×
10.07.2015
216.013.6042

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ГЕТЕРОСТРУКТУРЫ ОКСИД ТИТАНА - СИЛИЦИД ТИТАНА НА МОНОКРИСТАЛЛИЧЕСКОЙ КРЕМНИЕВОЙ ПОДЛОЖКЕ, ПОКРЫТОЙ НАНОКРИСТАЛЛИЧЕСКОЙ ТИТАНОВОЙ ПЛЕНКОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано при создании полупроводниковых приборов. Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой, включает проведение фотонной обработки упомянутой подложки излучением ксеноновых ламп с диапазоном излучения 0,2-1,2 мкм в атмосфере воздуха пакетом импульсов длительностью 10 с в течение 2,0-2,2 с при дозе энергии в интервале 220-240 Дж·смдля активации реакций оксидирования и силицидобразования при формировании гетероструктуры оксид титана - силицид титана. Обеспечивается упрощение технологии, значительное сокращение времени изготовления изделия, содержащего кремниевую подложку с гетероструктурой оксид титана - силицид титана и снижается температурная нагрузка на кремниевую подложку. 2 ил., 2 пр.
Основные результаты: Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой, отличающийся тем, что проводят фотонную обработку упомянутой подложки излучением ксеноновых ламп с диапазоном излучения 0,2-1,2 мкм в атмосфере воздуха пакетом импульсов длительностью 10 с в течение 2,0-2,2 с при дозе энергии в интервале 220-240 Дж·смдля активации реакций оксидирования и силицидобразования при формировании гетероструктуры оксид титана - силицид титана.

Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано при создании полупроводниковых приборов.

Известны различные способы формирования слоев диоксида титана на подложках путем термического оксидирования пленок титана, где источником атомов окислителя является газовая среда [1, 2]. Также известны различные способы формирования слоев силицидов титана на подложке кремния путем термического окисления пленок титана, где источником атомов окислителя является подложка [3-6]. Что касается формирования пленочных гетероструктур диоксид титана-силицид титана на подложке кремния, то предложенный в работе [7] способ формирования гетероструктуры TiO2 / TiSi2 путем термического оксидирования пленки TiSi2 на подложке монокристаллического кремния не позволяет получить однофазную пленку TiO2, а способ, предложенный в работе [8], основанный на твердофазной реакции разложения пленки TiO2 в контакте с подложкой Si - сплошную пленку TiSi2. К недостаткам последнего способа следует отнести и невозможность получения предельной фазы силицида TiSi2(C54), обусловленную ингибирующим влиянием кислорода на кинетику силицидообразования [9].

Наиболее близким аналогом к заявляемому решению является способ получения гетероструктуры TiO2 / TiSi2, предложенный в работе [10]. Этот способ включает следующие стадии:

размещение кремниевой подложки в вакуумной камере;

очистка кремниевой подложки от естественного оксида;

формирование методом магнетронного распыления нанокристаллической пленки титана на поверхности пластины кремния;

синтез гетероструктуры TiO2 / TiSi2 происходит в результате активированных термической обработкой в диапазоне температур от 700 до 1000°C в течение 30 мин реакций оксидирования пленки Ti со стороны свободной поверхности и силицидобразования с межфазной границы Ti/Si.

Основным недостатком этого способа является относительно высокая температура и большая длительность процесса формирования гетероструктуры, а также, как и в способе [8], невозможность получения фазы силицида TiSi2(C54), характеризующейся наивысшей электропроводностью.

Изобретение направлено на снижение температурной нагрузки на кремниевую подложку, сокращение времени процесса. Это достигается тем, что проводят фотонную обработку исходной гетероструктуры Si/Ti излучением ксеноновых ламп с диапазоном излучения 0,2-1,2 мкм в атмосфере воздуха пакетом импульсов длительностью 10-2 с в течение 2,0-2,2 с при дозе энергии в интервале 220-240 Дж·см-2 для активации реакций оксидирования и силицидобразования при формировании гетероструктуры оксид титана - силицид титана. Снижение температурной нагрузки происходит за счет уменьшения времени обработки и локализации излучения в приповерхностном слое металла.

Способ реализуется следующим образом.

