×
10.07.2015
216.013.60d3

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ВНЕШНЕГО ОБЪЕМА ЦИЛИНДРИЧЕСКОГО ПОЛОГО ИЗДЕЛИЯ

Вид РИД

Изобретение

№ охранного документа
0002556329
Дата охранного документа
10.07.2015
Аннотация: Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является упрощение процедуры обработки информационных сигналов о геометрических параметрах цилиндрического изделия. Устройство для определения внешнего объема цилиндрического полого изделия содержит первый источник излучения и первый приемник излучения. Дополнительно введены второй источник излучения, второй, третий и четвертый приемники излучения, первый и второй корреляторы, вычислитель, первая и вторая пара электродов для приложения электрических полей к контролируемому изделию. При этом выход первого приемника соединен с первым входом первого коррелятора, второй вход которого подключен к выходу четвертого приемника, выход третьего приемника соединен с первым входом второго коррелятора, второй вход которого подключен к выходу второго приемника, выход первого коррелятора соединен с первым входом вычислителя, второй вход которого подключен к выходу второго коррелятора, выход вычислителя является выходом устройства. 1 ил.
Основные результаты: Устройство для определения внешнего объема цилиндрического полого изделия, содержащее первый источник излучения и первый приемник излучения, отличающееся тем, что в него введены второй источник излучения, второй, третий и четвертый приемники излучения, первый и второй корреляторы, вычислитель, первая и вторая пара электродов для приложения электрических полей к контролируемому изделию, при этом выход первого приемника соединен с первым входом первого коррелятора, второй вход которого подключен к выходу четвертого приемника, выход третьего приемника соединен с первым входом второго коррелятора, второй вход которого подключен к выходу второго приемника, выход первого коррелятора соединен с первым входом вычислителя, второй вход которого подключен к выходу второго коррелятора, а выход вычислителя является выходом устройства.

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известно устройство измерения формы цилиндра лазерным доплеровским методом (Белоусова О.П., Белоусов П.П., Белоусов П.Я. «Измерение формы цилиндра лазерным доплеровским методом». Материалы 11-ой Международной научно-технической конференции «Оптические методы исследования потоков (ОМИП)», Москва, 27-30 июня 2011 г., Издательский дом МЭИ, 2011 г.; стр.9). Оптический метод измерения формы цилиндра, описанный в этом техническом решении, основан на измерении линейной скорости цилиндра, катящегося по ровным направляющим опорам. Согласно этому методу, определение зависимости радиуса цилиндра от полярного угла дает возможность измерить малые отклонения формы направляющей от круглой. Устройство предназначено для диагностики формы круглых объектов в механике.

Недостатком этого известного устройства является сложность измерения доплеровской частоты, связанной с линейной скоростью катящегося по ровным направляющим опорам цилиндра при его вибрации.

Наиболее близким техническим решением к предлагаемому является принятое автором за прототип устройство для бесконтактного измерения геометрических параметров цилиндрических изделий (патент №2178140, МПК G01B 11/30, 10.01.2002). В этом устройстве, содержащем источник лазерного излучения, фотоприемник, измерители диаметров и высоты, буферный запоминающий блок, блоки аналого-цифрового преобразователя и цифровой обработки, соединенные последовательно с компьютером, при облучении поверхности контролируемого изделия, принимается отраженный от поверхности изделия сигнал и после обработки этого сигнала в компьютере с учетом трех измерений диаметра и отклонения прямолинейности, а также одного измерения диаметра изделия, выдается информация о геометрическом параметре цилиндрического изделия.

Недостатком данного устройства можно считать сложность процедуры обработки информационных сигналов о геометрических параметрах контролируемого изделия.

Техническим результатом заявляемого решения является упрощение процедуры обработки информационных сигналов о геометрических параметрах цилиндрического изделия.

