания в той же последовательности проводят для других отобранных образцов рассматриваемой партии эластичных материалов, для каждой партии материала и конкретной массы груза вычисляют среднее арифметическое значение величин динамического модуля упругости, отличающийся тем, что испытываемые образцы эластичного материала в виде цилиндрических втулок, надетых на валы рычагов, устанавливают в симметрично расположенные относительно оси столика вибратора отверстия приспособления, обеспечивающего возможность синхронного изменения и фиксации равных углов наклона рычагов к поверхности столика вибратора в интервале от 0° до 90°, испытываемые образцы эластичного материала вулканизацией или склеиванием жестко прикрепляют к валам рычагов и внутренней поверхности отверстий приспособления, последовательно изменяют и фиксируют с помощью приспособления угол наклона рычагов к поверхности столика вибратора, при каждом установленном значении угла наклона рычагов определяют в перечисленной последовательности значение динамического модуля упругости, а для каждой партии материала - среднее арифметическое значение величин модуля упругости.

Изобретение относится к испытаниям материалов, а именно к способам определения динамических характеристик эластичных материалов.

Известен способ определения динамических характеристик эластичных материалов, заключающийся в том, что наносят удар падающим сферическим грузом по испытуемому материалу, регистрируют время падения груза до контакта с материалом, время их контакта и время отскока груза, вычисляют собственную частоту колебаний и по ним определяют динамический модуль упругости, являющийся одним из параметров динамических характеристик [1].

Однако способ не позволяет определять динамические характеристики упругих элементов, работающих на сжатие-растяжение и коаксиальное кручение. Упругие элементы, работающие на сжатие-растяжение и коаксиальное кручение, применяют в устройствах для крепления кабины на раме транспортного средства для повышения вибрационной защиты [2], [3].

Наиболее близким к предлагаемому является способ испытаний материалов для определения динамического модуля упругости, состоящий в том, что испытываемые образцы материала устанавливают на столик электродинамического вибратора, над испытываемыми образцами материала устанавливают груз, приводят столик вибратора с нагруженными образцами материала в вертикальное колебательное движение, плавно изменяют частоту колебаний, определяют частоту резонанса, при которой амплитуда ускорения груза становится максимальной, по частоте резонанса по формуле вычисляют динамический модуль упругости, изменяя массу груза, определяют в перечисленной последовательности значение динамического модуля упругости, испытания в той же последовательности проводят для других отобранных образцов рассматриваемой партии эластичных материалов, для каждой партии материала и конкретной массы груза вычисляют среднее арифметическое значение величин динамического модуля упругости [4].

Недостаток способа в том, что он не позволяет определять динамические характеристики упругих элементов, работающих на сжатие-растяжение и коаксиальное кручение. Эти характеристики необходимы при проектировании виброизоляторов, содержащих упругие элементы, которые при выполнении машиной технологических операций с изменением режима работы поворачивают по отношению к защищаемому объекту, плавно изменяя жесткость виброизоляторов и снижая вибрации защищаемых объектов.

Задачей настоящего изобретения является расширение возможностей способа.

Поставленная задача достигается тем, что в способе определения динамических характеристик эластичных материалов, включающем то, что испытываемые образцы материала устанавливают на столик электродинамического вибратора, над испытываемыми образцами материала устанавливают груз, приводят столик вибратора с нагруженными образцами материала в вертикальное колебательное движение, плавно изменяют частоту колебаний, определяют частоту резонанса, при которой амплитуда ускорения груза становится максимальной, по частоте резонанса по формуле вычисляют динамический модуль упругости, изменяя массу груза, определяют в перечисленной последовательности значение динамического модуля упругости, испытания в той же последовательности проводят для других отобранных образцов рассматриваемой партии эластичных материалов, для каждой партии материала и конкретной массы груза вычисляют среднее арифметическое значение величин динамического модуля упругости, отличительным от прототипа признаком является то, что испытываемые образцы эластичного материала в виде цилиндрических втулок, одетых на валы рычагов, устанавливают в симметрично расположенные относительно оси столика вибратора отверстия приспособления, обеспечивающего возможность синхронного изменения и фиксации равных углов наклона рычагов к поверхности столика вибратора в интервале от 0° до 90°, испытываемые образцы эластичного материала вулканизацией или склеиванием жестко прикрепляют к валам рычагов и внутренней поверхности отверстий приспособления, последовательно изменяют и фиксируют с помощью приспособления угол наклона рычагов к поверхности столика вибратора, при каждом установленном значении угла наклона рычагов определяют в перечисленной последовательности значение динамического модуля упругости, а для каждой партии материала - среднее арифметическое значение величин модуля упругости.

