×
10.07.2015
216.013.6213

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИКИ ИЗВЛЕЧЕНИЯ ТРУДНОИЗВЛЕКАЕМЫХ ЗАПАСОВ НЕФТИ

Вид РИД

Изобретение

Аннотация: Изобретение предназначено для расчета динамики добычи нефти на месторождениях с трудноизвлекаемыми запасами(ТрИЗ), в том числе в результате опережающего обводнения запасов нефти. Оно может быть использовано в нефтегазодобывающей промышленности для выбора способа эффективной разработки ТрИЗ. Обеспечивает повышение точности, надежности и значительное уменьшение затрат на определение динамики извлечения ТрИЗ нефти. Результатом изобретения является определение расчетного времени и объемов извлечения нефти при различных вариантах воздействия на пласт, выбор оптимального варианта по технологической и экономической эффективности. Изобретение включает типовые определения коллекторских свойств горной породы: пористости, проницаемости, нефтенасыщенности и коэффициентов вытеснения в расширенном диапазоне исследования образцов керна по величине перепада давления до 1×10 МПа/м и линейной скорости фильтрации менее 1×10 м/сутки. По результатам исследований строится статистическая поровая, гидродинамическая и энергетическая структура горной породы скважины, участка залежи или залежи в целом, которые принимаются в качестве типового объекта скважина-залежь (далее С-З) с полем давлений согласно принятой системе воздействия на пласт. Динамика добычи нефти рассчитывается как произведение суммарного дебита подвижных запасов в гидродинамических единицах потока (ГЕП) зоны питания скважины С-З на время ее работы. Дебит ГЕП рассчитывается по уравнению Пуазейля-Дарси в радиальном поле фильтрации с учетом нелинейности и вероятности совпадения трех независимых событий: проницаемости, пористости и напряжения сдвига меньше приложенного в данном интервале градиента давления. 2 н.п. ф-лы, 2 табл., 5 ил.

Изобретение относится к разработке углеводородных залежей сложного геологического строения с неоднородными, низкопроницаемыми и обводненными коллекторами, когда извлечение трудноизвлекаемых запасов нефти происходит в условиях нелинейной фильтрации. Эффективность процесса разработки месторождений нефти определяется динамикой добычи нефти и коэффициентом извлечения нефти (КИН) на конечной стадии разработки. Надежность способов определения динамики разработки и КИН дает возможность выбора эффективных технологических решений, обеспечивающих полноту извлечения геологических запасов нефти и планирование технико-экономической политики нефтедобывающих компаний и государства.

В большинстве случаев ГКЗ РФ рассматривает и утверждает численные значения КИН, обоснованные с использованием программных комплексов, которые включают геологическое и гидродинамическое моделирование залежи. Ненадежность КИН [1. Щербаков В.П., Бродский П.А., Гутман И.С. Нефтеотдача и коммерческая оценка запасов нефти в современных условиях. Вестник ЦКР Роснедра. №3/2008, с.80-82], утвержденных ГКЗ Роснедра на основе оценок по гидродинамическим моделям пластов, содержащих трудноизвлекаемые запасы (ТрИЗ) нефти, по мнению специалистов [2. Батурин Ю.Е. и др. Способ разработки нефтяного месторождения и искусственным поддержанием пластового давления. Патент RU 2190761 С1, Бюл. №28, 10.10.2002; 3. Жданов С.А., Сутормин С.Е. Анализ эффективности эксплуатации многопластовых нефтяных месторождений на поздней стадии разработки. // Доклады /// Международного научного симпозиума «Теория и практика применения методов увеличения нефтеотдачи пластов». М. 2011. Том 1. С.82-90], являются одной из причин «недостижения проектных КИН практически по всем месторождениям Западной Сибири».

Ненадежность, а точнее не эффективность использования гидродинамических моделей для решения проблемы вовлечения в разработку ТрИЗ связана с наличием границы применимости линейных моделей Дарси. Известно, что при движении по трубопроводам жидкие и газообразные флюиды испытывают внутреннее (вязкость) и внешнее (с поверхностью трубы) трение. Макрогидродинамика учитывает потери давления на преодоление внутреннего и внешнего трения в расчетах трубопроводного транспорта флюидов. Уравнения Пуазейля (1) и Дарси (2), используемые в линейных гидродинамических моделях пласта, учитывают потери давления на внутреннее трение обратно пропорциональной зависимостью от вязкости. Внешнее трение в уравнении Пуазейля (1) учитывается прямой зависимостью от квадрата площади сечения капилляра, а в уравнении Дарси (2) - прямой зависимостью от коэффициента проницаемости Кпр.

