×
20.07.2015
216.013.6332

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области нефтехимии и более конкретно к способу получения синтез-газа, который используется как исходное сырье, например, для синтеза метанола, диметилового эфира, углеводородов по методу Фишера-Тропша. Способ получения синтез-газа включает окислительную конверсию метансодержащего газа при температуре более 650°C в сквознопоточном лифт-реакторе с использованием в качестве окислителя микросферического или дробленого катализатора на основе оксидов металлов, способных к многократным окислительно-восстановительным переходам, при этом катализатор непрерывно проходит через лифт-реактор снизу вверх в потоке метансодержащего газа при времени пребывания сырья в зоне реакции 0,1-10 с, отделение выходящего из реактора катализатора от продукта и регенерацию катализатора путем окисления диоксидом углерода в регенераторе, из которого регенерированный катализатор поступает в реактор. Окислительную конверсию метансодержащего сырья и регенерацию восстановленного катализатора проводят параллельно и непрерывно. Изобретение позволяет повысить удельный съем продукта, снизить энергозатраты на транспорт кислородсодержащего агента, снизить опасность взрыва и возгорания, а также регулировать состав синтез-газа. 6 з.п. ф-лы, 1 табл., 9 пр.

Изобретение относится к области нефтехимии и более конкретно к процессу парциального окисления метана в синтез-газ, смесь водорода и монооксида углерода, который известен как исходное сырье, например, для синтеза метанола, диметилового эфира, углеводородов по методу Фишера-Тропша.

Известен способ получения синтез-газа методом парциального окисления метана кислородом. Реакцию проводят при температуре 800-900°C. Получаемый синтез-газ состоит из водорода и монооксида углерода с мольным соотношением H2/CO, близким к 2 (Арутюнов B.C., Крылов О.В. Окислительные превращения метана. - М.: Наука, 1998).

Недостатком указанного способа является взрывоопасность процесса вследствие образования смесей метана с кислородом, а также высокая стоимость получения кислорода.

Известен способ получения синтез-газа (патент US 2665199 A, опубл. 05.01.1954, кл. C01B 3/30, C01B 3/44), согласно которому синтез-газ получают из газообразных углеводородов в присутствии твердых частиц оксида металла, находящихся в псевдоожиженном состоянии, в установке, состоящей из реактора и регенератора. В реакторе протекает окисление углеводородов кислородом, содержащимся в твердых частицах, в регенераторе происходит окисление твердых частиц оксида металла. Реакция окисления углеводородов проводится в псевдоожиженном слое, имеющем следующие недостатки:

- неравномерность времени пребывания сырья в зоне реакции, в результате некоторая часть сырья подвергается чрезмерному превращению до образования сажи, а другая часть не достигает полной конверсии;

- среднее фиктивное время пребывания сырья в зоне реакции недостаточно малое, чтобы обеспечить максимально высокую селективность процесса.

Наиболее близким по технической сущности к предлагаемому является способ получения синтез-газа, описанный в патенте US 7540893.

Согласно способу, описанному в патенте US 7540893, синтез-газ получают путем парциального окисления легких углеводородов кислородом, содержащимся в твердых частицах катализатора (переносчика кислорода). Переносчик кислорода представляет собой оксид металла или смесь оксидов металлов. В способе описывается система для производства синтез-газа, включающая зону регенерации, в которую подается окислитель для окисления переносчиком кислорода и зону риформинга, в которой легкие углеводороды окисляются переносчиком кислорода с образованием водорода и монооксида углерода (синтез-газа).