Известно, что упругие свойства эластомеров характеризуются большим различием модулей объемного сжатия и сдвига, который имеет место при коаксиальном кручении. Например, для резин их отношение лежит в пределах от 500 до 5000 [5, с.21]. При угле наклона рычагов 0° эластомеры работают только на коаксиальное кручение, а при угле наклона 90° они работают только на сжатие-растяжение. При угле наклона рычагов, который больше 0°, но меньше 90°, эластомеры работают одновременно на сжатие-растяжение и коаксиальное кручение.

При изменении угла наклона рычагов будет изменяться и значение динамического модуля упругости этих материалов.

На фиг.1 представлена схема реализации способа определения динамических характеристик эластомеров; на фиг.2 - зависимость среднего арифметического значения величин модуля упругости эластомеров от угла наклона рычагов к поверхности столика вибратора.

Способ реализуется следующим образом.

От каждой партии эластомеров отбирают для испытаний не менее шести образцов. Количество одновременно испытываемых образцов принимают две штуки.

Испытываемые образцы эластичного материала в виде цилиндрических втулок 1, надетых на валы 2 рычагов 3, устанавливают в симметрично расположенные относительно оси У-У столика 4 вибратора 5 отверстия B и С приспособления 6.

Приспособление 6 обеспечивает возможность синхронного изменения и фиксации равных углов φ наклона рычагов 3 к поверхности столика 6 вибратора 5 в интервале от 0° до 90°.

Испытываемые образцы 1 эластичного материала вулканизацией или склеиванием жестко прикрепляют к валам 2 рычагов 3 и внутренней поверхности отверстий B и С приспособления 6.

Над испытываемыми образцами эластичного материала 1 устанавливают первый груз 7. Приводят столик 4 вибратора с нагруженными образцами материала 1 в вертикальное колебательное движение, установив на измерительном усилителе 8 режим автоматического поддержания постоянной амплитуды ускорения груза 7. С помощью низкочастотного измерительного звукового генератора 9 устанавливают колебания частотой 5 Гц.

Плавно изменяют частоту колебаний и определяют частоту резонанса f, при которой амплитуда ускорения груза 7 становится максимальной. Амплитуду ускорения регистрируют с помощью акселерометров 10 и виброизмерителя 11.

По частоте резонанса f вычисляют динамический модуль упругости ЕД (Н/м2) эластомера по формуле [4, с.4]

где f - частота резонанса, Гц;

М - масса груза, кг;

h - толщина втулки образца эластомера под нагрузкой, м;

F - общая площадь поверхности одновременно испытываемых образцов, воспринимающая нагрузку, м2.

Изменяя массу М груза 7, определяют в перечисленной последовательности значение динамического модуля упругости ЕД.

Испытания в той же последовательности проводят для других отобранных образцов рассматриваемой партии эластичных материалов.

Для каждой партии материала и конкретной массы М груза вычисляют среднее арифметическое значение величин динамического модуля упругости.

Последовательно изменяют и фиксируют с помощью приспособления 6 угол φ наклона рычагов 3 к поверхности столика 6 вибратора 5 в интервале от 0° до 90° и изменяют массу М груза 7.

