×
20.07.2015
216.013.62a6

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМИЧЕСКОЙ СОВМЕСТИМОСТИ РАЗЛИЧНЫХ КОНСТРУКЦИОННЫХ СТАЛЕЙ В ПЛАКИРОВАННОМ ИЗДЕЛИИ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам установления возможности термического совмещения различных конструкционных сталей в плакированных изделиях и может найти применение на предприятиях энергетической отрасли, в проектных и научно-исследовательских организациях при проектировании и изготовлении энергетического оборудования. Для обеспечения совместимости конструкционных сталей плакированного изделия способ включает подготовку эталонов из каждой стали, проведение их термоциклирования, по результатам которого вычисляют остаточные напряжения первого рода после соответствующих температур термоциклирования. Определяют зависимости остаточных напряжений первого рода от температуры термоциклирования для каждого эталона и предел прочности σ для каждой рассматриваемой стали. Сравнивают модуль разности остаточных напряжений первого рода эталонов при рабочей температуре изделия с наименьшим из значений предела прочности σ при этой же температуре. По результатам определяют термическую совместимость конструкционных сталей, используемых в плакированном изделии, для которых модуль разности остаточных напряжений первого рода при температуре термоциклирования эталонов должен быть меньше наименьшего из значений пределов прочности σ. 2 ил., 4 табл., 3 пр.
Основные результаты: Способ определения термической совместимости различных конструкционных сталей в плакированном изделии энергетического оборудования, включающий подготовку эталонов из каждой стали, проведение их термоциклирования, по результатам которого вычисляют остаточные напряжения первого рода после соответствующих температур термоциклирования, определяют зависимости остаточных напряжений первого рода от температуры термоциклирования для каждого эталона, предел прочности σ для каждой рассматриваемой стали, сравнивают модуль разности остаточных напряжений первого рода эталонов при рабочей температуре изделия с наименьшим из значений предела прочности σ при этой же температуре и по результатам определяют термическую совместимость конструкционных сталей, используемых в плакированном изделии, для которых модуль разности остаточных напряжений первого рода при температуре термоциклирования эталонов меньше наименьшего из значений пределов прочности σ.

Изобретение относится к способам установления возможности термического совмещения различных конструкционных сталей в плакированных изделиях и может найти применение на предприятиях энергетической отрасли, в проектных и научно-исследовательских организациях при проектировании и изготовлении энергетического оборудования.

Область техники: одной из особенностей энергетического машиностроения является совмещение разнородных конструкционных материалов, что позволяет для отдельных частей узла применять различные марки сталей, наиболее пригодные для тех температурных, коррозийных, прочностных и других условий, в которых работает данная часть узла энергетического оборудования. Стоит отметить и выполнение различного рода наплавок, позволяющих значительно повысить стойкость поверхности детали или улучшить их сопряжение.

В настоящее время установление термической совместимости конструкционных сталей энергетического оборудования осуществляют посредством оценки возможности свариваемости этих сталей между собой. При этом учитывают наличие концентраторов напряжения, которые снижают прочность и пластичность при высоких температурах. Чувствительность материала к концентрации напряжений выявляется при растяжении цилиндрических образцов со спиральным надрезом и оценивается на основе следующих коэффициентов:

где σд.п.н - длительная прочность надрезанного образца;

δн - пластичность надрезанного образца;

σд.п.г - длительная прочность гладкого образца;

δг - пластичность гладкого образца.

Значения Кσ находятся в пределах (0,5÷1), а Кδ может меняться в большем диапазоне от 0,8 до 0,04; особенно низкие значения Кδ у высокопрочных аустенитных сталей и сплавов на никелевой основе.