Формирование гетероструктуры TiO2 / TiSi2 / Si производили на модернизированной установке импульсной фотонной обработки УОЛП-1. Исходную гетероструктуру готовили в процессе магнетронного распыления титановой мишени и нанесения пленки толщиной около 0,4 мкм на поверхность монокристаллической пластины кремния толщиной 450 мкм. Гетероструктуру помещали в рабочую камеру параллельно плоскости, в которой расположены лампы. Импульсную фотонную обработку проводили в атмосфере воздуха или кислорода в течение 2,0-2,2 с. При этом плотность энергии излучения, поступающего на образец (ЕИ), составляет 220-240 Дж·см-2.

В результате реакции кислорода с титаном образуется слой диоксида титана, а в результате реакции между титаном и кремнием образуется слой силицида титана. В указанном интервале дозы энергии излучения в атмосфере воздуха при давлении 100 кПа формируется гетероструктура, в которой толщина слоя силицида и слоя оксида близки по величине.

Пример 1. В качестве подложки использовали пластину монокристаллического кремния марки КДБ-10 ориентации (111) диаметром 100 мм. Перед конденсацией Ti поверхность кремния очищали химическим травлением в растворе плавиковой кислоты и промывкой в дистиллированной воде. Из рабочей камеры с помощью вакуумной системы откачивали воздух до получения давления 5·10-3 Па. После откачки в камеру напускали аргон до достижения давления в камере 5,3·10-1 Па. После достижения необходимого давления проводили очистку поверхности подложки ионным пучком. Затем на поверхность ненагретой подложки в процессе магнетронного распыления или электронно-лучевого испарения в сверхвысоком вакууме не хуже 10-5 Па наносили пленку титана. Для предотвращения загрязнения подложки и пленки углеродом откачка вакуумной камеры установки осуществляли безмасляными средствами. Исходную гетероструктуру, представляющую собой пластину монокристаллического кремния толщиной 450 мкм с пленкой титана толщиной около 0,4 мкм, помещали в рабочую камеру установки. Фотонную обработку проводили в атмосфере воздуха при давлении 100 кПа в течение 2,0 с, что соответствовало дозе поступившего на образец излучения 220 Дж·см-2. После обработки образец извлекали из камеры и исследовали фазовый состав методом рентгеновской дифрактометрии на приборе СУР-01 «РЕНОМ» (CuKα излучение). Исследование структуры проводили на электронно-ионном сканирующем микроскопе Quanta 3D и просвечивающем электронном микроскопе Philips ЕМ-430 ST.

Установлено, что исходные пленки Ti имеют нанокристаллическую зеренную структуру с сильно выраженной текстурой <0001>, параметры кристаллической решетки соответствовали содержанию до 16% кислорода.

На рис. 1 приведены рентгеновская дифрактограмма (а), РЭМ-изображение поперечного среза в отраженном ионном пучке (б) и РЭМ-изображение свободной поверхности во вторичных электронах (в) гетероструктуры TiO2-TiSi2-Si, сформированной в течение 2,0 с, ЕИ=220 Дж·см-2 на воздухе.

Анализ дифрактограммы показал, что фотонная обработка исходной гетероструктуры приводит к образованию гетероструктуры, состоящей из смеси оксидов титана: TiO2(Р), TiO2(А) и TiO, и смеси двух модификаций конечной фазы силицида титана TiSi2(C49) и TiSi2(C54). На дифрактограмме в области малых углов наблюдается увеличение фона, свидетельствующее о содержании аморфной фазы. При этом установлено, что фазы TiO2(Р) и TiSi2(C54) являются преобладающими из кристаллических фаз.

Из РЭМ-изображения поперечного среза следует, что гетероструктура состоит из трех слоев: верхний слой - диоксид титана, имеет анизотропную структуру, ниже идет слой диоксида с более дисперсной структурой, причем на границе этих слоев выявляются поры. Слой под оксидными слоями, контактирующий с кремнием, соответствует смеси двух силицидных фаз: TiSi2(C49) и TiSi2(C54).

Пример 2. Пример осуществляется аналогично примеру 1. В этом примере плотность энергии излучения, поступающего на образец, составляет 240 Дж·см-2.

