×
20.07.2015
216.013.6421

Результат интеллектуальной деятельности: СПОСОБ ПЛАЗМЕННОЙ НАПЛАВКИ ПОРОШКОВ СИСТЕМЫ Fe-Cr-V-Mo-C

Вид РИД

Изобретение

Аннотация: Изобретение относится к наплавке, а именно к плазменной порошковой наплавке плоских и цилиндрических поверхностей, и может быть использовано как при изготовлении новых, так и при восстановлении поверхностей изношенных деталей, работающих в условиях интенсивного абразивного и газоабразивного износа в сочетании с ударными нагрузками. В способе осуществляют уменьшение размеров частиц карбида ванадия и их равномерное распределение по объему аустенитно-мартенситной матрицы упрочненного слоя на основе системы Fe-Cr-V-Mo-C без пор, несплавлений и трещин. Изобретение позволяет значительно уменьшить износ покрытий. 1 табл., 2 ил.
Основные результаты: Способ плазменной порошковой наплавки высоколегированными хромом и ванадием порошковыми сплавами системы Fe-Cr-V-Mo-C, включающий ввод присадочного порошка в столб плазмы и ванну расплава на выходе из сопла плазматрона, отличающийся тем, что наплавку осуществляют с изменением силы тока от 220±5 до 240±5 А, скорости наплавки от 6±0,5 до 11±0,5 м/ч и скорости подачи присадочного порошка от 1,1±0,5 до 2,2±0,5 кг/ч и обеспечением формирования равномерной композиционной структуры покрытия с дисперсными выделениями частиц карбида ванадия.

Изобретение относится к наплавке, а именно к плазменной порошковой наплавке плоских и цилиндрических поверхностей. Может быть использовано как при изготовлении новых, так и при восстановлении поверхностей изношенных деталей, работающих в условиях интенсивного абразивного и газоабразивного износа в сочетании с ударными нагрузками.

Известен способ плазменно-порошковой наплавки (Шевченко О.И. Закономерности изменения свойств и структуры покрытий системы Ni-Cr-B-C-Si при наплавке и термической обработке // Сварочное производство. - 2002. - №9. - С.19-27) на углеродистые (сталь 45), низко- (сталь 5ХНМ) и среднелегированные (сталь 4Х5МФС) стали, при котором сила тока плазменной дуги (I, А), скорость наплавки (V, м/ч) и предварительный подогрев назначаются такими, чтобы тепловложение в упрочняемую деталь было максимальным (I=240 A, V=7 м/ч, Т=300°C), а в наносимом покрытии формировалась дендритно-ячеистая структура, обеспечивающая высокую износостойкость и низкую склонность к трещинообразованию.

Недостатками данного способа являются:

- наличие предварительного подогрева;

- высокий уровень тепловложения в упрочняемую деталь, которое обеспечивает значительное разбавление металла покрытия основным металлом (доля основного металла в наплавленном составляет 30%), что приводит к неоднородному структурно-фазовому составу упрочненного слоя по его высоте;

- формирование грубых (до 90 мкм) частиц карбоборидов М7(С,В)3, которые в условиях ударно-абразивного износа будут интенсивно выкрашиваться и, следовательно, резко увеличивать износ покрытия;

- высокая себестоимость наплавляемых порошков на основе Ni.

Наиболее близким способом того же назначения к заявляемому изобретению по совокупности признаков является взятый в качестве прототипа способ плазменно-порошковой наплавки (Переплетчиков Е.Ф., Рябцев И.А., Гордань Г.М. Высокованадиевые сплавы для плазменно-порошковой наплавки инструментов // Автоматическая сварка. - 2003. - №3. - С.21-25), в котором порошковые сплавы на основе системы Fe-Cr-V-Mo-C наплавляют током, минимальное значение которого обеспечивает гарантированное бездефектное сплавление наплавляемых валиков с основным металлом при заданной скорости наплавки, а верхнее значение - из условия получения доли основного металла в наплавленном не выше 10%. При скорости наплавки 2 м/ч рекомендуемая сила тока 140 А, при 2,5 м/ч - 150 А, при 3 м/ч - 165 А, при 3,5 - 180 А, при 4 м/ч - 195 А, при 5 м/ч - 210 А. После формирования упрочняющих слоев по указанным режимам они не содержат трещин, состоят из карбидов ванадия размером от 2 до 10 мкм, сложных карбидов типа М23С6 и М7С3, расположенных в мартенситно-аустенитной матрице.