При каждом установленном значении угла φ наклона рычагов 3 и массе М груза 7 определяют в перечисленной последовательности значение динамического модуля упругости, а для каждой партии материала - среднее арифметическое значение величин модуля упругости.

В результате проведения испытаний на вибрационном электродинамическом стенде ВЭДС-10А в соответствии с заявляемым способом определения динамических характеристик эластомеров были получены экспериментальные данные для резины марки 1378.

По полученным частотам резонанса f по формуле (1) вычислялись значения динамического модуля упругости испытываемых образцов резины и средние арифметические значения модуля упругости исследуемой партии резины.

На фиг.2 показана полученная зависимость динамического модуля упругости ЕД от угла φ наклона рычагов 3 к поверхности столика 6 вибратора 5.

В качестве испытываемых образцов использовались втулки из резины, имеющие длину 50 мм, наружный диаметр 50 мм, отверстие 20 мм.

Нагрузка на образцы была принята 10 КН/м2.

По результатам исследований можно сделать вывод, что с увеличением угла наклона φ испытываемых образцов резины значение динамического модуля упругости снижается.

Источники информации

1. Авторское свидетельство СССР №697873, кл. G01N 3/30, 1978.

2. Авторское свидетельство СССР на изобретение №300368. Устройство для крепления кабины на раме автомобиля. Опубл. 07.04.1971. Бюл. №13.

3. Авторское свидетельство СССР на изобретение №1604653. Устройство для крепления кабины на раме транспортного средства. Опубл. 07.11.1990. Бюл. №41.

4. Материалы звукоизоляционные и звукопоглощающие. Методы испытаний. ГОСТ 16297-80. Издание официальное. Государственный строительный комитет СССР. М.: Издательство стандартов, 1988.

5. Ляпунов В.Т., Лавендел Э.Э., Шляпочников С.А. Резиновые виброизоляторы. Справочник. - Л.: Судостроение, 1988. - 216 с.

6. Вибрации в технике. Справочник. Том 4 / Под ред. Э.Э. Лавендела. - М.: Машиностроение, 1981.

Способ определения динамических характеристик эластичных материалов, заключающийся в том, что испытываемые образцы материала устанавливают на столик электродинамического вибратора, над испытываемыми образцами материала устанавливают груз, приводят столик вибратора с нагруженными образцами материала в вертикальное колебательное движение, плавно изменяют частоту колебаний, определяют частоту резонанса, при которой амплитуда ускорения груза становится максимальной, по частоте резонанса по формуле вычисляют динамический модуль упругости, изменяя массу груза, определяют в перечисленной последовательности значение динамического модуля упругости, испытания в той же последовательности проводят для других отобранных образцов рассматриваемой партии эластичных материалов, для каждой партии материала и конкретной массы груза вычисляют среднее арифметическое значение величин динамического модуля упругости, отличающийся тем, что испытываемые образцы эластичного материала в виде цилиндрических втулок, надетых на валы рычагов, устанавливают в симметрично расположенные относительно оси столика вибратора отверстия приспособления, обеспечивающего возможность синхронного изменения и фиксации равных углов наклона рычагов к поверхности столика вибратора в интервале от 0° до 90°, испытываемые образцы эластичного материала вулканизацией или склеиванием жестко прикрепляют к валам рычагов и внутренней поверхности отверстий приспособления, последовательно изменяют и фиксируют с помощью приспособления угол наклона рычагов к поверхности столика вибратора, при каждом установленном значении угла наклона рычагов определяют в перечисленной последовательности значение динамического модуля упругости, а для каждой партии материала - среднее арифметическое значение величин модуля упругости.
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ЭЛАСТОМЕРОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ЭЛАСТОМЕРОВ
Источник поступления информации: Роспатент

Показаны записи 21-24 из 24.
10.08.2016
№216.015.54a3

Способ изготовления двухслойных каутоно-бетонных балок

Изобретение относится к технологии изготовления двухслойных каутоно-бетонных балок. Согласно способу изготавливают бетон верхнего слоя с каркасом. Затем спустя 28 суток, после набора бетоном прочности, изготавливают каутон нижнего слоя. Контакт между слоями усиливают коротышами и надрезами....
Тип: Изобретение
Номер охранного документа: 0002593400
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5638

