×
20.07.2015
216.013.648c

Результат интеллектуальной деятельности: СПОСОБ ИССЛЕДОВАНИЯ НАПРЯЖЕННОГО СОСТОЯНИЯ МАССИВА ГОРНЫХ ПОРОД

Вид РИД

Изобретение

Аннотация: Изобретение относится к горному делу и предназначено для определения направления максимального напряжения в конструктивных элементах систем разработки относительно пробуренных в них контрольных скважин. Технический результат направлен на обеспечение возможности определения направления максимального напряжения, действующего ортогонально измерительной скважине. Способ включает размещение в измерительной скважине стержневого звукопровода, на котором жестко закреплено контактирующее со стенками скважины кольцо, и регистрацию акустической эмиссии (АЭ) на выступающем из скважины конце звукопровода. В массиве в одной горизонтальной плоскости с испытательной скважиной и параллельно ей дополнительно бурят не менее трех скважин, в каждой из которых размещают такой же, как в первой испытательной скважине, звукопровод с кольцом. Все кольца изготавливают из слоистого композиционного материала, имеющего анизотропную структуру в плоскости кольца, а угол ориентации слоев кольца в каждой последующей скважине увеличивают на 15° по сравнению с предыдущей. По зарегистрированным на каждом звукопроводе сигналам акустической эмиссии определяют соответствующие им зависимости суммарного счета от времени, выявляют тот звукопровод, которому соответствует спад суммарного счета АЭ во времени. По направлению слоев в кольце на этом звукопроводе судят о направлении максимального напряжения, действующего в массиве в плоскости ортогональной оси измерительной скважины. 2 ил.
Основные результаты: Способ исследования напряженного состояния массива горных пород, включающий размещение в измерительной скважине стержневого звукопровода, на котором жестко закреплено контактирующее со стенками скважины кольцо, и регистрацию акустической эмиссии на выступающем из скважины конце звукопровода, отличающийся тем, что в массиве в одной горизонтальной плоскости с испытательной скважиной и параллельно ей дополнительно бурят не менее трех скважин, в каждой из которых размещают такой же, как в первой испытательной скважине, звукопровод с кольцом, причем все кольца изготавливают из слоистого композиционного материала, имеющего анизотропную структуру в плоскости кольца, а угол ориентации слоев кольца в каждой последующей скважине увеличивают на 15° по сравнению с предыдущей, по зарегистрированным на каждом звукопроводе сигналам акустической эмиссии определяют соответствующие им зависимости суммарного счета от времени, выявляют тот звукопровод, которому соответствует спад суммарного счета акустической эмиссии во времени, и по направлению слоев в кольце на этом звукопроводе судят о направлении максимального напряжения, действующего в массиве в плоскости ортогональной оси измерительной скважины.

Изобретение относится к горному делу и предназначено для определения направления максимального напряжения в конструктивных элементах систем разработки относительно пробуренных в них контрольных скважин.

Известен способ определения напряженного состояния массива горных пород, включающий прозвучивание ультразвуковыми импульсами участков массива, расположенных между параллельными скважинами на разной их глубине, измерение длительности переднего фронта каждого из принятых ультразвуковых импульсов, по относительному изменению которой с глубиной судят о распределении напряжения в окрестностях горной выработки, при этом глубина, на которой отмечен минимум длительности переднего фронта ультразвукового импульса, соответствует максимуму зоны опорного давления [1] (Авторское свидетельство СССР №1149010, кл. E21C 39/00, опубл. в БИ №13 от 07.04.85 г.).

Недостатком известного способа является низкая точность определения глубины зоны опорного давления. Это связано с тем, что измеряемая длительность переднего фронта ультразвукового импульсного сигнала в массиве существенно зависит от контактных условий акустических преобразователей со стенками контрольной скважины. При условии необходимости многократного прозвучивания участков массива между параллельными скважинами влияние контактных условий на длительность переднего фронта ультразвукового импульса может превысить влияние непосредственно напряженного состояния.