Недостатком способа является обеспечение термического цикла формирования упрочняющего слоя, характеризующегося невысокой скоростью охлаждения, что приводит к выделению крупных частиц карбида ванадия размером до 10 мкм. Это дополнительно усугубляется перегревом наплавляемого порошка за счет его ввода в столб плазмы внутри плазмотрона. Кроме того, используемые значения силы тока и скорости наплавки обеспечивают относительно невысокую производительность процесса наплавки.

Основной задачей предлагаемого решения является повышение износостойкости наплавляемых изделий.

В способе плазменной порошковой наплавки высоколегированными хромом и ванадием порошковыми сплавами системы Fe-Cr-V-Mo-C присадочный порошок вводят в столб плазмы и ванну расплава на выходе из сопла плазмотрона. Параметры режима изменяют в узком интервале значений - силу тока от 220±5 до 240±5 А, скорость наплавки от 6±0,5 до 11±0,5 м/ч и скорость подачи присадочного порошка от 1,1±0,5 до 2,2±0,5 кг/ч.

Комбинации параметров в пределах указанных диапазонов задают такими, чтобы обеспечить высокую производительность, снизить потери присадочного порошка и исключить макродефекты упрочняющего слоя - трещины, несплавления и поры и сформировать в покрытии равномерную композиционную структуру, содержащую частицы карбида ванадия, средний диаметр которых не более 1,7 мкм. Частицы карбида ванадия равноосной формы, которая оценивается показателем фактора формы. Фактор формы - это отношение ортогональной максимальной проекции частицы к максимальной проекции частицы, который принимают равным не менее 0,74 и средней объемной долей не менее 8%. На фиксируемой площади шлифа в 104 мкм2 их не менее 300 штук, и расположены они внутри и по границам зерен матрицы. Эвтектический карбид Cr7C3 расположен по границам зерен матрицы, объемная доля не менее 18%. Матрица, состоящая из α- и γ-твердых растворов, в которой 60-80% аустенита, склонен к γ→α превращению в ходе изнашивания.

Таблица - Режимы плазменной порошковой наплавки, характеристики структуры и скорость изнашивания наплавленного покрытия.

Способ плазменной порошковой наплавки реализован на базе установки УПН-303УХЛ4 с водоохлаждаемым плазмотроном.

На фиг.1 показана схема процесса наплавки. Способ осуществляют следующим образом - зажигают плазменную дугу прямой полярности между плазмотроном 1 и наплавляемым изделием 2, обеспечиваемую источником 3 и плазмообразующим газом-аргоном 4. Кольцевой ввод Fe-Cr-V-Mo-C порошкового сплава в столб плазмы за пределами сопла плазмотрона осуществляют транспортирующим газом-аргоном 5. Защиту ванны расплава 6 и закристаллизовавшегося металла покрытия 7 от атмосферного воздуха осуществляют защитным газом - аргоном 8. Расстояние от плазмотрона до изделия устанавливают равным 10…15 мм. Основные параметры режима наплавки задают в узких интервалах, а именно силу тока в пределах от 220±5 А до 240±5 А, скорость наплавки от 6±0,5 до 11±0,5 м/ч и скорость подачи присадочного порошка от 1,1±0,5 до 2,2±0,5 кг/ч.

На фиг.2а, б, в, г показаны микроструктуры покрытий, выполненных на различных режимах ППН: а - 220 А, 6 м/ч, 1,9 кг/ч, режим №1; б - 260 А, 4,5 м/ч, 1,1 кг/ч, режим №15; в, г (в темном поле) - 220 А, 10 м/ч, 1,1 кг/ч, режим №6. На микроструктуре покрытий показаны: стрелка А - частицы VC вытянутой формы, стрелка В - частицы VC равноосной формы, стрелка С - эвтектический карбид Cr7C3, стрелка D - матрица.