Технический результат достигается тем, что устройство для определения внешнего объема цилиндрического полого изделия содержит первый источник излучения и первый приемник излучения, введены второй источник излучения, второй, третий и четвертый приемники излучения, первый и второй корреляторы, вычислитель, первая и вторая пара электродов для приложения электрических полей к контролируемому изделию, причем выход первого приемника соединен с первым входом первого коррелятора, второй вход которого подключен к выходу четвертого приемника, выход третьего приемника соединен с первым входом второго коррелятора, второй вход которого подключен к выходу второго приемника, выход первого коррелятора соединен с первым входом вычислителя, второй вход которого подключен к выходу второго коррелятора, выход вычислителя является выходом устройства.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что при двойной искусственной поляризации цилиндрического полого изделия измерение времен отставания двух пар ортогонально поляризованных электромагнитных волн, дающее возможность вычислить одновременно диаметр и высоту контролируемого изделия, обеспечивает определение внешнего объема цилиндра.

Наличие в заявляемом способе совокупности перечисленных существующих признаков позволяет решить задачу определения внешнего объема цилиндрического полого изделия на основе одновременного измерения высоты и диаметра цилиндра с дальнейшей несложной корреляционной обработкой информативных сигналов, полученных при облучении искусственно поляризованного изделия двумя парами ортогонально направленными электромагнитными волнами с желаемым техническим результатом, т.е. упрощением процедуры обработки информационных сигналов о геометрических параметрах цилиндрического изделия.

На чертеже представлена функциональная схема предлагаемого устройства.

Данное устройство содержит первый 1 и второй 2 электроды, первый 3 и второй 4 источники излучения, третий 5 и четвертый 6 электроды, первый 7, второй 8, третий 9 и четвертый 10 приемники излучения, первый 11 и второй 12 корреляторы, вычислитель 13. На чертеже цифрой 14 обозначено цилиндрическое изделие.

Устройство работает следующим образом. Предварительно неанизотропное цилиндрическое изделие, высота которого больше диаметра, помещают в двойное электрическое поле, образованное посредством приложения напряжений к первому 1, второму 2, третьему 5 и четвертому 6 электродам соответственно. В результате воздействия на изделие таких двух электрических полей с взаимно перпендикулярными силовыми линиями изделие приобретает искусственную двойную анизотропию. После этого электромагнитными волнами первого 3 и второго 4 источников излучения облучают цилиндрическое изделие 14. При этом зондирующую волну с выхода источника 3 направляют по линии высоты цилиндрического изделия, а волну с выхода источника 4 - по линии диаметра цилиндрического изделия. Эти волны благодаря наличию двойной искусственной анизотропии в изделии поляризуются ортогонально. Другими словами, первым приемником 7 принимают поляризованную волну, направленную параллельно силовым линиям электрического поля (первого электрического поля), образованного электродами 1 и 2, а поляризованную волну, направленную перпендикулярно силовым линиям первого электрического поля, - третьим приемником 9. Аналогично, вторым приемником 8 принимают поляризованную волну, направленную параллельно силовым линиям электрического поля (второго электрического поля), образованного электродами 5 и 6, а поляризованную волну, направленную перпендикулярно силовым линиям второго электрического поля, - четвертым приемником 10. В рассматриваемом случае ввиду двойной анизотропии поляризованные волны, улавливаемые приемниками 7 и 8, будут распространяться через изделие с одной скоростью, а поляризованные волны, улавливаемые приемниками 9 и 10,Ю - другой скоростью. В силу этого для скоростей распространения поляризованных волн, улавливаемых приемниками 7 и 8, можно написать

υп=c/nΔn,

а для скоростей распространения поляризованных волн, улавливаемых приемниками 9 и 10, можно написать

υo=c/n.

Здесь υп и υo - скорости распространения поляризованных волн, улавливаемых приемниками 7, 8, 9 и 10 соответственно; с - скорость распространения электромагнитной волны в свободном пространстве, n - показатель преломления волны при отсутствии анизотропии (показатель преломления среды для волны с плоскостью поляризации, ортогональной силовым линиям поля зондирующей волны), определяемый диэлектрической проницаемостью контролируемого вещества без учета его анизотропных свойств, Δn - показатель преломления волны (показатель преломления среды для волны с плоскостью поляризации, параллельной силовым линиям поля зондирующей волны), связанный с диэлектрической проницаемостью вещества из-за его анизотропных свойств.

Из анализа выше приведенных выражений видно, что волны, улавливаемые, приемниками 7 и 8 отстают в скорости распространения волн, улавливаемых приемниками 9 и 10.