На рис. 2 приведена рентгеновская дифрактограмма синтезированной гетероструктуры. Из нее следует, что гетероструктура состоит из фаз: TiO2, TiSi2(C54) и Si. В результате фотонной обработки формируется слоевая гетероструктура: нижний слой - дисилицид титана структурного типа С54, контактирует с подложкой кремния, верхний слой - диоксид титана в модификации рутила. Тем самым получено изделие, представляющее собой гетероструктуру TiO2-TiSi2(C54)-Si.

Реализация предлагаемого способа позволяет получить изделия, состоящие из кремниевой подложки и сформированной гетероструктуры TiO2-TiSi2(C54). В сравнении с известными способами предложенное техническое решение обеспечивает снижение температурной нагрузки на кремниевую подложку, сокращение времени процесса при изготовлении изделия, что позволяет избежать протекания негативных процессов, активируемых продолжительным высокотемпературным нагревом.

Источники информации

1. Патент RU 2369663, МПК С23С 8/10, 2009; Бай А.С., Лайнер Д.И., Слесарева Е.Н., Цыпин М.И. Окисление титана и его сплавов. М: Металлургия, 1970.

2. Zhang Y., Ma X., Chen P., Yang D. Crystallization behaviors of TiO2 films derived from thermal oxidation of evaporated and sputtered titanium films // J. of Alloys and Compounds. 2009.- V.480.- No. 2. - P. 938-941.

3. Поут Дж., Ту К., Мейер Дж. (ред.). Тонкие Пленки - Взаимная Диффузия и Реакции // М., Мир, 1982. - 576 с.

4. Мьюрарка С.П. Силициды для БИС. М.: Мир, 1986. - 175 с.

5. Barbarini Е., Guastella S., Pirri C.F. Furnace annealing effects in the formation of titanium silicide Schottky barriers // Advanced Thermal Processing of Semiconductors (RTP), 2010 18th International Conference on Sept. 28 2010-Oct. 1 2010.- P. 119-122.

6. V.A. Pilipenko, V.V. Molofeev, V.N. Ponomar′, A.N. Mikhnyuk, V.A. Gorushko. Modeling of Diffusion Synthesis of Titanium Disilicide // Journal of Engineering Physics and Thermophysics 2005.- V.78. - No. 3. - P.610-615.

7. G.J. Huang, L.J. Chen Investigation of the oxidation kinetics of C54-TiSi2 on (001)Si by transmission electron microscopy // J. Appl. Phys. 1992.- V.72.-P.3143-3150.

8. G.J. Yong, Rajeswari M. Kolagani, S. Adhikari, W. Vanderlinde, Y. Liang, K. Muramatsu, S. Friedrich. Thermal stability of SrTiO3 / SiO2/Si Interfaces at Intermediate Oxygen Pressures // Journal of Applied Physics 2010.- V.108.- P.033502-(1-8).

9. J.P. Ponpon, A. Saulnier. Comparison of the growth kinetics of titanium silicide obtained by RTA and furnace annealing // Semiconductor Science and Technology 1989.- V.4. - P.526-528.

10. Sun Chuan-wei, Wang Yu-tai, Li Nian-qiang. Behavior of Ti Based on Si(l 11) Substrate at High Temperature in Oxygen // Semiconductor Photonics and Technology 2007.- No.2.- P. 161-163.

Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой, отличающийся тем, что проводят фотонную обработку упомянутой подложки излучением ксеноновых ламп с диапазоном излучения 0,2-1,2 мкм в атмосфере воздуха пакетом импульсов длительностью 10 с в течение 2,0-2,2 с при дозе энергии в интервале 220-240 Дж·смдля активации реакций оксидирования и силицидобразования при формировании гетероструктуры оксид титана - силицид титана.
СПОСОБ ПОЛУЧЕНИЯ ГЕТЕРОСТРУКТУРЫ ОКСИД ТИТАНА - СИЛИЦИД ТИТАНА НА МОНОКРИСТАЛЛИЧЕСКОЙ КРЕМНИЕВОЙ ПОДЛОЖКЕ, ПОКРЫТОЙ НАНОКРИСТАЛЛИЧЕСКОЙ ТИТАНОВОЙ ПЛЕНКОЙ
СПОСОБ ПОЛУЧЕНИЯ ГЕТЕРОСТРУКТУРЫ ОКСИД ТИТАНА - СИЛИЦИД ТИТАНА НА МОНОКРИСТАЛЛИЧЕСКОЙ КРЕМНИЕВОЙ ПОДЛОЖКЕ, ПОКРЫТОЙ НАНОКРИСТАЛЛИЧЕСКОЙ ТИТАНОВОЙ ПЛЕНКОЙ