Однако недостатком описанного способа является применение в качестве окислителя для проведения стадии регенерации переносчика кислорода обедненного кислородом воздуха, воздуха или обогащенного кислородом воздуха. Применение воздуха и обедненного кислородом воздуха в качестве окислителя ведет к снижению производительности оборудования, поскольку менее 21% от объема воздуха, поданного в зону регенерации, может эффективно использоваться для окисления катализатора (исходя из максимального содержания кислорода в воздухе), что приводит к нерациональным энергозатратам на транспорт остального объема (азота), не участвующего в окислении катализатора. Применение обогащенного кислородом воздуха ведет к дополнительным расходам на выделение кислорода из воздуха, что приводит к удорожанию получаемого с использованием в качестве сырья синтез-газа конечного продукта.

Изобретение предполагает использование в качестве окислителя (кислородсодержащего агента) диоксида углерода. Применение CO2 приводит к снижению объемного расхода кислородсодержащего агента и получению дополнительного количества монооксида углерода (и, соответственно, увеличению удельного съема синтез-газа). Удельным съемом называется количество продукта, полученное при осуществлении процесса на катализаторе определенной массы за единицу времени (Мельников Е.Я. Справочник азотчика. - М.: Химия, 1967, 492 с.).

Задача изобретения заключается в увеличении удельного съема продукта, а также в снижении энергозатрат на транспорт кислородсодержащего агента.

Решение поставленной задачи достигается тем, что предложен способ получения синтез-газа, включающий окислительную конверсию метансодержащего сырья при температуре более 650°C в реакторе с использованием в качестве окислителя микросферического или дробленого катализатора на основе оксидов металлов, способных к многократным окислительно-восстановительным переходам, и регенерацию восстановленного катализатора путем его окисления кислородсодержащим агентом в регенераторе, из которого регенерированный катализатор поступает в реактор, в котором окислительную конверсию проводят в сквознопоточном лифт-реакторе, через который катализатор непрерывно проходит снизу вверх в потоке метансодержащего сырья при времени пребывания сырья в зоне реакции 0,1-10 с, затем выходящий из реактора восстановленный катализатор отделяют от продукта - синтез-газа и направляют в регенератор, где в качестве кислородсодержащего агента используют диоксид углерода, причем окислительную конверсию метансодержащего сырья и регенерацию восстановленного катализатора проводят параллельно и непрерывно.

Окислительную конверсию предпочтительно проводят при температуре 850-1100°C, наиболее предпочтительно 850°C.

Регенерацию катализатора предпочтительно проводят в псевдоожиженном, форсированном псевдоожиженном или полусквозном потоке.

Как кислородсодержащий агент может быть дополнительно использован кислород или воздух путем добавления его к диоксиду углерода.

Продукт реакции диоксида углерода с оксиднометаллическим катализатором (газ регенерации) - монооксид углерода - смешивают с газом, выходящим из реактора, для регулирования мольного отношения Н2/СО в полученном синтез-газе.

Также для регулирования мольного отношения Н2/СО в синтез-газе в лифт-реактор дополнительно подают водяной пар, или диоксид углерода, или их смесь.

Принято считать, что псевдоожиженный слой присутствует при скоростях газового потока до 0,8 м/с. При скоростях газа 0,8-1,5 м/с система характеризуется состоянием форсированного псевдоожиженного слоя. Системы, в которых перемещение твердых частиц осуществляется при скоростях газа, достигающих 1,5-3,0 м/с, называются полусквозным потоком. Скорости газового потока выше 3-4 м/с соответствуют перемещению твердых частиц в потоке газа в режиме сквозного потока (Хаджиев С.Н. Крекинг нефтяных фракций на цеолитсодержащих катализаторах. - М.: Химия, 1982, 280 с.].

Реакторы, работающие в двух последних режимах, называют сквознопоточными (лифт-реакторы).

Процесс является непрерывным и его проводят в двух пространственно разделенных аппаратах: реакторе и регенераторе. В такой системе «реактор-регенератор» катализатор по мере истирания и разрушения выводят из системы в виде пыли и заменяют свежим.