В частном случае, когда коллектор состоит из n поровых каналов равного диаметра и длины, уравнение Пуазейля принимает вид

Здесь: Q - расход флюида; S - площадь фильтрации; Sк - площадь сечения капилляра, L - длина пористой среды; µ - динамическая вязкость флюида (внутреннее трение); (P1-P2) - перепад давлений на концах пористой среды длиной L, d - диаметр капилляра, kп - пористость, kпр - проницаемость, n - число поровых каналов.

Из уравнений (2) и (3) следует важная связь коэффициента проницаемости (4) с площадью сечения поровых каналов коллектора, которая раскрывает границу применимости уравнений фильтрации на базе линейной модели Дарси.

Поровые каналы в коллекторах характеризуются широким диапазоном диаметров, от миллиметров до нанометров, и величины внешнего трения, показателем которого служат капиллярные силы и поверхностное натяжение на границе раздела фаз пластовый флюид - поверхность поровых каналов. Неизбежным следствием указанных факторов является нелинейная зависимость расхода от давления, которая проявляется начальным градиентом давления фильтрации и зависимостью величины проницаемости от градиента давления [4/ Котяхов Ф.И. Физика нефтяных и газовых коллекторов. Москва, Недра, 1977, с.287]. Можно показать, что линейная зависимость расхода от величины перепада давления по Дарси возможна лишь при условии высокой однородности коллектора по диаметру поровых каналов, близкой к распределению Гиббса, и при высоких значениях градиента давления.

Наиболее полно неоднородность горной породы и связанные с ней нелинейные эффекты учтены в способе определения коэффициента извлечения нефти при нелинейной фильтрации [5. Патент РФ №2504654, E21B 49/00, G01N 15/00 (2006.01), 2014]. Способ включает лабораторные и геофизические исследования (ГИС) фильтрационно-емкостных свойств (ФЕС) горной породы и определение поля градиентов давления по площади залежи. Коллекторские и фильтрационно-емкостные свойства горной породы залежи, а именно коэффициенты пористости, проницаемости, нефтенасыщенности и вытеснения нефти определяются в расширенном диапазоне давления и линейной скорости, соответственно до 1×10-4 МПа/м и 1×10-3 м/сутки и менее. Определение статистической поровой, гидродинамической и энергетической структуры горной породы залежи, в том числе подвижных (извлекаемых) запасов углеводородов в созданном поле градиентов давления. Коэффициент извлечения нефти в рассматриваемом способе рассчитывается как доля порового объема залежи с подвижными запасами углеводородов (нефти) в поле градиентов давления среднестатистического участка, приходящегося на одну добывающую характеристическую, скважину типового объекта скважина-залежь (C-З), имеющую среднестатистические параметры ФЕС горной породы залежи с типовым полем градиентов давления рассматриваемой технологической схемы разработки.

Недостатком известного способа является то, что он определяет извлекаемые запасы нефти не в динамике, а в статике последней стадии разработки залежи. Другим недостатком прототипа является его не способность дать оценку динамики отбора пластовой (реликтовой) воды, а также воды и газа, нагнетаемых в пласт для поддержания принятой системы разработки.

Задачей, стоящей перед изобретением, является разработка способа определения динамики добычи трудно извлекаемых запасов нефти и воды на обводненных залежах и залежах сложного геологического строения, обеспечивающего повышение надежности (точности) гидродинамических расчетов.

Для решения этой задачи в дополнение к лабораторным и геофизическим исследованиям фильтрационно-емкостных свойств горной породы, в том числе коэффициентов пористости, проницаемости, нефтенасыщенности и вытеснения нефти, начального градиента сдвига в расширенном диапазоне градиентов давления и линейной скорости, соответственно до 1×10-4 МПа/м и 1×10-3 м/сутки и менее, и к определению среднестатистической поровой, гидродинамической и энергетической структуры коллектора, поля градиентов давления по площади питания скважины, участка залежи, залежи в целом:

1. Запасы флюидов по величине коэффициентов проницаемости, пористости, вытеснения и начального напряжения фильтрации приписываются статистически независимым водо- и нефтенасыщенным гидродинамическим единицам потока;

2. Динамика извлечения подвижной части флюидов определяется в режиме поршневого вытеснения уравнениями Пуазейля-Дарси