В данном случае для времен распространения поляризованных волн, направленных по линии высоты и диаметра цилиндрического изделия и улавливаемых приемниками 7 и 8, можно записать

t1=HnΔn/c;

t2=dnΔn/с,

где Н и d - высота и диаметр, например, диэлектрического цилиндрического полого изделия, t1 - время распространения волны, улавливаемой приемником 7, t2 - волны, улавливаемой приемником 8. Здесь для показателя преломления Δn принимается

Δn=rn3Eвн/2,

здесь r - линейный электрооптический эффект, Евн - напряженность внешнего электрического поля. Аналогичным образом для времен распространения волн, улавливаемых приемниками 9 и 10, можно принимать

t3=Hn/с;

t4=dn/c,

где t3 и t4 - время распространения волн по линиям высоты и диаметра цилиндрического изделия, улавливаемых соответственно приемниками 9 и 10.

Из сравнения t1=HnΔn/c и t3=Hn/с видно, что время (t1) распространения по линии высоты цилиндра поляризованной параллельно силовым линиям первого электрического поля волны превосходит время (t3) распространения по линии высоты цилиндра поляризованной перпендикулярно силовым линиям второго электрического поля волны. Аналогично, при сравнении t2=dnΔn/c и t4=dn/c - время (t2) распространения по линии диаметра цилиндра поляризованной параллельно силовым линиям второго электрического поля волны - время (t4) распространения по линии диаметра цилиндра поляризованной перпендикулярно силовым линиям первого электрического поля волны. В рассматриваемом случае для вычисления временных отставаний указанных поляризованных волн можно использовать взаимокорреляционые свойства двух сигналов. Согласно этой теории, опережающие поляризованные волны будут задерживаться во времени относительно отстающих поляризованных волн. В силу этого, если обозначить время задержки поляризованной волны с временем распространения t3=Hn/с τ1, то после корреляционной обработки этой волны и поляризованной волны с временем распространения t1=HnΔn/c, для τ1 можно записать

τ1=(HnΔn-Hn)/c.

Отсюда можно определить высоту цилиндрического диэлектрического изделия как

H=τ1C/(nΔn-1).

Таким образом, после корреляционной обработки двух сигналов, соответствующих двум поляризованным волнам, путем измерения времени задержки опережающего сигнала можно судить о величине высоты контролируемого изделия. Аналогичным образом, для времени задержки поляризованной волны с временем распространения t4=dn/c τ2, после корреляционный обработки этой волны с поляризованной волной с временем распространения t2=nΔn/c, можно записать

τ2=(dnΔn-dn)/c.

Отсюда для диаметра цилиндрического диэлектрического изделия можно принимать

d=τ2c/(nΔn-1).

Итак, при постоянных значениях r, с, n, Δn и напряженностей двух электрических полей посредством одновременного измерения диаметра и высоты цилиндрического диэлектрического изделия 14 можно вычислить внешний объем этого изделия.

В данном техническом решении для оценки времени задержки τ1, выходные сигналы приемников 7 и 9, подают на первый и второй входы первого 11 коррелятора соответственно, а τ2, выходные сигналы приемников 8 и 10, - на первый и второй входы второго коррелятора 12 соответственно. Выходные сигналы первого и второго корреляторов, соответствующие временам задержки τ1 и τ2, поступают на первый и второй входы вычислителя 13. Здесь отображается информация о величине внешнего объема цилиндрического полого диэлектрического изделия.

Согласно принципу действия предлагаемого технического решения, местом ввода электромагнитных волн в контролируемое изделие может служить край изделия таким образом, чтобы возникающие ортогонально поляризованные составляющие вводимых волн распространялись по линиям высоты и диаметра цилиндрического изделия. Кроме того, необходимым условием при приобретении равномерной двойной анизотропии контролируемым изделием является идентичность параметров двух электрических полей. Характеристики двух источников и четырех приемников излучения также должны быть идентичными.

Таким образом, согласно предлагаемому устройству на основе одновременного измерения высоты и диаметра цилиндра с последующей несложной корреляционной обработкой сигналов, связанных с ними, можно обеспечить упрощение процедуры обработки результатов измерения внешнего объема цилиндрического полого изделия.