Способ исследования напряженного состояния массива горных пород, включающий размещение в измерительной скважине стержневого звукопровода, на котором жестко закреплено контактирующее со стенками скважины кольцо, и регистрацию акустической эмиссии на выступающем из скважины конце звукопровода [2] (Способ определения изменения напряженного состояния горного массива: заявка 2011147713/03 (071550), Рос. Федерация: МПК E21C 39/00 / Шкуратник В.Л., Николенко П.В., Корчак А.В. (Рос. Федерация) заявитель ФГБОУ ВПО МГГУ; заявл. 24.11.2011; приоритет 24.11.2011 (Решение о выдаче патента на изобретение от 04.02.2013)).

В указанном способе каждое из текстолитовых колец подвергают предварительному механическому нагружению в одинаковом и совпадающем с диаметром направлении, а об изменении напряженного состояния приконтурного массива судят по скачкообразным увеличениям крутизны нарастания суммарного счета принимаемых акустическим преобразователем сигналов акустической эмиссии.

Недостатком известного способа является невозможность с его использованием определить направления максимального напряжения, действующего в плоскости ортогональной оси измерительной скважины.

В настоящей заявке решается задача создания способа, обеспечивающего возможность определения направления максимального напряжения, действующего ортогонально измерительной скважине.

Для решения поставленной задачи в способе исследования напряженного состояния массива горных пород, включающем размещение в измерительной скважине стержневого звукопровода, на котором жестко закреплено контактирующее со стенками скважины кольцо и регистрацию акустической эмиссии на выступающем из скважины конце звукопровода, в массиве в одной горизонтальной плоскости с испытательной скважиной и параллельно ей дополнительно бурят не менее трех скважин, в каждой из которых размещают такой же, как в первой испытательной скважине, звукопровод с кольцом, причем все кольца изготавливают из слоистого композиционного материала, имеющего анизотропную структуру в плоскости кольца, а угол ориентации слоев кольца в каждой последующей скважине увеличивают на 15° по сравнению с предыдущей, по зарегистрированным на каждом звукопроводе сигналам акустической эмиссии определяют соответствующие им зависимости суммарного счета от времени, выявляют тот звукопровод, которому соответствует спад суммарного счета АЭ во времени и по направлению слоев в кольце на этом звукопроводе судят о направлении максимального напряжения, действующего в массиве в плоскости ортогональной оси измерительной скважины.

Предлагаемый способ базируется на экспериментально установленной закономерности влияния угла α между направлением приложения нагрузки и направлением слоев в анизотропных композиционных материалах на характер зависимости суммарного счета N акустической эмиссии (АЭ) от времени t. Эта закономерность проявляется в том, что зависимость N(t) возрастает при всех углах α кроме 90°, при котором N(t) характеризуется спадом, что обусловлено значительной прочностью слоистых композитов на растяжение вдоль слоев.

Способ исследования напряженного состояния массива горных пород в окрестностях выработки иллюстрируется фиг. 1 и фиг. 2, где на фиг. 1 представлена схема проведения акустико-эмиссионных измерений в контрольных скважинах, а на фиг. 2 - зависимости суммарного счета акустической эмиссии от времени N(t), регистрируемые в процессе проведения контроля.

Схема, представленная на фиг. 1, включает параллельные измерительные скважины 1-4, в которых размещены металлические звукопроводы 5-8, на которых жестко закреплены кольца 9-12, изготовленные из анизотропного слоистого композиционного материала. На выступающих из скважин 1-4 торцах звукопроводов 5-8 размещены приемные акустические преобразователи 13-16, которые с помощью соответствующих электрических кабелей 17-20 связаны с аппаратурой измерения параметров акустической эмиссии 21.

На фиг. 2 представлены графики 22-25 зависимостей суммарного счета N акустической эмиссии от времени t, зарегистрированные в кольцах 9-12 соответственно.