Q=ΣQi=ΣkпрiSi(ΔP-FdpiL)WпрiWпiWij/Lµ

при линейной,

Q=(0,542 h/µ)tΣΣkпрi(ΔPj-FdpiΔRj)WпрiWпiWij/ln(1+ΔRj/Rj)

и радиальной схемах разработки, где

Q - дебит пластового флюида (м3/сутки),

t - время фильтрации флюида (сутки),

h - мощность пласта (м),

µ - вязкость флюида (мПа*с),

Rj - радиус питания скважины (м),

ΔRj=Rj-R(j-1) - интервал радиуса питания,

kпрi - коэффициент проницаемости i-той ГЕП (мД),

Wпрi - вероятность наличия на j-том интервале i-той ГЕП проницаемостью kпрi,

Wпi=Si/S - вероятность, что на j-том интервале i-тая ГЕП имеет пористость kпi,

Wij - вероятность того, что на j-том интервале в i-той ГЕП есть подвижная нефть,

Fdpi - напряжение фильтрации (МПа/м).

Возможны два варианта, когда гидродинамические единицы потока с меньшими значениями проницаемости, имеющими суммарно долю порового объема? равную коэффициенту водонасыщенности, считаются водонасыщенными с вязкостью флюида? равной вязкости пластовой газонасыщенной воды, или когда все гидродинамические единицы потока считаются водонасыщенными в пропорции, обратной значениям проницаемости соответствующих гидродинамических единиц потока с учетом их доли в поровом объеме коллектора, а вязкость флюидов принимается равной вязкости пластовой водонефтяной эмульсии в каждой гидродинамической единице потока.

На чертежах на фиг.1 показана статистическая поровая структура коллектора, на фиг.2 - гидродинамическая структура коллектора, на фиг.3 - доля подвижных запасов в поровых каналах, на фиг.4 - динамика извлечения нефти и жидкости по нелинейной гидродинамической модели, а на фиг.5 - динамика коэффициента извлечения нефти КИН и обводненности извлекаемой продукции по нелинейной гидродинамической модели.

Для реализации способа проводится построение статистической поровой, гидродинамической и энергетической структуры горной породы скважины, участка, залежи на базе лабораторных и геофизических исследований фильтрационно-емкостных свойств в расширенном диапазоне давления и линейной скорости, соответственно до 1×10-4 МПа/м и 1×10-3 м/сутки и менее, по номенклатуре и объему, предусмотренному в прототипе.

Определяется поле градиентов давления исходя из сетки добывающих и нагнетательных скважин, значений давления в интервалах вскрытия залежи на начальной стадии разработки и в динамике обводнения скважин в эксплуатации.

Определяется объем подвижных запасов в гидродинамически связанных единицах потока (ГЕП) коллектора, в условиях принятой системы разработки, а также распределения по площади и мощности залежи не извлеченных геологических запасов нефти как в варианте прототипа - «характеристическая скважина-залежь С-3», так и по скважинам на участке залежи.

Применяется нелинейный подход к построению гидродинамической модели залежей с ТрИЗ нефти в условиях статистического, вероятностного характера связи независимых коллекторских характеристик: пористости, проницаемости, напряжения фильтрации.

Представим сложную структуру породы коллекторов в виде совокупности капилляров Пуазейля и учтем потери давления на внешнее трение Fdpi L. Здесь Fdpi - напряжение фильтрации, характеризующее удельную величину потерь энергии на преодоление внешнего трения в i-том идеальном поровом канале диаметром di. В этом приближении коэффициент проницаемости (4) имеет вид (5), а линейное уравнение Дарси (2) переходит в нелинейную форму (6) уравнения Пуазейля-Дарси для линейной (геометрически) модели коллектора.

Принципиальное отличие уравнений фильтрации (2) и (6) состоит в том, что флюид, согласно линейному уравнению Дарси, подвижен при любой величине перепада давления на границах коллектора независимо от величины проницаемости и диаметра поровых каналов. В отличие от линейного закона, как следует из уравнения (6), движение флюида в i-тых поровых каналах коллектора на площади фильтрации Si проницаемостью kпрi возможно лишь при условии (P1-P2) больше Fdpi L. Нелинейное уравнение Пуазейля-Дарси (6) фактически постулирует наличие Гидродинамически связанных Единиц Потока, аналогичных по содержанию с ГЕП, введенными в работе [6. Amaefule, J.О., Altunday, D., Tiab, D., Kersey, D.G., and Keelan, D.K.: "Enhanced Reservoir Description: Using Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals / Wells", SPE 26436 (1993)].