В производственной практике термическую совместимость конструкционных сталей устанавливают посредством возможности свариваемости, которую для углеродистых и низколегированных сталей оценивают по качественным показателям: хорошо, удовлетворительно, ограниченно и плохо сваривающиеся стали. Свариваемость оценивается по полному эквиваленту углерода (С), %:

где (С)х - химический эквивалент углерода, %;

(С)р - размерный эквивалент углерода, которым учитывается влияние толщины стенки на закаливаемость материала (стали) вследствие изменения теплоотвода и скорости охлаждения при сварке;

S - толщина стенки, мм.

Как показывает практика, приведенные оценки даже при соблюдении всех технологических мер не всегда обеспечивают требуемые эксплуатационные свойства сварных соединений.

Свариваемость высокохромистых сталей мартенситного (мартенситно-ферритного) класса, аустенитных хромоникелиевых сталей представляет собой значительно более сложную техническую задачу. Установление термической совместимости разнородных материалов в этом случае усложняется в еще большей степени.

Факторами, учитываемыми при расчетах сварных соединений на прочность, являются:

1) при температуре ниже 250°C (для углеродистых сталей и стали 12Х1МФ) - временное сопротивление σв;

2) при температуре ниже 260-420°C (для углеродистых сталей) и ниже 550°C (для стали 12Х18Н10Т) - предел текучести σт;

3) при температуре выше 420°C (для углеродистых сталей), выше 470°C (для стали 12Х1МФ), выше 550°C (для сталей 12Х18Н10Т и 12Х18Н12Т) - предел длительной прочности σд.п.

Кроме этих факторов, могут быть учтены химический состав разнородных материалов, толщина стенки свариваемых труб, температура эксплуатации и другие.

Перечисленные подходы далеко не всегда обеспечивают необходимую работоспособность двух разнородных материалов при температуре эксплуатации и имеют следующие недостатки.

В частности, за критерий длительной прочности σд.п обычно принимают напряжение, при котором происходит разрушение в течение заданного срока службы. Следовательно, для деталей котло- и реакторостроения необходимо устанавливать напряжение разрушения за весь период эксплуатации, составляющий 100-300 тысяч часов и более. В этом заключается трудность применения критериев длительной прочности, так как приходится прибегать к ненадежным дальним экстраполяциям. Построение же точной математической зависимости между напряжением и временем не представляется возможным, так как разрушение металла является сложным и многофакторным процессом, определяется не только температурой и давлением, но и химическим и фазовым составом, структурой, технологией изготовления, условиями термической обработки и т.д., учесть которые в условиях изменяющихся высокоинтенсивных тепловых потоков и знакопеременных нагрузок - задача исключительной трудности.

В процессе эксплуатации теплоэнергетического оборудования при наличии градиентов температур, давлений среды, изгибающих и растягивающих нагрузок в стали происходит фазовая перекристаллизация, изменение атомно-дислокационной структуры, распад твердых растворов и перераспределение легирующих элементов с ростом концентрационной неоднородности, диспергирование и рост зерен, изменение и формирование новых фазовых и межзеренных границ и многие другие процессы, которые проявляются возникновением внутренних структурных напряжений I и II рода. Структурные напряжения II рода определяют внутризеренный характер разрушения. Наиболее опасны внутренние структурные напряжения I рода - зональные, доминантно влияющие на разрушение материала по границам зерен. Таким образом, внутренние микронапряжения отражают структурное состояние, определяют реальную прочность и могут сравниваться с механическими характеристиками прочности для данного металла.

Влияние микроструктурных характеристик в виде напряжений I и II рода на прочностные свойства и критерии длительной прочности (жаропрочности) обычно не учитывается. Применительно к критерию прочности σв - временному сопротивлению разрушению, который является мерой кратковременной прочности и макроскопической характеристикой, это означает, что σв определяется при полном разрушении, тогда как в образце, когда он еще не разрушен, уже существуют микроповреждения I и II рода.