В пределах вышеуказанных диапазонов получают наплавленный за проход слой шириной от 8 до 13 мм, высотой от 2 до 4,5 мм, площадью наплавленного металла от 10 до 40 мм2, доля основного металла в наплавленном покрытии от 2 до 23%. Композиционная микроструктура Fe-Cr-V-Mo-C покрытий представляет собой дисперсные частицы карбида ванадия вытянутой или равноосной формы VC (фиг.2, б, стрелки А и В), эвтектический дендритный карбид хрома Cr7C3 (стрелка С) в виде сетки по границам зерен матрицы (стрелка D), состоящей из γ- и α-твердых растворов. С изменением силы тока, скорости наплавки и скорости подачи присадочного порошка средний по сечению фактор формы частиц VC изменяется от 0,80 до 0,68, объемная доля от 12,1 до 8,6%, средний диаметр от 1,25 до 1,8 мкм и их число на фиксированной площади шлифа 104 мкм2 от 260 до 700 штук, средняя по сечению объемная доля карбида Cr7C3 от 25 до 14,5%.

Конкретные значения силы тока, скорости наплавки и скорости подачи присадочного порошка задают в пределах обозначенных диапазонов, выполняя следующие условия (см. таблицу, режимы 1-12, фиг.2, а, в, г):

1) доля основного металла в наплавленном покрытии - не более 17% (не наблюдается трещин в покрытии);

2) средняя объемная доля частиц карбида VC в покрытии не менее 8% - (скорость изнашивания 1,0…1,3 мг/мин);

3) средний фактор формы частиц карбида VC в покрытии не менее 0,74 - (скорость изнашивания 1,0…1,3 мг/мин);

4) средний диаметр частиц карбида VC в покрытии не более 1,7 мкм - (скорость изнашивания 1,0…1,3 мг/мин);

5) среднее число частиц VC на фиксируемой площади шлифа в 104 мкм2 не менее 300 штук;

6) средняя объемная доля карбида Cr7C3 в покрытии не менее 18% - (скорость изнашивания 1,0…1,3 мг/мин).

Однослойную плазменную наплавку пластин из Стали 20 осуществляют порошком ПР-Х18ФНМ (ПН-АН2) фракцией менее 200 мкм. Диаметр плазмообразующего сопла плазмотрона - 6 мм, расстояние от плазмотрона до холодного изделия 10…12 мм. В качестве плазмообразующего (расход 2…3 л/мин), транспортирующего (расход 12…16 л/мин) и защитного газов (до 10…16 л/мин) использован аргон.

Испытания на износ проведены по ГОСТ 23.208-79 в течение не менее 165 мин, с определением потери массы через каждые 15 мин. В качестве абразивного материала используют электрокорунд фракцией менее 400 мкм угловатой формы.

Положительный пример 1 (Таблица, режим №3). Сформированное при силе тока 220 А, скорости наплавки 8 м/ч, скорости подачи порошка 1,5 кг/ч покрытие характеризуется:

1) трещины, несплавления и поры - отсутствуют;

2) доля основного металла в наплавленном покрытии - 10%;

3) средняя объемная доля частиц карбида VC в покрытии - 10,9%;

4) средний фактор формы частиц карбида VC - 0,76;

5) средний диаметр частиц карбида VC - 1,47 мкм;

6) средняя объемная доля карбида Cr7C3 в покрытии - 22,7%;

7) скорость изнашивания - 1,1…1,2 мг/мин.

Положительный пример 2 (Таблица, режим №11). Сформированное при силе тока 240 А, скорости наплавки 10 м/ч, скорости подачи порошка 1,9 кг/ч покрытие характеризуется:

1) трещины, несплавления и поры - отсутствуют;

2) доля основного металла в наплавленном покрытии - 8,4%;

3) средняя объемная доля частиц карбида VC в покрытии - 11,4%;

4) средний фактор формы частиц карбида VC - 0,78;

5) средний диаметр частиц карбида VC - 1,49 мкм;

6) средняя объемная доля карбида Cr7C3 в покрытии - 22,9%;

7) скорость изнашивания - 1,1…1,2 мг/мин.