Устройство для определения внешнего объема цилиндрического полого изделия, содержащее первый источник излучения и первый приемник излучения, отличающееся тем, что в него введены второй источник излучения, второй, третий и четвертый приемники излучения, первый и второй корреляторы, вычислитель, первая и вторая пара электродов для приложения электрических полей к контролируемому изделию, при этом выход первого приемника соединен с первым входом первого коррелятора, второй вход которого подключен к выходу четвертого приемника, выход третьего приемника соединен с первым входом второго коррелятора, второй вход которого подключен к выходу второго приемника, выход первого коррелятора соединен с первым входом вычислителя, второй вход которого подключен к выходу второго коррелятора, а выход вычислителя является выходом устройства.
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ВНЕШНЕГО ОБЪЕМА ЦИЛИНДРИЧЕСКОГО ПОЛОГО ИЗДЕЛИЯ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 282.
10.08.2015
№216.013.69c4

Способ измерения параметров сжиженного газа в трехфазном состоянии

Изобретение относится к электрическим методам контроля и может быть использовано для измерения параметров сжиженных газов, включая криогенные жидкости, в трехфазном состоянии (газовом, жидком и твердом). Оно может быть использовано также для измерения положения границ раздела и диэлектрической...
Тип: Изобретение
Номер охранного документа: 0002558629
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69c5

Способ измерения уровня вещества в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения уровня вещества (жидкости, сыпучего вещества), находящегося в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим...
Тип: Изобретение
Номер охранного документа: 0002558630
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69c6

Бесконтактное радиоволновое устройство для определения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, в частности для измерения уровня воды, нефтепродуктов, сжиженных газов и других жидкостей. Предлагается устройство для измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002558631
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b94

Устройство для получения электроэнергии на основе использования морских волн

Изобретение относится к области возобновляемой энергетики, а именно к преобразованию энергии волн открытых водоемов в электроэнергию. Устройство для получения электроэнергии на основе использования морских волн содержит преобразователь энергии морских волн, выполненный в виде набора...
Тип: Изобретение
Номер охранного документа: 0002559098
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c06

Способ использования морских волн для получения электроэнергии

Изобретение относится к области возобновляемой энергетики, а именно к преобразованию энергии волн открытых водоемов в электроэнергию. Способ использования морских волн для получения электроэнергии заключается в том, что осуществляют концентрацию фронта волны за счет пропускания воды через набор...
Тип: Изобретение
Номер охранного документа: 0002559212
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6df8

Способ обработки функции автокорреляции для измерения основного тона речевого сигнала

Изобретение относится к средствам обработки функции автокорреляции для измерения основного тона речевого сигнала и может быть использовано в области обработки сигналов, в системах распознавания речи. Технический результат заключается в повышении надежности измерения частоты основного тона...
Тип: Изобретение
Номер охранного документа: 0002559710
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.7203

Бесконтактный радиоволновый способ измерения частоты вращения

Изобретение относится к измерительной технике, представляет собой бесконтактный радиоволновый способ измерения частоты вращения и может быть использовано для высокоточного определения частоты вращения. При реализации способа в сторону объекта вращения по нормали к его оси вращения излучают...
Тип: Изобретение
Номер охранного документа: 0002560757
Дата охранного документа: 20.08.2015
10.10.2015
№216.013.81c9

Сверхвысокочастотный способ определения плотности древесины

Предлагаемое техническое решение относится к измерительной технике. Сверхвысокочастотный способ определения плотности древесины включает зондирование образца древесины электромагнитными волнами. Затем принимают пару ортогонально поляризованных волн, вычисляют скорости распространения этих волн...
Тип: Изобретение
Номер охранного документа: 0002564822
Дата охранного документа: 10.10.2015
10.11.2015
№216.013.8bfa

Способ цифрового измерения электрических величин

Изобретение относится к измерительной технике. Способ включает преобразование измеряемой электрической величины и отсчет измеренной электрической величины. При этом возбуждают открытый резонатор электромагнитными колебаниями, воздействуют преобразованной электрической величиной на открытый...
Тип: Изобретение
Номер охранного документа: 0002567441
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8bfc