Каждая ГЕП в предлагаемом способе характеризуется:

величиной проницаемости kпрi;

площадью фильтрации Si при коэффициенте пористости kпi;

коэффициентом вытеснения kвтi;

напряжением фильтрации Fdpi;

числом поровых каналов ni с площадью поперечного сечения Si;

водонасыщенностью ni с поровых каналов площадью сечения Si.

Нелинейное уравнение Пуазейля-Дарси (6) согласно (4) и (5) постулирует независимость коэффициента проницаемости от коэффициента пористости.

Учитывая случайный характер распределения размеров поровых каналов, каверн, трещин, их геометрических размеров и независимость параметров ФЕС коллекторов, нелинейное уравнение Пуазейля-Дарси (6) для геометрически линейной модели запишется в виде (7)

При переходе от лабораторных геометрически линейных моделей исследования керна и насыпных моделей коллекторов на реальные месторождения с радиальным полем фильтрации нелинейное уравнение Пуазейля-Дарси (7) принимает вид (8)

где:

Q - дебит пластового флюида (м3/сутки),

t - время фильтрации флюида (сутки),

h - мощность пласта (м),

µ - вязкость флюида (мПа*с),

Rj - радиус питания скважины (м),

ΔRj=Rj-R(j-1) - интервал радиуса питания,

kпрi - коэффициент проницаемости i-той ГЕП (мД),

Wпрi - вероятность наличия на j-том интервале i-той ГЕП проницаемостью kпрi,

Wпi=Si/S - вероятность, что на j-том интервале i-тая ГЕП имеет пористость kпi,

Wij - вероятность того, что на j-том интервале в i-той ГЕП есть подвижная нефть,

Fdpi - напряжение фильтрации (МПа/м).

Независимость параметров ФЕС коллекторов подтверждается результатами многочисленных исследований образцов керна. В таблице 1 для близких значений пористости по данным ООО ЗапСибГЦ [6. Стандартные и специальные литолого-петрофизические исследования керна, отобранного из различных скважин месторождений ОАО «Славнефть-Мегионнефтегаз», ООО ЗапСибГЦ, 2005 г] приведены значения проницаемости по газу и воде.

Динамика извлечения запасов углеводородов и воды определяется на основе нелинейной гидродинамической модели Пуазейля-Дарси (8). Расчеты осуществляются на современных ПВЭМ с использованием программного обеспечения, разработанного, например, заявителем.

Пример

Талинская площадь Красноленинского месторождения, блок 46,

Объект разработки - ЮК10-11

Система разработки - рядная с поддержанием пластового давления,

Средняя площадь питания на 1 скважину - 25 га,

Нефтенасыщенная мощность - 21 м,

Пластовые условия: температура - 99°C, давление - 22.3 МПа.

Характеристика ФЕС горной породы.

Средний коэффициент проницаемости - Кпр=184 мД

Средний коэффициент пористости - Кп=0,16

Коэффициент нефтенасыщенности - Кн=0,85

Остаточный коэффициент нефтенасыщенности - Кон=0,32

Давление насыщения - Ps - 15,6 МПа

Вязкость пластовой нефти µ - 0,46 мПа×с

Объемный коэффициент b - 1,676

Коэффициент сжимаемости Ксж - 2,2×10-3 м3/МПа

Плотность пластовой нефти p - 637 кг/м3

Плотность разгазированной нефти p - 822 кг/м3

КИН Талинской площади Красноленинского месторождения пересматривался ГКЗ неоднократно, понижаясь от значения более 0,4 до текущего утвержденного значения 0,257. По имеющейся информации КИН по состоянию на 1.01.2013 г. не превышает 0,12.

Принципиальная схема применения уравнения нелинейной фильтрации.

В дополнение к имеющимся данным ГИС проводятся определения ФЕС коллектора в области пониженных значений градиентов давлений. Строится поровая, гидродинамическая и энергетическая структура (фиг.1-3).

Выбирается эффективный радиус забоя скважины r0, забойного давления P0 равном или больше Ps и варианты системы разработки запасов С-З: жесткая система ППД на границе радиуса питания скважины, режим истощения пластовой энергии.

В выбранном варианте производится обоснование поля давлений по площади залежи, определяются размеры ГЕП по величине kпрi, связь напряжения фильтрации F и доли подвижных запасов в ГЕП с градиентом давления.