Источник поступления информации: Роспатент

Показаны записи 211-220 из 246.
25.08.2017
№217.015.a21b

Способ формирования на рабочей поверхности детали из никелевого сплава теплозащитного нанокомпозитного покрытия

Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ формирования на рабочей поверхности детали из никелевого сплава теплозащитного нанокомпозитного...
Тип: Изобретение
Номер охранного документа: 0002606826
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a22c

Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на металлическую поверхность изделия

Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на металлическую...
Тип: Изобретение
Номер охранного документа: 0002606815
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a2b2

Способ нанесения теплозащитного композитного покрытия

Изобретение относится к напылению теплозащитных покрытий и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на поверхность изделия...
Тип: Изобретение
Номер охранного документа: 0002607056
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a2f3

Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на металлическую поверхность изделия

Изобретение относится к напылению теплозащитных покрытий и может быть использовано в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок. Способ нанесения теплозащитного композитного покрытия, содержащего оксид циркония, на металлическую...
Тип: Изобретение
Номер охранного документа: 0002607055
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a66a

Способ получения износостойкого нанокомпозитного покрытия с заданным значением микротвердости на поверхности полированной ситалловой пластины

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике и машиностроении. Способ получения износостойкого нанокомпозитного покрытия с заданным значением микротвердости на поверхности полированной ситалловой...
Тип: Изобретение
Номер охранного документа: 0002608157
Дата охранного документа: 16.01.2017
25.08.2017
№217.015.a6aa

Способ получения нанокомпозитных покрытий металл-керамика с требуемым значением микротвердости

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике и машиностроении. Способ получения нанокомпозитных покрытий металл-керамика с требуемым значением микротвердости включает обеспечение в получаемом покрытии...
Тип: Изобретение
Номер охранного документа: 0002608158
Дата охранного документа: 16.01.2017
25.08.2017
№217.015.a6fe

Способ определения микротвердости нанокомпозитного покрытия с повышенной износостойкостью по соотношению в нем металлической и керамической фаз

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике и машиностроении. Способ определения микротвердости нанокомпозитного покрытия с повышенной износостойкостью по соотношению в нем металлической и...
Тип: Изобретение
Номер охранного документа: 0002608159
Дата охранного документа: 16.01.2017
25.08.2017
№217.015.a735

Способ получения нанокомпозитного металл-керамического покрытия с заданным значением микротвердости на поверхности полированной ситалловой пластины

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике, машиностроении и т.д. Способ получения нанокомпозитного металл-керамического покрытия с заданным значением микротвердости на поверхности полированной...
Тип: Изобретение
Номер охранного документа: 0002608156
Дата охранного документа: 16.01.2017
25.08.2017
№217.015.ad07

Регулятор переменного напряжения

Изобретение относится к электротехнике. Технический результат - регулирование потребления реактивной мощности основным и вольтодобавочным трансформаторами. Для этого предложен регулятор, который содержит основной и вольтодобавочный трансформаторы, первый и второй тиристорные ключи,...
Тип: Изобретение
Номер охранного документа: 0002612621
Дата охранного документа: 09.03.2017
25.08.2017
№217.015.b3d8

Привод линейного перемещения

Изобретение относится к электротехнике, к электродинамическим элементам, предназначенным для преобразования электрической энергии в механическую, и может быть использовано в робототехнике, преимущественно в исполнительных системах манипулятора. Технический результат состоит в повышении усилия и...
Тип: Изобретение
Номер охранного документа: 0002613670
Дата охранного документа: 21.03.2017
Показаны записи 211-220 из 293.
27.12.2015
№216.013.9e37