Сила тока прямой полярности менее 220 А (Таблица режимы №13, №14) при плазменной наплавке вызывает появление следующих негативных факторов:

1) увеличение объема подаваемого в ванну расплава присадочного материала до 1,5 кг/ч и более при использовании скорости 6 м/ч и выше может приводить к образованию макродефектов (несплавлений и пор), причем, чем ниже ток, выше скорость подачи присадочного порошка и скорость наплавки, тем выше размеры оговоренных дефектов;

2) сформированные покрытия характеризуются неравномерным распределением структурных составляющих по высоте покрытий из-за слабой степени нагрева присадочного порошка и ванны расплава;

3) процесс наплавки характеризуется высокими потерями присадочного порошка, увеличивающимися с ростом скорости наплавки, так как ванна расплава имеет малую ширину, слабо подтекает под столб плазмы, а присадочный материал слабо разогрет.

Отрицательный пример 3 (Таблица, режим №14). Сформированное при силе тока 200 А, скорости наплавки 6 м/ч, скорости подачи порошка 1,9 кг/ч покрытие характеризуется:

1) трещины и поры - отсутствуют;

2) несплавления с основным металлом и между смежными валиками - присутствуют;

3) доля основного металла в наплавленном покрытии - 3,8%;

4) средняя объемная доля частиц карбида VC в покрытии - 10,8%;

5) средний фактор формы частиц карбида VC - 0,81;

6) средний диаметр частиц карбида VC - 1,49 мкм;

7) средняя объемная доля карбида Cr7C3 в покрытии - 24,4%.

Увеличение силы тока до 260 А и более снижает ресурс работы электрода, приводит к интенсификации процесса выгорания легирующих элементов и повышению значений доли основного металла в наплавленном покрытии, а также трещинообразованию (Таблица, режимы №15, №16).

Наплавка со скоростями менее 6 м/ч увеличивает перегрев упрочняемых деталей, способствует вытягиванию (средний фактор формы 0,64, число частиц 152 на фиксированной площади 104 мкм2, режим №15, фиг.2, б) или росту (средний диаметр 2,1 мкм, средний фактор формы 0,77, число частиц 150 на фиксированной площади 104 мкм2) частиц VC, увеличению уровня остаточных напряжений и деформаций. В процессе наплавки со скоростями более 11 м/ч токами 240±5…260±5 А высока вероятность образования несплавлений между смежными валиками и подрезов, а при наплавке током 220±5 А еще и несплавления с металлом упрочняемой детали, а также пор.

Отрицательный пример 4 (Таблица, режим №16). Сформированное при силе тока 260 А, скорости наплавки 4,5 м/ч, скорости подачи порошка 1,5 кг/ч покрытие характеризуется следующим образом:

1) трещины, несплавления и поры - отсутствуют;

2) доля основного металла в наплавленном покрытии - 26,7%;

3) средняя объемная доля частиц карбида VC в покрытии - 8,2%;

4) средний фактор формы частиц карбида VC - 0,7;

5) средний диаметр частиц карбида VC - 1,89 мкм;

6) средняя объемная доля карбида Cr7C3 в покрытии - 13,2%;

7) скорость изнашивания - 1,5..1,7 мг/мин.

Способ плазменной порошковой наплавки высоколегированными хромом и ванадием порошковыми сплавами системы Fe-Cr-V-Mo-C, включающий ввод присадочного порошка в столб плазмы и ванну расплава на выходе из сопла плазматрона, отличающийся тем, что наплавку осуществляют с изменением силы тока от 220±5 до 240±5 А, скорости наплавки от 6±0,5 до 11±0,5 м/ч и скорости подачи присадочного порошка от 1,1±0,5 до 2,2±0,5 кг/ч и обеспечением формирования равномерной композиционной структуры покрытия с дисперсными выделениями частиц карбида ванадия.
СПОСОБ ПЛАЗМЕННОЙ НАПЛАВКИ ПОРОШКОВ СИСТЕМЫ Fe-Cr-V-Mo-C
СПОСОБ ПЛАЗМЕННОЙ НАПЛАВКИ ПОРОШКОВ СИСТЕМЫ Fe-Cr-V-Mo-C
Источник поступления информации: Роспатент