Набор исходных данных вводится в програмный комплекс НГДМ-1, определяется динамика добычи жидкости, нефти, динамика изменения запасов по площади залежи, текущий КИН.

Результаты расчета в жестком режиме поддержания пластового давления (ППД) в упрощенном для наглядности варианте, приведенном в таблице 2, представлены на фиг.4 и 5. На втором году работы скважины в интенсивном режиме поддержания пластового давления (ППД) с начальным дебитом 413 м3/сутки КИН достигает величины 0,141 при обводненности продукции 95% и возросшем до 500 м3 суточном отборе жидкости. На третий год разработки обводненность продукции достигает 99,7% при дебите жидкости 615 м3.

На практике разработка залежей начинается с отбора нефти скважинами в режиме истощения пластовой энергии с последующим переводом части добывающих скважин в нагнетательный фонд согласно проекту разработки. В варианте режима истощения при постоянном забойном давлении за полтора месяца при замкнутой системе пластовое давление должно снизиться на 13%, дебит скважины почти в 2 раза при одновременном снижении на 30% доли подвижных запасов нефти. Аналогичная ситуация имеет место при незамкнутой реальной системе. С ростом зоны питания до 1500 м дебит скважины снизится на порядок, а доля подвижных запасов на площади питания составит около 12%.

Таким образом, предложенный способ в условиях нелинейной фильтрации дает более надежную оценку добычных возможностей коллектора с трудноизвлекаемыми запасами нефти по сравнению с известными линейными гидродинамическими способами.


СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИКИ ИЗВЛЕЧЕНИЯ ТРУДНОИЗВЛЕКАЕМЫХ ЗАПАСОВ НЕФТИ
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИКИ ИЗВЛЕЧЕНИЯ ТРУДНОИЗВЛЕКАЕМЫХ ЗАПАСОВ НЕФТИ
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИКИ ИЗВЛЕЧЕНИЯ ТРУДНОИЗВЛЕКАЕМЫХ ЗАПАСОВ НЕФТИ
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИКИ ИЗВЛЕЧЕНИЯ ТРУДНОИЗВЛЕКАЕМЫХ ЗАПАСОВ НЕФТИ
СПОСОБ ОПРЕДЕЛЕНИЯ ДИНАМИКИ ИЗВЛЕЧЕНИЯ ТРУДНОИЗВЛЕКАЕМЫХ ЗАПАСОВ НЕФТИ
Источник поступления информации: Роспатент

Показаны записи 1-5 из 5.
20.01.2014
№216.012.982b

Способ определения коэффициента извлечения нефти при нелинейной фильтрации

Изобретение относится к разработке углеводородных залежей сложного геологического строения с неоднородными, в том числе низко проницаемыми коллекторами. Техническим результатом является повышение точности, надежности и значительное уменьшение времени определения значения коэффициента извлечения...
Тип: Изобретение
Номер охранного документа: 0002504654
Дата охранного документа: 20.01.2014
20.04.2015
№216.013.441c

Способ определения молекулярных масс и плотностей углеводородных фракций пластовых флюидов

Изобретение относится к области измерительной техники и может быть использовано для исследования физических и физико-химических свойств пластовых углеводородных систем в исследовательской практике, в нефтяной и других отраслях промышленности. Способ определения молекулярных масс и плотностей...
Тип: Изобретение
Номер охранного документа: 0002548934
Дата охранного документа: 20.04.2015
23.02.2019
№219.016.c686

Способ выделения нефтегазоносных интервалов

Изобретение относится к способам промыслово-геофизических исследований скважин и может быть использовано для выделения в геологическом разрезе скважины перспективных интервалов на нефть и газ. Способ определения нефтегазонасыщенных интервалов включает отбор шлама и растворенного в буровом...
Тип: Изобретение
Номер охранного документа: 0002403385
Дата охранного документа: 10.11.2010
20.03.2019
№219.016.ea12

Способ разработки нефтяной залежи (варианты)

Изобретение относится к разработке углеводородных залежей сложного геологического строения с неоднородными, в т.ч. низкопроницаемыми коллекторами. Обеспечивает создание в пласте ниже давления насыщения режима пенного течения нефтегазовой смеси, обеспечивающего максимальный коэффициент...
Тип: Изобретение
Номер охранного документа: 02162935
Дата охранного документа: 10.02.2001
09.06.2019
№219.017.7c8f