Таким образом, недостатком известных способов является то, что они не содержат параметры микроструктуры, следовательно, приведенные выражения (1-3) не позволяют предположить, каким образом внутренние микронапряжения при работе металла в условиях ползучести при наличии механических и термических знакопеременных нагрузок повлияют на макроскопические свойства сопряженных разнородных элементов и их ресурсные характеристики. В этой связи недоучет внутренних напряжений ограничивает возможности создания высоконадежных теплообменных устройств, работающих в условиях высоких термомеханических нагрузок.

Задача заявляемого изобретения - установление возможности термического совмещения различных конструкционных сталей в плакированном изделии при изготовлении энергетического оборудования.

Поставленная задача достигается тем, что в заявленном способе подготавливают эталон из каждой стали, проводят их термоциклирование, по результатам которого вычисляют остаточные напряжения первого рода после соответствующих температур термоциклирования. Определяют зависимости остаточных напряжений первого рода от температуры термоциклирования для каждого эталона и предел прочности σв для каждой рассматриваемой стали. Сравнивают модуль разности остаточных напряжений первого рода эталонов при рабочей температуре изделия с наименьшим из значений предела прочности σв при этой же температуре. По результатам определяют термическую совместимость конструкционных сталей, используемых в плакированном изделии, для которых модуль разности остаточных напряжений первого рода при температуре термоциклирования эталонов должен быть меньше наименьшего из значений пределов прочности σв.

Остаточные напряжения первого рода (зональные) эталона, вызывающие коробление, удлинение, формоизменение, растрескивание с полной потерей прочности конструкционного материала, определяют по формуле:

где ai - параметр кристаллической решетки при температуре термоциклирования ti;

ai-1 - параметр кристаллической решетки для холодного состояния эталона предыдущего термоцикла;

ti - температура термоциклирования;

Е - модуль упругости.

Под термоциклированием подразумевают нагревание до определенной температуры, определение методом рентгеновской дифракции параметра элементарной кристаллической решетки в нагретом состоянии агор, охлаждение до комнатной температуры, определение методом рентгеновской дифракции параметра элементарной кристаллической решетки в охлажденном состоянии aхол, а затем повторение этой последовательности действий с повышением температуры в каждом цикле нагрева.

Для пояснения способа установления термической совместимости различных конструкционных сталей в плакированном изделии энергетического оборудования приведены следующие данные экспериментов.

В таблице 1 приведены результаты определения параметра элементарной кристаллической решетки при термоциклировании эталона из стали 12Х1МФ.

В таблице 2 приведены результаты вычисления остаточных напряжений первого рода для эталона из стали 12Х1МФ.

В таблице 3 приведены результаты определения параметра элементарной кристаллической решетки при термоциклировании эталона из стали 08Х18Н10Т.

В таблице 4 приведены результаты вычисления остаточных напряжений первого рода для эталона из стали 08Х18Н10Т.

На фиг. 1 показана зависимость остаточных напряжений первого рода для эталона из стали 12Х1МФ от температуры термоциклирования ti.

На фиг. 2 показана зависимость остаточных напряжений первого рода эталона из стали 08Х18Н10Т от температуры термоциклирования ti.

Изобретение поясняется следующим примером.

Подготавливают эталон из стали 12Х1МФ, подвергают его термоциклированию (нагревают до температуры 225°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 12°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахор; нагревают до температуры 323°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 12°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 420°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 12°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 517°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 12°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 590°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 12°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 635°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 12°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахор), по результатам которого (таблица 1) вычисляют остаточные напряжения первого рода после соответствующих температур термоциклирования (таблица 2). Определяют зависимость остаточных напряжений первого рода для эталона из стали 12Х1МФ от температуры термоциклирования ti (фиг. 1).