Способ исследования напряженного состояния массива горных пород осуществляют следующим образом. Из слоистого анизотропного композиционного материала изготавливают кольца 9-12, внутренний диаметр которых равен диаметру металлических звукопроводов 5-8 соответственно. При изготовлении колец соблюдают ориентацию слоев в композите ортогонально плоскости кольца. Каждое кольцо с помощью клеевого соединения жестко закрепляют на соответствующем звукопроводе.

В подземных условиях на выбранном участке массива бурят измерительные скважины 1-4, лежащие в одной горизонтальной плоскости и имеющие диаметры, равные внешнему диаметру колец 9-12. При этом для исключения взаимовлияния скважин расстояние между ними не должно быть менее пяти диаметров скважин. В скважине 1 на заданной глубине размещают звукопровод 5 с жестко закрепленным на нем кольцом 9 так, чтобы направление слоев композита составляло угол γ=0° с горизонтальной линией, вдоль которой пробурены скважины. Аналогичным образом размещают звукопроводы 6-8 с кольцами 10-12 в скважинах 2-4, при этом для кольца 10 угол γ=45°, для кольца 11 γ=90° и для кольца 12 γ=135°.

На выступающих из скважин 1-4 торцах звукопроводов 5-8 с применением контактной жидкости закрепляют приемные акустические преобразователи 13-16, каждый из которых соединен посредством соответствующих электрических кабелей 17-20 с аппаратурой измерения параметров акустической эмиссии 21.

Под действием напряжений породы в окрестностях скважин 1-4 начинают деформироваться, причем в наибольшей степени в направлении максимального напряжения в массиве. При этом стенки скважин начинают оказывать давление на кольца 9-12, в которых происходит активное дефектообразование, сопровождаемое генерацией импульсов акустической эмиссии.

С помощью аппаратуры измерения параметров АЭ 21 получают зависимости 22-25 суммарного счета N акустической эмиссии от времени t, зарегистрированные в звукопроводах 5-8 соответственно (фиг. 2). Из всех зависимостей выбирают ту, на которой наблюдается четкий спад N(t). По углу γ между направлением слоев в кольце, с звукопровода которого была получена характерная зависимость N(t), и горизонтальной линией скважин судят о направлении максимального напряжения, действующего в плоскости ортогональной оси скважины.

Описанный способ позволяет оценивать направление действия напряжения с разрешающей способностью в 45°. Повышение разрешающей способности достигается увеличением количества скважин и пропорциональным уменьшением угла γ. Так, например, при семи скважинах разрешающая способность составит 30°.

Описанный способ испытывался в лабораторных условиях. В четырех кубических блоках мрамора со стороной 150 мм оборудовались сквозные отверстия диаметром 42 мм. Из текстолита марки ПТК изготавливались четыре кольца внутренним диаметром 10 мм, внешним - 42 мм и толщиной 12 мм, при этом обеспечивалась ортогональность слоев композита плоскости кольца. Каждое из колец снабжалось стальным звукопроводом диаметром 10 мм и длиной 250 мм. Подготовленные таким образом кольца жестко закреплялись в мраморных блоках, при этом первое кольцо располагалось с соблюдением горизонтальности слоев в композите, а все последующие с углами между слоями композита и горизонталью 45°, 90°, 135° соответственно. На противоположных концах звукопроводов закреплялись преобразователи акустической эмиссии GT-200, подключенные к акустико-эмиссионному измерительному комплексу A-Line 32D. Каждый из блоков мрамора подвергался одноосному нагружению до уровня нагрузки 20 МПа, при этом одновременно с нагружением велась регистрация суммарного счета акустической эмиссии. По результатам испытаний было выявлено, что спад зависимости суммарного счета АЭ от времени нагружения наблюдается только в диске №1, для которого угол между горизонталью и направлением слоев в кольце составил 0°. Во всех остальных кольцах зависимость суммарного счета от времени характеризовалась устойчивым ростом.