Звукопоглощающая панель

Изобретение относится к области строительства, а именно к строительным конструкциям, стенам и перегородкам, поглощающим вредное для человека звуковое излучение. Звукопоглощающая панель пористого строения имеет на лицевой стороне объемные элементы, размещенные по квадратной решетке или в...
Тип: Изобретение
Номер охранного документа: 0002593401
Дата охранного документа: 10.08.2016
19.01.2018
№218.016.0008

Способ предпусковой подготовки подвижных объектов в условиях низких температур

Изобретение относится к автомобильной технике, в частности к способам предпусковой подготовки подвижных объектов, находящихся на стоянке, и может быть использовано при подготовке подвижных объектов в условиях низких температур. Способ предпусковой подготовки подвижных объектов в условиях низких...
Тип: Изобретение
Номер охранного документа: 0002629587
Дата охранного документа: 30.08.2017
20.01.2018
№218.016.1479

Устройство для экспресс-анализа качества продуктов

Изобретение предназначено для экспрессного анализа «на месте» жидких и твердых продуктов по концентрации их газов-маркеров. Устройство для экспресс-анализа качества продуктов включает один пьезосенсор с чувствительным пленочным покрытием для сорбции газов-маркеров, встроенный в держатель крышки...
Тип: Изобретение
Номер охранного документа: 0002634803
Дата охранного документа: 03.11.2017
Показаны записи 31-35 из 35.
26.07.2019
№219.017.b94a

Устройство ускорения тел из сверхпроводящих материалов

Изобретение относится к устройству ускорения тел из сверхпроводящих материалов. В устройстве предусмотрены последовательно соединенные датчик положения тела, преобразователь сигналов и силовая обмотка. Силовая обмотка размещена ниже оси канала, а датчик положения тела - выше оси канала, при...
Тип: Изобретение
Номер охранного документа: 0002695538
Дата охранного документа: 24.07.2019
02.10.2019
№219.017.d0df

Устройство для определения утечек топлива

Изобретение относится к измерительной технике и может быть применено для непрерывного мониторинга утечек топлива (бензина, керосина, дизельного топлива, а также других легколетучих взрывоопасных жидкостей) и обнаружения повышения концентраций паров топлива в воздухе закрытых помещений,...
Тип: Изобретение
Номер охранного документа: 0002700740
Дата охранного документа: 19.09.2019
29.11.2019
№219.017.e7db

Датчик деформаций пневматической шины

Изобретение относится к оборудованию для испытаний пневматических шин, в частности к внутриколесным устройствам для измерения деформаций пневматической шины при ее качении. Датчик для измерения деформаций пневматической шины, содержащий оптический регистратор, решающее устройство, установленные...
Тип: Изобретение
Номер охранного документа: 0002707390
Дата охранного документа: 26.11.2019
01.12.2019
№219.017.e897

Комбинированный привод ведущих колес балансирного колесного движителя

Изобретение относится к машиностроению. Комбинированный привод ведущих колес балансирного колесного движителя включает поперечную балку, расположенные в ней главную передачу и полуоси, продольные балансиры, монтированные на концах поперечной балки, силовые передачи внутри каждого из балансиров,...
Тип: Изобретение
Номер охранного документа: 0002707676
Дата охранного документа: 28.11.2019
13.03.2020
№220.018.0b14

Балансирная тележка с приводом на каждое колесо

Изобретение относится к ходовым системам машин. Балансирная тележка с приводом на каждое колесо, содержит поперечную балку, на концах которой расположены продольные балансиры, и укрепленные на концах балансиров колеса. Дополнительно введены вторичная силовая установка, кинематически связанная с...
Тип: Изобретение
Номер охранного документа: 0002716395
Дата охранного документа: 11.03.2020
+ добавить свой РИД