Подготавливают эталон из стали 08Х18Н10Т, подвергают его термоциклированию (нагревают до температуры 100°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 10°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 200°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 10°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 300°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 10°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 400°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 10°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 500°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 10°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 600°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 10°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол; нагревают до температуры 700°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в нагретом состоянии агор, охлаждают до температуры 10°C, определяют методом рентгеновской дифракции параметр элементарной кристаллической решетки в охлажденном состоянии ахол), по результатам которого (таблица 3) вычисляют остаточные напряжения первого рода после соответствующих температур термоциклирования (таблица 4). Определяют зависимость остаточных напряжений первого рода для эталона из стали 08Х18Н10Т от температуры термоциклирования ti, (фиг. 2).

Определяют предел прочности σв для каждой рассматриваемой стали. Сравнивают модуль разности остаточных напряжений первого рода эталонов при рабочей температуре изделия с наименьшим из значений предела прочности σв при этой же температуре и по результатам определяют термическую совместимость конструкционных сталей, используемых в плакированном изделии:

Пример 1. Рабочая температура изделия - оболочки из перлитной стали 12Х1МФ с плакировкой из аустенитной нержавеющей стали 08Х18Н10Т - составляет 450°C. Остаточные напряжения первого рода при соответствующей температуре для стали 12Х1МФ (фиг. 1, точка m11) равны , а остаточные напряжения первого рода при соответствующей температуре для стали 08Х18Н10Т (фиг. 2, точка m12) - .

Определяют предел прочности ав для каждой рассматриваемой стали при температуре 450°C:

- (Масленков С.Б. Стали и сплавы для высоких температур: справочник: в 2 кн. Кн. 1 / С.Б. Масленков, Е.А. Масленкова. - М.: Металлургия, 1991. - 383 с., страница 88, таблица 5.25);

- (Масленков С.Б. Стали и сплавы для высоких температур: справочник: в 2 кн. Кн. 1 / С.Б. Масленков, Е.А. Масленкова. - М.: Металлургия, 1991. - 383 с., страница 228, таблица 8.6).

Сравнивают модуль разности остаточных напряжений первого рода при соответствующей температуре термоциклирования эталонов с наименьшим из значений предела прочности σв:

Модуль разности остаточных напряжений первого рода при температуре 450°C меньше, чем наименьшее из значений предела прочности σв для исследуемых сталей. Следовательно, термическое совмещение конструкционных сталей 12Х1МФ и 08Х18Н10Т при изготовлении плакированных изделий энергетического оборудования, работающего при температуре 450°C, возможно.

Пример 2. Рабочая температура изделия - оболочки из перлитной стали 12Х1МФ с плакировкой из аустенитной нержавеющей стали 08Х18Н10Т - составляет 500°C. Остаточные напряжения первого рода при соответствующей температуре для стали 12Х1МФ (фиг. 1, точка m21) равны , а остаточные напряжения первого рода при соответствующей температуре для стали 08Х18Н10Т (фиг. 2, точка m22) - .

Определяют предел прочности σв для каждой рассматриваемой стали при температуре 500°C:

- (Масленков С.Б. Стали и сплавы для высоких температур. Справочник: в 2 кн. Кн. 1 / С.Б. Масленков, Е.А. Масленкова. - М.: Металлургия, 1991. - 383 с., страница 88, таблица 5.25);

- (Масленков С.Б. Стали и сплавы для высоких температур. Справочник: в 2 кн. Кн. 1 / С.Б. Масленков, Е.А. Масленкова. -М.: Металлургия, 1991. - 383 с, страница 228, таблица 8.6).

Сравнивают модуль разности остаточных напряжений первого рода при соответствующей температуре термоциклирования эталонов с наименьшим из значений предела прочности σв:

Модуль разности остаточных напряжений первого рода при температуре 500°C меньше, чем наименьшее из значений предела прочности σв для исследуемых сталей. Следовательно, термическое совмещение конструкционных сталей 12Х1МФ и 08Х18Н10Т при изготовлении плакированных изделий энергетического оборудования, работающего при температуре 500°C, возможно.