Показаны записи 121-130 из 144.
10.08.2015
№216.013.6e63

Устройство для защиты от дуговых замыканий ячеек комплектных распределительных устройств

Использование: в области электроэнергетики. Технический результат: повышение быстродействия защиты при дуговых замыканиях в ячейках комплектных распределительных устройств. Устройство защиты содержит первое и второе реле тока, соответственно подключенные к вторичным обмоткам первого и второго...
Тип: Изобретение
Номер охранного документа: 0002559817
Дата охранного документа: 10.08.2015
10.09.2015
№216.013.75eb

Парогазовая установка

Изобретение относится к области теплоэнергетики и предназначено для использования на тепловых электростанциях. Парогазовая установка содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, в который встроены связанные между собой поверхности нагрева первого экономайзера,...
Тип: Изобретение
Номер охранного документа: 0002561776
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.75ef

Парогазовая установка

Изобретение относится к области теплоэнергетики и предназначено для использования на тепловых электростанциях. Парогазовая установка содержит газотурбинную установку, связанную газоходом с котлом-утилизатором, который снабжен газоходом для отвода газов в дымовую трубу. В котел-утилизатор...
Тип: Изобретение
Номер охранного документа: 0002561780
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.777d

Устройство для измерения коэффициентов диффузии водорода в металлах и способ его применения

Изобретение относится к области измерительной техники и может быть использовано для определения коэффициентов диффузии водорода в различных конструкционных материалах, используемых в космической и атомной технике, в изделиях, подвергаемых наводороживанию и облучению в процессе эксплуатации. Для...
Тип: Изобретение
Номер охранного документа: 0002562178
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.777f

Способ переработки пиритного огарка

Изобретение относится к способу переработки пиритного огарка. Способ включает смешивание пиритного огарка с хлоридом аммония и хлорирование при нагреве. Перед смешиванием предварительно проводят окислительный обжиг пиритного огарка. Хлорид аммония берут в избытке до 30% от...
Тип: Изобретение
Номер охранного документа: 0002562180
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77c1

Контактная система вакуумной дугогасительной камеры

Изобретение относится к вакуумным выключателям и может быть использовано в вакуумных дугогасительных камерах высокого напряжения. Контактная система вакуумной дугогасительной камеры содержит соосно расположенные подвижный и неподвижный контактные узлы, каждый из которых состоит из токоподвода в...
Тип: Изобретение
Номер охранного документа: 0002562246
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77eb

Способ конверсии отвального гексафторида урана в металлический уран

Изобретение относится к области экологии и направлено на предупреждение возможности загрязнения окружающей среды и отравления населения радиоактивными веществами. Способ конверсии отвального гексафторида урана в металлический уран включает взаимодействие гексафторида урана с металлическим...
Тип: Изобретение
Номер охранного документа: 0002562288
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7943

Торфосодержащая магнезиальная композиция

Изобретение относится к области производства строительных материалов и может быть использовано при изготовлении изделий, применяемых для малоэтажного строительства, а также для тепло- и звукоизоляции жилых, административных и промышленных зданий. Технический результат заключается в повышении...
Тип: Изобретение
Номер охранного документа: 0002562632
Дата охранного документа: 10.09.2015
10.10.2015
№216.013.81f7

Способ разрушения горных пород

Способ предназначен для дробления и измельчения электрическими импульсными разрядами горных пород, в том числе содержащих ограночное сырье. Горную породу размещают в жидкости. Жидкость заполняет корпус (3) с электродами (4, 7). На высоковольтный электрод (4) подают импульс высокого напряжения....
Тип: Изобретение
Номер охранного документа: 0002564868
Дата охранного документа: 10.10.2015
27.10.2015
№216.013.8a58