Бесконтактное радиоволновое устройство для измерения частоты вращения

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения частоты вращения. Бесконтактное радиоволновое устройство измерения частоты вращения, содержащее генератор электромагнитных волн фиксированной частоты, направленный ответвитель, циркулятор,...
Тип: Изобретение
Номер охранного документа: 0002567443
Дата охранного документа: 10.11.2015
Показаны записи 81-90 из 191.
10.08.2015
№216.013.69c4

Способ измерения параметров сжиженного газа в трехфазном состоянии

Изобретение относится к электрическим методам контроля и может быть использовано для измерения параметров сжиженных газов, включая криогенные жидкости, в трехфазном состоянии (газовом, жидком и твердом). Оно может быть использовано также для измерения положения границ раздела и диэлектрической...
Тип: Изобретение
Номер охранного документа: 0002558629
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69c5

Способ измерения уровня вещества в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения уровня вещества (жидкости, сыпучего вещества), находящегося в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим...
Тип: Изобретение
Номер охранного документа: 0002558630
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69c6

Бесконтактное радиоволновое устройство для определения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, в частности для измерения уровня воды, нефтепродуктов, сжиженных газов и других жидкостей. Предлагается устройство для измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002558631
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b94

Устройство для получения электроэнергии на основе использования морских волн

Изобретение относится к области возобновляемой энергетики, а именно к преобразованию энергии волн открытых водоемов в электроэнергию. Устройство для получения электроэнергии на основе использования морских волн содержит преобразователь энергии морских волн, выполненный в виде набора...
Тип: Изобретение
Номер охранного документа: 0002559098
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c06

Способ использования морских волн для получения электроэнергии

Изобретение относится к области возобновляемой энергетики, а именно к преобразованию энергии волн открытых водоемов в электроэнергию. Способ использования морских волн для получения электроэнергии заключается в том, что осуществляют концентрацию фронта волны за счет пропускания воды через набор...
Тип: Изобретение
Номер охранного документа: 0002559212
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6df8

Способ обработки функции автокорреляции для измерения основного тона речевого сигнала

Изобретение относится к средствам обработки функции автокорреляции для измерения основного тона речевого сигнала и может быть использовано в области обработки сигналов, в системах распознавания речи. Технический результат заключается в повышении надежности измерения частоты основного тона...
Тип: Изобретение
Номер охранного документа: 0002559710
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.7203

Бесконтактный радиоволновый способ измерения частоты вращения

Изобретение относится к измерительной технике, представляет собой бесконтактный радиоволновый способ измерения частоты вращения и может быть использовано для высокоточного определения частоты вращения. При реализации способа в сторону объекта вращения по нормали к его оси вращения излучают...
Тип: Изобретение
Номер охранного документа: 0002560757
Дата охранного документа: 20.08.2015
10.10.2015
№216.013.81c9

Сверхвысокочастотный способ определения плотности древесины

Предлагаемое техническое решение относится к измерительной технике. Сверхвысокочастотный способ определения плотности древесины включает зондирование образца древесины электромагнитными волнами. Затем принимают пару ортогонально поляризованных волн, вычисляют скорости распространения этих волн...
Тип: Изобретение
Номер охранного документа: 0002564822
Дата охранного документа: 10.10.2015
10.11.2015
№216.013.8bfa

Способ цифрового измерения электрических величин

Изобретение относится к измерительной технике. Способ включает преобразование измеряемой электрической величины и отсчет измеренной электрической величины. При этом возбуждают открытый резонатор электромагнитными колебаниями, воздействуют преобразованной электрической величиной на открытый...
Тип: Изобретение
Номер охранного документа: 0002567441
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8bfc

Бесконтактное радиоволновое устройство для измерения частоты вращения

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения частоты вращения. Бесконтактное радиоволновое устройство измерения частоты вращения, содержащее генератор электромагнитных волн фиксированной частоты, направленный ответвитель, циркулятор,...
Тип: Изобретение
Номер охранного документа: 0002567443
Дата охранного документа: 10.11.2015
+ добавить свой РИД