Пример 3. Рабочая температура изделия - оболочки из перлитной стали 12Х1МФ с плакировкой из аустенитной нержавеющей стали 08Х18Н10Т - составляет 550°C. Остаточные напряжения первого рода при соответствующей температуре для стали 12Х1МФ (фиг. 1, точка m31) равны , а остаточные напряжения первого рода при соответствующей температуре для стали 08Х18Н10Т (фиг. 2, точка m32) - .

Определяют предел прочности σв для каждой рассматриваемой стали при температуре 550°C:

- (Масленков С.Б. Стали и сплавы для высоких температур. Справочник: в 2 кн. Кн. 1 / С.Б. Масленков, Е.А. Масленкова. - М.: Металлургия, 1991. - 383 с, страница 88, таблица 5.25);

- (Масленков С.Б. Стали и сплавы для высоких температур. Справочник: в 2 кн. Кн. 1 / С.Б. Масленков, Е.А. Масленкова. - М.: Металлургия, 1991. - 383 с., страница 228, таблица 8.6).

Сравнивают модуль разности остаточных напряжений первого рода при соответствующей температуре термоциклирования эталонов с наименьшим из значений предела прочности σв:

Модуль разности остаточных напряжений первого рода при температуре 550°C больше, чем наименьшее из значений предела прочности σв для исследуемых сталей. Следовательно, термическое совмещение конструкционных сталей 12Х1МФ и 08Х18Н10Т при изготовлении плакированных изделий энергетического оборудования, работающего при температуре 550°C, невозможно.

Способ определения термической совместимости различных конструкционных сталей в плакированном изделии энергетического оборудования, включающий подготовку эталонов из каждой стали, проведение их термоциклирования, по результатам которого вычисляют остаточные напряжения первого рода после соответствующих температур термоциклирования, определяют зависимости остаточных напряжений первого рода от температуры термоциклирования для каждого эталона, предел прочности σ для каждой рассматриваемой стали, сравнивают модуль разности остаточных напряжений первого рода эталонов при рабочей температуре изделия с наименьшим из значений предела прочности σ при этой же температуре и по результатам определяют термическую совместимость конструкционных сталей, используемых в плакированном изделии, для которых модуль разности остаточных напряжений первого рода при температуре термоциклирования эталонов меньше наименьшего из значений пределов прочности σ.
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМИЧЕСКОЙ СОВМЕСТИМОСТИ РАЗЛИЧНЫХ КОНСТРУКЦИОННЫХ СТАЛЕЙ В ПЛАКИРОВАННОМ ИЗДЕЛИИ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМИЧЕСКОЙ СОВМЕСТИМОСТИ РАЗЛИЧНЫХ КОНСТРУКЦИОННЫХ СТАЛЕЙ В ПЛАКИРОВАННОМ ИЗДЕЛИИ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМИЧЕСКОЙ СОВМЕСТИМОСТИ РАЗЛИЧНЫХ КОНСТРУКЦИОННЫХ СТАЛЕЙ В ПЛАКИРОВАННОМ ИЗДЕЛИИ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМИЧЕСКОЙ СОВМЕСТИМОСТИ РАЗЛИЧНЫХ КОНСТРУКЦИОННЫХ СТАЛЕЙ В ПЛАКИРОВАННОМ ИЗДЕЛИИ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 152.
20.02.2014
№216.012.a281

Кальций-фосфатное биологически активное покрытие на имплантате

Изобретение относится к области медицинской техники, в частности к биологически совместимым покрытиям на имплантате, обладающим свойствами остеоинтеграции, и может быть использовано в стоматологии, травматологии и ортопедии при изготовлении высоконагруженных костных имплантатов из...
Тип: Изобретение
Номер охранного документа: 0002507316
Дата охранного документа: 20.02.2014
10.03.2014
№216.012.aa3f

Способ рентгенометрической оценки температурных условий эксплуатации трубных элементов котлов