Полученный синтез-газ и восстановленный катализатор выводят из реактора и поток отработанного (восстановленного) катализатора отделяют от потока целевого продукта. Поток восстановленного катализатора по транспортной линии подают в блок регенерации, где происходит окисление катализатора в потоке кислородсодержащего агента (воздух, кислород). Затем катализатор отделяют от газов регенерации и по транспортным линиям снова подают в реактор конверсии, как описано выше.

Процесс является непрерывным и состоит из следующих стадий:

- конверсия углеводородного сырья в синтез-газ (с восстановлением катализатора до металлического состояния);

- регенерация катализатора (с окислением его металлических компонентов).

Стадии окисления и восстановления катализатора проходят параллельно и непрерывно.

Таким образом, осуществляется непрерывная циркуляция катализатора и обеспечивается перенос кислорода из зоны регенерации в зону реакции, а также сводятся материальный и тепловой балансы.

Достигаемый технический результат заключается:

в повышении удельного съема продукта,

увеличении эффективности окисления катализатора, выражающейся в снижении энергозатрат на транспорт кислородсодержащего агента,

в снижении опасности взрыва и возгорания,

в возможности регулирования состава синтез-газа.

Нижеследующие примеры иллюстрируют и поясняют предлагаемое техническое решение, но никоим образом не ограничивают его.

Пример 1 (Сравнительный)

В нижнюю часть лифт-реактора подают метан, который контактирует с микросферическим катализатором, поступающим из регенератора. Катализатор состоит из оксидов никеля и кобальта, нанесенных на оксид алюминия и имеет состав 4,0% NiO+4,3% Co3O4+91,7% Al2O3 (мас.%). Катализатор, подхваченный восходящим потоком метана, движется по реактору снизу вверх в режиме сквозного потока, при этом происходит окисление метана кислородом, содержащимся в катализаторе, в монооксид углерода и водород по реакции

СН4+[O]→СО+2Н2

Метан подают с такой скоростью, чтобы поддерживать время пребывания сырья в лифт-реакторе 2,1 с. Температуру в зоне реакции держат 850°C. Пары продуктов отделяют от катализатора, катализатор направляют в регенератор. В регенераторе катализатор подвергают окислению воздухом в режиме псевдоожиженного слоя. Температуру в зоне регенерации держат 600°C. Окисленный катализатор из регенератора вновь направляют в нижнюю часть реактора.

Конверсию сырья рассчитывают как отношение количества превращенного сырья к исходному, выраженное в %:

X - конверсия сырья, мас.%;

mf - масса сырья, кг;

mp - масса углеводородов в продуктах, кг.

Мольное отношение Н2/СО рассчитывают как отношение количества водорода к количеству монооксида углерода в продуктах реакции:

Показатели процесса приведены в таблице 1.

Пример 2

Опыт проводят, как в примере 1, но температуру в зоне реакции поддерживают равной 700°C, в качестве кислородсодержащего агента в регенератор подают диоксид углерода, а монооксид углерода, выходящий из регенератора, - газ регенерации - направляют на смешение с газом, выходящим из реактора, с получением синтез-газа.

Конверсия метана согласно примеру составляет 80,4%, продукты реакции и регенерации не содержат азота.

Показатели процесса приведены в таблице 1.

Пример 3

Опыт проводят, как в примере 2, но температуру в зоне реакции поддерживают равной 850°C.

Конверсия метана согласно примеру составляет 95,1%, продукты реакции и регенерации не содержат азота.

Показатели процесса приведены в таблице 1.

Пример 4

Опыт проводят, как в примере 1, но температуру в зоне реакции поддерживают равной 950°C, а в качестве кислородсодержащего агента в регенератор подают газовую смесь, состоящую из воздуха и диоксида углерода с концентрацией последнего 50 об.%

Конверсия метана согласно примеру составляет 99,4%.

Показатели процесса приведены в таблице 1.

Пример 5

Опыт проводят, как в примере 4, но в качестве кислородсодержащего агента в регенератор подают газовую смесь, состоящую из кислорода и диоксида углерода с концентрацией последнего 50 об.%, а монооксид углерода, выходящий из регенератора, - газ регенерации - направляют на смешение с газом, выходящим из реактора, с получением синтез-газа.