Таким образом, предложенный способ обеспечивает технический результат, заключающийся в обеспечении возможности определения направления максимального напряжения, действующего ортогонально измерительной скважине.

Источники, принятые во внимание при составлении заявки на изобретение:

1. Авторское свидетельство СССР №1149010, кл. E21C 39/00, опубл. в БИ №13 от 07.04.85 г.

2. Способ определения изменения напряженного состояния горного массива: заявка 2011147713/03 (071550), Рос. Федерация: МПК E21C 39/00 / Шкуратник В.Л., Николенко П.В., Корчак А.В. (Рос. Федерация) заявитель ФГБОУ ВПО МГГУ; заявл. 24.11.2011; приоритет 24.11.2011 (Решение о выдаче патента на изобретение от 04.02.2013).

Способ исследования напряженного состояния массива горных пород, включающий размещение в измерительной скважине стержневого звукопровода, на котором жестко закреплено контактирующее со стенками скважины кольцо, и регистрацию акустической эмиссии на выступающем из скважины конце звукопровода, отличающийся тем, что в массиве в одной горизонтальной плоскости с испытательной скважиной и параллельно ей дополнительно бурят не менее трех скважин, в каждой из которых размещают такой же, как в первой испытательной скважине, звукопровод с кольцом, причем все кольца изготавливают из слоистого композиционного материала, имеющего анизотропную структуру в плоскости кольца, а угол ориентации слоев кольца в каждой последующей скважине увеличивают на 15° по сравнению с предыдущей, по зарегистрированным на каждом звукопроводе сигналам акустической эмиссии определяют соответствующие им зависимости суммарного счета от времени, выявляют тот звукопровод, которому соответствует спад суммарного счета акустической эмиссии во времени, и по направлению слоев в кольце на этом звукопроводе судят о направлении максимального напряжения, действующего в массиве в плоскости ортогональной оси измерительной скважины.
СПОСОБ ИССЛЕДОВАНИЯ НАПРЯЖЕННОГО СОСТОЯНИЯ МАССИВА ГОРНЫХ ПОРОД
СПОСОБ ИССЛЕДОВАНИЯ НАПРЯЖЕННОГО СОСТОЯНИЯ МАССИВА ГОРНЫХ ПОРОД
Источник поступления информации: Роспатент

Показаны записи 191-200 из 237.
27.08.2015
№216.013.7565

Дуговая сталеплавильная печь с использованием газодинамической отсечки шлака от металла при выпуске плавки

Изобретение относится к области электрометаллургии, в частности к дуговым печам для плавки стали. Печь выполнена с возможностью измерения температуры металла и шлака на выходе из выпускного отверстия летки посредством радиационного пирометра. Устройство для газодинамической отсечки...
Тип: Изобретение
Номер охранного документа: 0002561628
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7568

Способ газоструйной отсечки шлака при выпуске металла из дуговой печи

Изобретение относится к области металлургии и может быть использовано для газоструйной отсечки шлака при выпуске металла через выпускное отверстие летки агрегата. Осуществляют предварительную отсечку шлака внутри рабочего пространства печи путем подачи потока инертного газа на...
Тип: Изобретение
Номер охранного документа: 0002561631
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.756a

Устройство газоструйной отсечки шлака при выпуске металла из дуговой печи

Изобретение относится к области металлургии и может быть использовано для газоструйной отсечки шлака от металла при выпуске его через выпускное отверстие летки дуговой сталеплавильной печи. Устройство снабжено радиационным пирометром, предназначенным для автоматического определения по разнице...
Тип: Изобретение
Номер охранного документа: 0002561633
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.75f7

Способ определения коэффициента вязкости микроразрушения тонких пленок из многокомпонентных аморфно-нанокристаллических металлических сплавов (варианты)