Использование: для неразрушающего исследуемую поверхность контроля температурных условий эксплуатации и разрушения трубных элементов паровых и водогрейных котлов. Сущность заключается в том, что подготавливают образец трубного элемента и эталон из не работавшего в котле участка трубы, имеющей...
Тип: Изобретение
Номер охранного документа: 0002509298
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ad0f

Способ определения аскорбата лития в лекарственной форме методом вольтамперометрии

Изобретение относится к области количественного определения аскорбата лития в лекарственной форме с целью контроля качества выпускаемых на рынок препаратов на основе аскорбата лития. Способ определения аскорбата лития в лекарственной форме включает стадию пробоподготовки и вольтамперометическое...
Тип: Изобретение
Номер охранного документа: 0002510018
Дата охранного документа: 20.03.2014
10.05.2014
№216.012.c128

Способ иммобилизации биомолекул на поверхности магнитоуправляемых наночастиц железа покрытых углеродной оболочкой

Изобретение относится к cпособу иммобилизации белковых молекул на поверхности магнитоуправляемых наночастиц железа, покрытых углеродной оболочкой. Способ включает взаимодействие порошка с растворенным в воде 4-карбоксибензолдиазоний тозилатом для формирования ковалентной связи органических...
Тип: Изобретение
Номер охранного документа: 0002515197
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c311

Интерференционный переключатель резонансного свч компрессора

Изобретение относится к области радиотехники и может быть использовано в резонансных СВЧ компрессорах в качестве устройства вывода энергии для формирования мощных СВЧ импульсов наносекундной длительности. Технический результат - увеличение рабочей мощности переключателя при неизменной...
Тип: Изобретение
Номер охранного документа: 0002515696
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c465

Устройство для измерения температуры

Изобретение относится к технике измерения физической температуры объекта с помощью термопары и может быть использовано в области температурных измерений с использованием термопар, в частности, в литейном производстве для определения скоростей охлаждения различных зон слитка при кристаллизации...
Тип: Изобретение
Номер охранного документа: 0002516036
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c637

Вакуумно-дуговой генератор с жалюзийной системой фильтрации плазмы от микрочастиц

Изобретение относится к плазменным технологиям нанесения пленочных покрытий и предназначено для очистки плазменного потока дуговых ускорителей от микрокапельной фракции. Вакуумно-дуговой генератор с жалюзийной системой фильтрации плазмы от микрочастиц содержит охлаждаемый катод 1 в виде...
Тип: Изобретение
Номер охранного документа: 0002516502
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c7de

Способ оценки эффективности стимуляции антиоксидантной активности

Изобретение относится к медицине и описывает способ оценки эффективности стимуляции антиоксидантной активности путем определения концентрации восстановленного глутатиона, при этом дополнительно в инкубационную среду добавляют 1,4-дитиоэритритол и аскорбиновую кислоту и при увеличении уровня...
Тип: Изобретение
Номер охранного документа: 0002516925
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c858

Способ прогнозирования течения липидемии

Изобретение относится к области медицины и может быть использовано в кардиологии и терапии для прогнозирования течения липидемии. Способ включает исследование сыворотки крови до и после лечения, где дополнительно перед исследованием проводят трехкратное замораживание и оттаивание сыворотки...
Тип: Изобретение
Номер охранного документа: 0002517054
Дата охранного документа: 27.05.2014
20.06.2014
№216.012.d280

Комплексный препарат для профилактики и лечения кишечных инфекций

Изобретение относится к медицине и ветеринарии, а именно к медицинским и ветеринарным препаратам, предназначенным для профилактики и лечения кишечных инфекций различной этиологии у человека и животных. В комплексном препарате, содержащем носитель, представляющем собой энтеросорбент,...
Тип: Изобретение
Номер охранного документа: 0002519659
Дата охранного документа: 20.06.2014
Показаны записи 21-30 из 244.
27.05.2013
№216.012.45b5