Конверсия метана согласно примеру составляет 99,5%.

Показатели процесса приведены в таблице 1.

Пример 6

Опыт проводят, как в примере 3, но температуру в зоне реакции поддерживают равной 1000°C, а в лифт-реактор подают газовую реакционную смесь, состоящую из метана и водяного пара с концентрацией последнего 50 об.%

Конверсия метана согласно примеру составляет 99,6%.

Показатели процесса приведены в таблице 1.

Пример 7

Опыт проводят, как в примере 2, но температуру в зоне реакции поддерживают равной 1100°C.

Конверсия метана согласно примеру составляет 99,7%, продукты реакции и регенерации не содержат азота.

Показатели процесса приведены в таблице 1.

Пример 8

Опыт проводят, как в примере 3, но процесс проводят в присутствии катализатора, содержащего оксид кобальта, нанесенного на оксид алюминия и имеющего состав 7,5% Co3O4+92,5% Al2O3, при температуре в зоне регенерации равной 800°C, а в лифт-реактор подают реакционную газовую смесь, состоящую из метана и диоксида углерода с концентрацией последнего 20 об.%

Конверсия метана согласно примеру составляет 95,1%.

Показатели процесса приведены в таблице 1.

Пример 9

Опыт проводят как в примере 8, но процесс проводят в присутствии катализатора, содержащего оксид кобальта, нанесенного на оксид алюминия при температуре в зоне регенерации 1100°C, а в лифт-реактор подают реакционную газовую смесь, состоящую из метана, диоксида углерода с концентрацией 20 об.% и водяного пара с концентрацией 30 об.%.

Конверсия метана согласно примеру составляет 95,1%. Показатели процесса приведены в таблице 1.

Источник поступления информации: Роспатент

Показаны записи 71-80 из 155.
29.12.2017
№217.015.fe80

Интегрированный мембранно-каталитический реактор и способ совместного получения синтез-газа и ультрачистого водорода

Изобретение относится к области получения перспективных энергоносителей, в частности к реактору и способу совместного получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья, и может быть использовано при получении топливных элементов, полупроводников, в...
Тип: Изобретение
Номер охранного документа: 0002638350
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.0797

Способ выделения концентрата ценных металлов, содержащихся в тяжелых нефтях и продуктах их переработки

Изобретение относится к способу выделения ценных металлов, содержащихся в тяжелых нефтях и продуктах их переработки. Способ включает в себя обработку тяжелого нефтяного сырья низкотемпературной плазмой, образуемой сверхвысокочастотным (СВЧ) электромагнитным излучением. Способ осуществляется...
Тип: Изобретение
Номер охранного документа: 0002631427
Дата охранного документа: 22.09.2017
19.01.2018
№218.016.0882

Способ выделения концентрата ценных металлов из тяжелого нефтяного сырья

Изобретение относится к способу переработки тяжелых нефтяных остатков, таких как остатки атмосферно-вакуумной перегонки нефти и остаточные высококипящие фракции термо- и термогидродеструктивных процессов, для получения ценных металлов, в том числе редких и редкоземельных металлов, а также...
Тип: Изобретение
Номер охранного документа: 0002631702
Дата охранного документа: 26.09.2017
20.01.2018
№218.016.143d

Способ переработки горючего сланца

Изобретение относится к способу получения из горючих сланцев топливно-энергетических и химических продуктов, в частности моторных топлив. Измельченный горючий сланец (ГС) смешивают с измельченным твердым органическим компонентом, температура максимальной скорости разложения вещества которого...
Тип: Изобретение
Номер охранного документа: 0002634725
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1452

Аддитивный сополимер 3,3,4-трис(триметилсилил)трициклононена-7 и 3-триметилсилилтрициклононена-7, способ его получения и способ разделения газовых смесей с его применением