Изобретение относится к области исследования физических свойств металлов и сплавов, а именно к анализу вязкости разрушения тонких пленок многокомпонентных аморфно-нанокристаллических металлических сплавов (АНКМС) после их перехода из одного состояния в другое, в результате термической...
Тип: Изобретение
Номер охранного документа: 0002561788
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.76c0

Радиационно-защитный материал на полимерной основе с повышенными рентгенозащитными и нейтронозащитными свойствами

Изобретение относится к ядерной технике, а именно к материалам для защиты от ионизирующего излучения, и предназначено для использования при изготовлении элементов радиационно-защитных экранов. Радиационно-защитный материал на полимерной основе содержит сверхвысокомолекулярный полиэтилен с...
Тип: Изобретение
Номер охранного документа: 0002561989
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77fb

Способ добычи железомарганцевых конкреций из илистых донных отложений и устройство для его осуществления

Группа изобретений относится к способу и устройству для подводной добычи железомарганцевых конкреций из илистых донных отложений. Технический результат заключается в повышении эффективности использования трала за счет уменьшения количества холостых ходов, повышении полноты выемки полезного...
Тип: Изобретение
Номер охранного документа: 0002562304
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7d03

Сверхчувствительный интеллектуальный магнитоимпедансный датчик с расширенным диапазоном рабочих температур

Изобретение относится к измерительной технике и представляет собой сверхчувствительный интеллектуальный магнитометрический датчик (МИ датчик) с расширенным диапазоном рабочих температур области. Датчик включает магнитоимпедансный элемент (МИ элемент) с двумя катушками, выполненными одна над...
Тип: Изобретение
Номер охранного документа: 0002563600
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d0f

Способ извлечения серебра из лома серебряно-цинковых аккумуляторов, содержащих свинец

Изобретение относится к пирометаллургии. Способ извлечения серебра из лома серебряно-цинковых аккумуляторов, содержащих свинец, включает плавку лома при температуре нагрева 1150-1200°C, охлаждение полученного расплава со скоростью от 1950°C/час до 2050°C/час до температуры 400°C и плавку...
Тип: Изобретение
Номер охранного документа: 0002563612
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d35

Способ получения радиационно-защитного материала на основе сверхвысокомолекулярного полиэтилена с повышенными радиационно-защитными свойствами

Изобретение относится к способу получения радиационно-защитного материала на основе сверхвысокомолекулярного полиэтилена для изготовления конструкционных изделий радиационной защиты. Способ включает предварительную сушку при температуре 100-130°C порошков сверхвысокомолекулярного полиэтилена,...
Тип: Изобретение
Номер охранного документа: 0002563650
Дата охранного документа: 20.09.2015
27.09.2015
№216.013.7e28

Способ взрывания на открытых разработках разнопрочных слоистых массивов горных пород

Изобретение относится к горной промышленности и строительству, а именно к способам взрывания на открытых разработках слоистых массивов горных пород с нижним менее прочным слоем породы и верхним более прочным слоем. Способ включает бурение нисходящих скважин, их заряжание комбинированными...
Тип: Изобретение
Номер охранного документа: 0002563893
Дата охранного документа: 27.09.2015
Показаны записи 191-200 из 240.
10.08.2015
№216.013.6ac1

Способ синтеза нанокомпозита coni/c на основе полиакрилонитрила

Изобретение относится к области химии и нанотехнологии. Сначала при температуре 25÷50°C готовят раствор, содержащий, мас.%: полиакрилонитрил - 4,58; CoCl·6HO - 1,86; NiCl·6HO - 1,86; диметилформамид - 91,7, и выдерживают до полного растворения всех компонентов. Затем удаляют диметилформамид...
Тип: Изобретение
Номер охранного документа: 0002558887
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6cb7

Способ газодинамической отсечки шлака от металла при выпуске плавки из дуговой сталеплавильной печи