Способ установки пленочных образцов при измерении температурной зависимости электрического сопротивления

Изобретение относится к наноэлектронике и наноэлектромеханике. Для нагрева пленочного образца и измерения его электрического сопротивления помещают образец в корпус кварцевого реактора. Внутри корпуса образец размещают в С-образных зажимах с плоскими губками, выполненными из вольфрамовой...
Тип: Изобретение
Номер охранного документа: 0002572133
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9f21

Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для создания мехатронно-модульных роботов

Изобретение относится к робототехнике и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в обеспечении многоальтернативной оптимизации моделей за счет автоматизации структурного синтеза мехатронно-модульных роботов. Синтез осуществляют как...
Тип: Изобретение
Номер охранного документа: 0002572374
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f28

Мехатронно-модульный робот

Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в создании мехатронно-модульного робота, применение которого позволит ускорить процесс синтеза, а также повысить эффективность...
Тип: Изобретение
Номер охранного документа: 0002572381
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f29

Мехатронно-модульный робот и способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для его создания

Изобретение относится к робототехнике. Технический результат заключается в создании мехатронно-модульного робота с многоальтернативной оптимизацией моделей их структурного синтеза для ориентации в окружающей среде. Мехатронно-модульный робот состоит из совокупностей сопряженных между собой...
Тип: Изобретение
Номер охранного документа: 0002572382
Дата охранного документа: 10.01.2016
10.01.2016
№216.013.9f2a

Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для создания мехатронно-модульных роботов

Изобретение относится к робототехнике. Технический результат заключается в обеспечении многоальтернативной оптимизации моделей за счет автоматизации структурного синтеза мехатронно-модульных роботов, повышении эффективности ориентации в окружающей среде и надежности работы создаваемых...
Тип: Изобретение
Номер охранного документа: 0002572383
Дата охранного документа: 10.01.2016
20.01.2016
№216.013.a347

Ветродвигатель

Изобретение относится к области ветроэнергетики, в частности к ветродвигателям. Ветродвигатель содержит поворотное в горизонтальной плоскости основание с двумя вертикальными роторами, обтекатель и стабилизатор. Поворотное основание снабжено горизонтальной планкой, ориентированной параллельно...
Тип: Изобретение
Номер охранного документа: 0002573441
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a35f

Способ электрохимического изготовления углублений, образующих турбулизаторы на ребрах и в донной части охлаждающих каналов теплонапряженных машин, и устройство для его осуществления

Изобретение относится к получению турбулизаторов на ребрах и в донной части охлаждающих каналов теплонапряженных машин. Способ включает электрохимическую обработку канала электродом-инструментом, имеющим гибкий шаблон из эластичного материала со сквозными окнами по профилю донной части и ребер...
Тип: Изобретение
Номер охранного документа: 0002573465
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a3fd

Способ исследования температурной зависимости электрического сопротивления пленочных образцов при нагреве

Изобретение относится к области наноэлектроники и может быть использовано в различных областях наноиндустрии. Заявлен способ исследования температурной зависимости электрического сопротивления пленочных образцов при нагреве. Для нагрева пленочного образца и измерения его электрического...
Тип: Изобретение
Номер охранного документа: 0002573623
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a3fe

Кварцевый реактор для исследования температурной зависимости электросопротивления высокорезистивных объектов

Изобретение относится к наноэлектронике и наноэлектромеханике. Заявленный кварцевый реактор для исследования температурной зависимости электрического сопротивления высокорезистивных объектов, преимущественно, пленочных образцов из нанокомпозиционных материалов, содержит корпус, на внешней...
Тип: Изобретение
Номер охранного документа: 0002573624
Дата охранного документа: 20.01.2016
27.01.2016
№216.014.bcd1

Гидравлическая система скрепера

Изобретение относится к землеройно-транспортному машиностроению, а именно к гидроприводам рабочих органов скреперов. Техническим результатом является обеспечение последовательного управления тремя группами гидроцилиндров от одной секции гидрораспределителя. Предложенная гидравлическая система...
Тип: Изобретение
Номер охранного документа: 0002573668
Дата охранного документа: 27.01.2016
+ добавить свой РИД