Изобретение относится к синтезу новых аддитивных сополимеров на основе трициклононенов и разделению газовых смесей с помощью мембран на основе этих сополимеров. Предложен аддитивный сополимер 3,3,4-трис(триметилсилил)трициклононена-7 и 3-триметилсилилтрициклононена-7 формулы (I), где n и m –...
Тип: Изобретение
Номер охранного документа: 0002634724
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1631

Нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц feo, закрепленных на одностенных углеродных нанотрубках, и способ его получения

Изобретение относится к области создания новых нанокомпозитных материалов на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц FeO, закрепленных на одностенных углеродных нанотрубках, и может быть использовано в органической электронике и электрореологии для создания...
Тип: Изобретение
Номер охранного документа: 0002635254
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.16c6

Гибридный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и одностенных углеродных нанотрубок и способ его получения

Изобретение предназначено для органической электроники, электрореологии, медицины и может быть использовано при изготовлении микроэлектромеханических систем, тонкопленочных транзисторов, нанодиодов, наноэлектропроводов, модулей памяти, электрохимических источников тока, перезаряжаемых батарей,...
Тип: Изобретение
Номер охранного документа: 0002635606
Дата охранного документа: 14.11.2017
20.01.2018
№218.016.171b

Интегрированный мембранно-каталитический реактор и способ совместного получения синтез-газа и ультрачистого водорода

Изобретение относится к области получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья и интегрированному мембранно-каталитическому реактору для осуществления способа и может быть использовано в получении топливных элементов, полупроводников, химическом...
Тип: Изобретение
Номер охранного документа: 0002635609
Дата охранного документа: 14.11.2017
13.02.2018
№218.016.1fa7

Способ получения наноразмерного катализатора синтеза фишера-тропша и способ синтеза фишера-тропша с его применением

Изобретение относится к нефтехимической промышленности, а именно к способам получения алифатических углеводородов из оксида углерода и водорода, и может быть использовано в нефтепереработке и нефтехимии. Способ получения наноразмерного катализатора трехфазного синтеза Фишера-Тропша, содержащего...
Тип: Изобретение
Номер охранного документа: 0002641299
Дата охранного документа: 17.01.2018
10.05.2018
№218.016.446b

Способ получения синтетической нефти из природного или попутного нефтяного газа (варианты)

Настоящее изобретение относится вариантам способа получения синтетической нефти из природного или попутного нефтяного газа. Один из вариантом способа включает стадию синтеза оксигенатов из исходного синтез-газа, полученного из указанного сырья, в присутствии металлооксидного катализатора, с...
Тип: Изобретение
Номер охранного документа: 0002649629
Дата охранного документа: 05.04.2018
Показаны записи 71-80 из 105.
29.12.2017
№217.015.fe80

Интегрированный мембранно-каталитический реактор и способ совместного получения синтез-газа и ультрачистого водорода

Изобретение относится к области получения перспективных энергоносителей, в частности к реактору и способу совместного получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья, и может быть использовано при получении топливных элементов, полупроводников, в...
Тип: Изобретение
Номер охранного документа: 0002638350
Дата охранного документа: 13.12.2017
19.01.2018
№218.016.0797

Способ выделения концентрата ценных металлов, содержащихся в тяжелых нефтях и продуктах их переработки

Изобретение относится к способу выделения ценных металлов, содержащихся в тяжелых нефтях и продуктах их переработки. Способ включает в себя обработку тяжелого нефтяного сырья низкотемпературной плазмой, образуемой сверхвысокочастотным (СВЧ) электромагнитным излучением. Способ осуществляется...
Тип: Изобретение
Номер охранного документа: 0002631427
Дата охранного документа: 22.09.2017
19.01.2018
№218.016.0882