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытания на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002567019
Дата охранного документа: 27.10.2015
Показаны записи 121-130 из 235.
20.07.2014
№216.012.de12

Свч плазменный конвертор

Изобретение относится к технике переработки углеводородного сырья, в частности природного газа, и может быть использовано при получении углеродных нанотрубок и водорода. СВЧ плазменный конвертор содержит проточный реактор 1 из радиопрозрачного термостойкого материала, заполненный...
Тип: Изобретение
Номер охранного документа: 0002522636
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df77

Линейный индукционный ускоритель с двумя разнополярными импульсами

Изобретение относится к ускорительной технике и может быть использовано для генерации электронных и ионных пучков наносекундной длительности с высокой частотой следования импульсов. Линейный индукционный ускоритель содержит индукционную систему (1) в виде набора ферромагнитных сердечников,...
Тип: Изобретение
Номер охранного документа: 0002522993
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e14e

Способ изготовления полимерной ионообменной мембраны радиационно-химическим методом

Изобретение относится к способу изготовления полимерной ионообменной мембраны, которую применяют для разделения вещества с помощью электрохимических процессов, таких как электродиализ, электролиз, для получения электричества в гальванических батареях, в частности, для топливного элемента....
Тип: Изобретение
Номер охранного документа: 0002523464
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e1e1

Способ измерения флюенса быстрых нейтронов полупроводниковым монокристаллическим детектором

РЕФЕРАТ (57) Изобретение относится к области радиационных технологий, а также к эксплуатации ядерных установок и ускорителей. Способ включает калибровку детектора, измерение электрофизических параметров детектора до и после облучения, облучение детектора быстрыми нейтронами, при этом детектор...
Тип: Изобретение
Номер охранного документа: 0002523611
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e203

Устройство для раскатки и отбортовки полых изделий

Изобретение относится к обработке металлов пластической деформацией для получения полых оболочек из листового металла, например заготовок для спутниковых тарелок. На основании установлены подвижный механизм с отбортовочным роликом, оправка с приводом и стойки с установленной на них траверсой....
Тип: Изобретение
Номер охранного документа: 0002523645
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e39f

Способ получения композиционного керамического материала

Изобретение относится к технологии получения композиционного керамического материала технического назначения состава TiN/AlO, который является перспективным для получения жаропрочных и износостойких материалов, а также покрытий для режущих и обрабатывающих инструментов. Изобретение направлено...
Тип: Изобретение
Номер охранного документа: 0002524061
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e720

Способ получения фенилэтинил производных ароматических соединений

Изобретение относится к способу получения фенилэтинил производных ароматических соединений. Способ характеризуется тем, что включает нагрев смеси компонентов 0,01 моль фенилацетилена, 0,01 моль иодбензола (арилиодида), 0,0006 г нанопорошка меди и 0,002 г CuI при температуре 110-120°C в течение...
Тип: Изобретение
Номер охранного документа: 0002524961
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e724

Способ очистки природных вод

Изобретение относится к области очистки природных вод и может быть использовано для получения питьевой воды. Способ очистки природных вод включает окисление, нейтрализацию и двухстадийную фильтрацию. Окисление с одновременным переводом примесей в растворимое состояние проводят раствором...
Тип: Изобретение
Номер охранного документа: 0002524965
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e86d

Устройство управления и обеспечения живучести двигателя двойного питания

Изобретение относится к области электротехники и может быть использовано в регулируемом трехфазном электроприводе, выполненном на основе надсинхронного вентильного каскада, асинхронного вентильного каскада или двигателя двойного питания. Технический результат: обеспечение живучести...
Тип: Изобретение
Номер охранного документа: 0002525294
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.e994

Способ измерения угловой скорости вращения трехфазного асинхронного электродвигателя

Изобретение относится к измерительной технике и может быть использовано в электроприводах для измерения угловой скорости вращения в установившихся и переходных режимах. Способ заключается в измерении мгновенных значений фазных токов i, i и напряжений u, u на фазах А и В, подводимых к статору,...
Тип: Изобретение
Номер охранного документа: 0002525604
Дата охранного документа: 20.08.2014
+ добавить свой РИД