Устройство управления асинхронным двигателем

Изобретение относится к области электротехники. Технический результат заключается в повышении управления электродвигателем. Для этого заявленное устройство содержит автономный инвертор напряжения, силовые выходы которого через датчики токов подключены к статорным обмоткам асинхронного...
Тип: Изобретение
Номер охранного документа: 0002483422
Дата охранного документа: 27.05.2013
10.06.2013
№216.012.47f1

Способ управления перемещением грузов и устройство для его реализации

Изобретение относится к области транспортирования и предназначено для перемещения грузов. Устройство перемещения грузов содержит привод (1) вертикального перемещения, соединенный с грузом (5) тросом (6), датчики (8, 9) отклонения троса (6) от вертикали, датчик (7) натяжения троса (6), приводы...
Тип: Изобретение
Номер охранного документа: 0002483997
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4811

Сырьевая смесь для изготовления пеностекла

Изобретение относится к области производства теплоизоляционного пеностекла. Технический результат изобретения заключается в повышении прочности пеностекла, расширении сырьевой базы и снижении энергетических затрат при осуществлении технологического процесса. Сырьевая смесь для изготовления...
Тип: Изобретение
Номер охранного документа: 0002484029
Дата охранного документа: 10.06.2013
10.06.2013
№216.012.4871

Способ изготовления топливных брикетов из биомассы

Изобретение относится к способу получения топливных брикетов из биомассы, включающему термическую обработку биомассы при температуре 200-500°C без доступа воздуха, подготовку связующего вещества, получаемого растворением декстрина в пиролизном конденсате в соотношении 1:(5÷20), смешивание...
Тип: Изобретение
Номер охранного документа: 0002484125
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4c9b

Способ извлечения урана из руд

Изобретение относится к гидрометаллургии урана и может быть использовано для извлечения урана из руд. Способ включает выщелачивание урана и железа раствором серной кислоты с использованием в качестве окислителя трехвалентного железа, содержащегося в руде. После выщелачивания ведут извлечение...
Тип: Изобретение
Номер охранного документа: 0002485193
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4fd9

Способ получения наночастиц свинца

Изобретение относится к способу получения наночастиц свинца. Способ включает получение раствора стеарата свинца в н-октаноле с последующим его кипячением при 195°C. После чего раствор охлаждают и путем декантации или фильтрации отделяют от него непрореагировавший стеарат свинца и продукты его...
Тип: Изобретение
Номер охранного документа: 0002486034
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.505f

Способ управления активностью катализатора процесса дегидрирования высших н-парафинов

Изобретение относится к способу управления активностью катализатора процесса дегидрирования высших н-парафинов. Способ включает регулирование активности катализатора за счет увеличения подачи воды в реактор и характеризуется тем, что расход воды дополнительно корректируют в зависимости от типа...
Тип: Изобретение
Номер охранного документа: 0002486168
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.51ab

Способ определения осмия инверсионно-вольтамперометрическим методом в природном и техногенном сырье

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов осмия. Способ определения осмия инверсионно-вольтамперометрическим методом в природном и техногенном сырье заключается в том, что осмий (VIII)...
Тип: Изобретение
Номер охранного документа: 0002486500
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5238

Способ формирования субнаносекундных свч импульсов и устройство для его осуществления

Изобретение относится к области радиотехники и предназначено для формирования серии мощных СВЧ импульсов субнаносекундной длительности с высокой частотой следования в пределах входного микросекундного СВЧ импульса, генерируемого в частотно-периодическом режиме. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002486641
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.554c

Сверхпроводящий размыкатель

Изобретение относится к электротехнике, в частности к сверхпроводящим размыкателям постоянного тока многократного действия. Размыкатель содержит отключающий элемент (1), выполненный в виде двух последовательно соединенных проводников (2, 3) из сверхпроводящего материала, к выводам которых...
Тип: Изобретение
Номер охранного документа: 0002487439
Дата охранного документа: 10.07.2013
+ добавить свой РИД