Способ определения дебита продукции скважин

Изобретение относится к области измерения количества жидкости и газа в газожидкостной смеси. Оно может быть использовано как в нефтедобывающей промышленности, так и в тех сферах производства, где необходимо измерить количество жидкости и газа в двухфазном потоке. Обеспечивает повышение...
Тип: Изобретение
Номер охранного документа: 0002325520
Дата охранного документа: 27.05.2008
Показаны записи 1-9 из 9.
20.01.2014
№216.012.982b

Способ определения коэффициента извлечения нефти при нелинейной фильтрации

Изобретение относится к разработке углеводородных залежей сложного геологического строения с неоднородными, в том числе низко проницаемыми коллекторами. Техническим результатом является повышение точности, надежности и значительное уменьшение времени определения значения коэффициента извлечения...
Тип: Изобретение
Номер охранного документа: 0002504654
Дата охранного документа: 20.01.2014
20.04.2015
№216.013.441c

Способ определения молекулярных масс и плотностей углеводородных фракций пластовых флюидов

Изобретение относится к области измерительной техники и может быть использовано для исследования физических и физико-химических свойств пластовых углеводородных систем в исследовательской практике, в нефтяной и других отраслях промышленности. Способ определения молекулярных масс и плотностей...
Тип: Изобретение
Номер охранного документа: 0002548934
Дата охранного документа: 20.04.2015
23.02.2019
№219.016.c686

Способ выделения нефтегазоносных интервалов

Изобретение относится к способам промыслово-геофизических исследований скважин и может быть использовано для выделения в геологическом разрезе скважины перспективных интервалов на нефть и газ. Способ определения нефтегазонасыщенных интервалов включает отбор шлама и растворенного в буровом...
Тип: Изобретение
Номер охранного документа: 0002403385
Дата охранного документа: 10.11.2010
09.05.2019
№219.017.4c07

Способ определения газового фактора нефти

Изобретение относится к области добычи нефти и может быть использовано для измерения количества газа, извлекаемого вместе с нефтью, а также для оперативного контроля и регулирования процесса выработки запасов нефти и газа. Техническим результатом изобретения является повышение точности способа...
Тип: Изобретение
Номер охранного документа: 0002348805
Дата охранного документа: 10.03.2009
09.06.2019
№219.017.7c8f

Способ определения дебита продукции скважин

Изобретение относится к области измерения количества жидкости и газа в газожидкостной смеси. Оно может быть использовано как в нефтедобывающей промышленности, так и в тех сферах производства, где необходимо измерить количество жидкости и газа в двухфазном потоке. Обеспечивает повышение...
Тип: Изобретение
Номер охранного документа: 0002325520
Дата охранного документа: 27.05.2008
29.06.2019
№219.017.9d78

Способ определения дебита продукции скважин

Изобретение относится к области измерения количества жидкости и газа в газожидкостной смеси. Оно может быть использовано как в нефтедобывающей промышленности, так и в тех сферах производства, где необходимо измерить количество жидкости и газа в двухфазном потоке. Обеспечивает повышение...
Тип: Изобретение
Номер охранного документа: 0002355883
Дата охранного документа: 20.05.2009
31.07.2020
№220.018.3ab9

Резьбовое замковое коническое соединение бурильных труб и способ увеличения его несущей способности и ресурса работы

Изобретение относится к изделиям нефтяного машиностроения и может быть использовано при бурении глубоких нефтяных и газовых скважин, в том числе с горизонтальными участками их стволов. Резьбовое замковое коническое соединение бурильных труб включает объединенные совпадающей осью вращения...
Тип: Изобретение
Номер охранного документа: 0002728105
Дата охранного документа: 28.07.2020
15.05.2023
№223.018.5d43

Разъединитель бурильной колонны

Изобретение относится к изделиям нефтяного машиностроения. Технический результат – проводка стволов скважин в осложненных условиях и успешное разъединение бурильных труб с разъединительной бурильной колонной (РБК) в аварийных ситуациях. Разъединитель бурильной колонны включает пустотелый...
Тип: Изобретение
Номер охранного документа: 0002757481
Дата охранного документа: 18.10.2021
15.05.2023
№223.018.5d44

Разъединитель бурильной колонны

Изобретение относится к изделиям нефтяного машиностроения. Технический результат – проводка стволов скважин в осложненных условиях и успешное разъединение бурильных труб с разъединительной бурильной колонной (РБК) в аварийных ситуациях. Разъединитель бурильной колонны включает пустотелый...
Тип: Изобретение
Номер охранного документа: 0002757481
Дата охранного документа: 18.10.2021
+ добавить свой РИД