Способ выделения концентрата ценных металлов из тяжелого нефтяного сырья

Изобретение относится к способу переработки тяжелых нефтяных остатков, таких как остатки атмосферно-вакуумной перегонки нефти и остаточные высококипящие фракции термо- и термогидродеструктивных процессов, для получения ценных металлов, в том числе редких и редкоземельных металлов, а также...
Тип: Изобретение
Номер охранного документа: 0002631702
Дата охранного документа: 26.09.2017
20.01.2018
№218.016.143d

Способ переработки горючего сланца

Изобретение относится к способу получения из горючих сланцев топливно-энергетических и химических продуктов, в частности моторных топлив. Измельченный горючий сланец (ГС) смешивают с измельченным твердым органическим компонентом, температура максимальной скорости разложения вещества которого...
Тип: Изобретение
Номер охранного документа: 0002634725
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1452

Аддитивный сополимер 3,3,4-трис(триметилсилил)трициклононена-7 и 3-триметилсилилтрициклононена-7, способ его получения и способ разделения газовых смесей с его применением

Изобретение относится к синтезу новых аддитивных сополимеров на основе трициклононенов и разделению газовых смесей с помощью мембран на основе этих сополимеров. Предложен аддитивный сополимер 3,3,4-трис(триметилсилил)трициклононена-7 и 3-триметилсилилтрициклононена-7 формулы (I), где n и m –...
Тип: Изобретение
Номер охранного документа: 0002634724
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.1631

Нанокомпозитный магнитный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и наночастиц feo, закрепленных на одностенных углеродных нанотрубках, и способ его получения

Изобретение относится к области создания новых нанокомпозитных материалов на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц FeO, закрепленных на одностенных углеродных нанотрубках, и может быть использовано в органической электронике и электрореологии для создания...
Тип: Изобретение
Номер охранного документа: 0002635254
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.16c6

Гибридный материал на основе поли-3-амино-7-метиламино-2-метилфеназина и одностенных углеродных нанотрубок и способ его получения

Изобретение предназначено для органической электроники, электрореологии, медицины и может быть использовано при изготовлении микроэлектромеханических систем, тонкопленочных транзисторов, нанодиодов, наноэлектропроводов, модулей памяти, электрохимических источников тока, перезаряжаемых батарей,...
Тип: Изобретение
Номер охранного документа: 0002635606
Дата охранного документа: 14.11.2017
20.01.2018
№218.016.171b

Интегрированный мембранно-каталитический реактор и способ совместного получения синтез-газа и ультрачистого водорода

Изобретение относится к области получения синтез-газа и ультрачистого водорода путем конверсии различного органического сырья и интегрированному мембранно-каталитическому реактору для осуществления способа и может быть использовано в получении топливных элементов, полупроводников, химическом...
Тип: Изобретение
Номер охранного документа: 0002635609
Дата охранного документа: 14.11.2017
13.02.2018
№218.016.1fa7

Способ получения наноразмерного катализатора синтеза фишера-тропша и способ синтеза фишера-тропша с его применением

Изобретение относится к нефтехимической промышленности, а именно к способам получения алифатических углеводородов из оксида углерода и водорода, и может быть использовано в нефтепереработке и нефтехимии. Способ получения наноразмерного катализатора трехфазного синтеза Фишера-Тропша, содержащего...
Тип: Изобретение
Номер охранного документа: 0002641299
Дата охранного документа: 17.01.2018
10.05.2018
№218.016.3a51

Способ получения катализатора (варианты) и способ алкилирования изобутана бутиленами в присутствии полученного катализатора (варианты)

Изобретение относится к способу производства катализаторов и может быть использовано для процесса алкилирования изопарафиновых углеводородов олефинами в нефтеперерабатывающей и нефтехимической промышленности. Для получения катализатора алкилирования изобутана олефинами на основе цеолита типа...
Тип: Изобретение
Номер охранного документа: 0002647575
Дата охранного документа: 16.03.2018
+ добавить свой РИД