Изобретение относится к области металлургии, в частности к дуговым печам, в которых используют газодинамическую отсечку шлака от металла при выпуске плавки. Отсечку шлака осуществляют посредством двух инертных газовых потоков, первый из которых подают в виде струй азота или аргона снизу в объем...
Тип: Изобретение
Номер охранного документа: 0002559389
Дата охранного документа: 10.08.2015
27.08.2015
№216.013.7565

Дуговая сталеплавильная печь с использованием газодинамической отсечки шлака от металла при выпуске плавки

Изобретение относится к области электрометаллургии, в частности к дуговым печам для плавки стали. Печь выполнена с возможностью измерения температуры металла и шлака на выходе из выпускного отверстия летки посредством радиационного пирометра. Устройство для газодинамической отсечки...
Тип: Изобретение
Номер охранного документа: 0002561628
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7568

Способ газоструйной отсечки шлака при выпуске металла из дуговой печи

Изобретение относится к области металлургии и может быть использовано для газоструйной отсечки шлака при выпуске металла через выпускное отверстие летки агрегата. Осуществляют предварительную отсечку шлака внутри рабочего пространства печи путем подачи потока инертного газа на...
Тип: Изобретение
Номер охранного документа: 0002561631
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.756a

Устройство газоструйной отсечки шлака при выпуске металла из дуговой печи

Изобретение относится к области металлургии и может быть использовано для газоструйной отсечки шлака от металла при выпуске его через выпускное отверстие летки дуговой сталеплавильной печи. Устройство снабжено радиационным пирометром, предназначенным для автоматического определения по разнице...
Тип: Изобретение
Номер охранного документа: 0002561633
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.75f7

Способ определения коэффициента вязкости микроразрушения тонких пленок из многокомпонентных аморфно-нанокристаллических металлических сплавов (варианты)

Изобретение относится к области исследования физических свойств металлов и сплавов, а именно к анализу вязкости разрушения тонких пленок многокомпонентных аморфно-нанокристаллических металлических сплавов (АНКМС) после их перехода из одного состояния в другое, в результате термической...
Тип: Изобретение
Номер охранного документа: 0002561788
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.76c0

Радиационно-защитный материал на полимерной основе с повышенными рентгенозащитными и нейтронозащитными свойствами

Изобретение относится к ядерной технике, а именно к материалам для защиты от ионизирующего излучения, и предназначено для использования при изготовлении элементов радиационно-защитных экранов. Радиационно-защитный материал на полимерной основе содержит сверхвысокомолекулярный полиэтилен с...
Тип: Изобретение
Номер охранного документа: 0002561989
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77fb

Способ добычи железомарганцевых конкреций из илистых донных отложений и устройство для его осуществления

Группа изобретений относится к способу и устройству для подводной добычи железомарганцевых конкреций из илистых донных отложений. Технический результат заключается в повышении эффективности использования трала за счет уменьшения количества холостых ходов, повышении полноты выемки полезного...
Тип: Изобретение
Номер охранного документа: 0002562304
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7d03

Сверхчувствительный интеллектуальный магнитоимпедансный датчик с расширенным диапазоном рабочих температур

Изобретение относится к измерительной технике и представляет собой сверхчувствительный интеллектуальный магнитометрический датчик (МИ датчик) с расширенным диапазоном рабочих температур области. Датчик включает магнитоимпедансный элемент (МИ элемент) с двумя катушками, выполненными одна над...
Тип: Изобретение
Номер охранного документа: 0002563600
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d0f

Способ извлечения серебра из лома серебряно-цинковых аккумуляторов, содержащих свинец

Изобретение относится к пирометаллургии. Способ извлечения серебра из лома серебряно-цинковых аккумуляторов, содержащих свинец, включает плавку лома при температуре нагрева 1150-1200°C, охлаждение полученного расплава со скоростью от 1950°C/час до 2050°C/час до температуры 400°C и плавку...
Тип: Изобретение
Номер охранного документа: 0002563612
Дата охранного документа: 20.09.2015
+ добавить свой РИД