×
10.07.2015
216.013.6042

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ГЕТЕРОСТРУКТУРЫ ОКСИД ТИТАНА - СИЛИЦИД ТИТАНА НА МОНОКРИСТАЛЛИЧЕСКОЙ КРЕМНИЕВОЙ ПОДЛОЖКЕ, ПОКРЫТОЙ НАНОКРИСТАЛЛИЧЕСКОЙ ТИТАНОВОЙ ПЛЕНКОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано при создании полупроводниковых приборов. Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой, включает проведение фотонной обработки упомянутой подложки излучением ксеноновых ламп с диапазоном излучения 0,2-1,2 мкм в атмосфере воздуха пакетом импульсов длительностью 10 с в течение 2,0-2,2 с при дозе энергии в интервале 220-240 Дж·смдля активации реакций оксидирования и силицидобразования при формировании гетероструктуры оксид титана - силицид титана. Обеспечивается упрощение технологии, значительное сокращение времени изготовления изделия, содержащего кремниевую подложку с гетероструктурой оксид титана - силицид титана и снижается температурная нагрузка на кремниевую подложку. 2 ил., 2 пр.
Основные результаты: Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой, отличающийся тем, что проводят фотонную обработку упомянутой подложки излучением ксеноновых ламп с диапазоном излучения 0,2-1,2 мкм в атмосфере воздуха пакетом импульсов длительностью 10 с в течение 2,0-2,2 с при дозе энергии в интервале 220-240 Дж·смдля активации реакций оксидирования и силицидобразования при формировании гетероструктуры оксид титана - силицид титана.

Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано при создании полупроводниковых приборов.

Известны различные способы формирования слоев диоксида титана на подложках путем термического оксидирования пленок титана, где источником атомов окислителя является газовая среда [1, 2]. Также известны различные способы формирования слоев силицидов титана на подложке кремния путем термического окисления пленок титана, где источником атомов окислителя является подложка [3-6]. Что касается формирования пленочных гетероструктур диоксид титана-силицид титана на подложке кремния, то предложенный в работе [7] способ формирования гетероструктуры TiO2 / TiSi2 путем термического оксидирования пленки TiSi2 на подложке монокристаллического кремния не позволяет получить однофазную пленку TiO2, а способ, предложенный в работе [8], основанный на твердофазной реакции разложения пленки TiO2 в контакте с подложкой Si - сплошную пленку TiSi2. К недостаткам последнего способа следует отнести и невозможность получения предельной фазы силицида TiSi2(C54), обусловленную ингибирующим влиянием кислорода на кинетику силицидообразования [9].

Наиболее близким аналогом к заявляемому решению является способ получения гетероструктуры TiO2 / TiSi2, предложенный в работе [10]. Этот способ включает следующие стадии:

размещение кремниевой подложки в вакуумной камере;

очистка кремниевой подложки от естественного оксида;

формирование методом магнетронного распыления нанокристаллической пленки титана на поверхности пластины кремния;

синтез гетероструктуры TiO2 / TiSi2 происходит в результате активированных термической обработкой в диапазоне температур от 700 до 1000°C в течение 30 мин реакций оксидирования пленки Ti со стороны свободной поверхности и силицидобразования с межфазной границы Ti/Si.

Основным недостатком этого способа является относительно высокая температура и большая длительность процесса формирования гетероструктуры, а также, как и в способе [8], невозможность получения фазы силицида TiSi2(C54), характеризующейся наивысшей электропроводностью.

Изобретение направлено на снижение температурной нагрузки на кремниевую подложку, сокращение времени процесса. Это достигается тем, что проводят фотонную обработку исходной гетероструктуры Si/Ti излучением ксеноновых ламп с диапазоном излучения 0,2-1,2 мкм в атмосфере воздуха пакетом импульсов длительностью 10-2 с в течение 2,0-2,2 с при дозе энергии в интервале 220-240 Дж·см-2 для активации реакций оксидирования и силицидобразования при формировании гетероструктуры оксид титана - силицид титана. Снижение температурной нагрузки происходит за счет уменьшения времени обработки и локализации излучения в приповерхностном слое металла.

Способ реализуется следующим образом.

Формирование гетероструктуры TiO2 / TiSi2 / Si производили на модернизированной установке импульсной фотонной обработки УОЛП-1. Исходную гетероструктуру готовили в процессе магнетронного распыления титановой мишени и нанесения пленки толщиной около 0,4 мкм на поверхность монокристаллической пластины кремния толщиной 450 мкм. Гетероструктуру помещали в рабочую камеру параллельно плоскости, в которой расположены лампы. Импульсную фотонную обработку проводили в атмосфере воздуха или кислорода в течение 2,0-2,2 с. При этом плотность энергии излучения, поступающего на образец (ЕИ), составляет 220-240 Дж·см-2.

В результате реакции кислорода с титаном образуется слой диоксида титана, а в результате реакции между титаном и кремнием образуется слой силицида титана. В указанном интервале дозы энергии излучения в атмосфере воздуха при давлении 100 кПа формируется гетероструктура, в которой толщина слоя силицида и слоя оксида близки по величине.

Пример 1. В качестве подложки использовали пластину монокристаллического кремния марки КДБ-10 ориентации (111) диаметром 100 мм. Перед конденсацией Ti поверхность кремния очищали химическим травлением в растворе плавиковой кислоты и промывкой в дистиллированной воде. Из рабочей камеры с помощью вакуумной системы откачивали воздух до получения давления 5·10-3 Па. После откачки в камеру напускали аргон до достижения давления в камере 5,3·10-1 Па. После достижения необходимого давления проводили очистку поверхности подложки ионным пучком. Затем на поверхность ненагретой подложки в процессе магнетронного распыления или электронно-лучевого испарения в сверхвысоком вакууме не хуже 10-5 Па наносили пленку титана. Для предотвращения загрязнения подложки и пленки углеродом откачка вакуумной камеры установки осуществляли безмасляными средствами. Исходную гетероструктуру, представляющую собой пластину монокристаллического кремния толщиной 450 мкм с пленкой титана толщиной около 0,4 мкм, помещали в рабочую камеру установки. Фотонную обработку проводили в атмосфере воздуха при давлении 100 кПа в течение 2,0 с, что соответствовало дозе поступившего на образец излучения 220 Дж·см-2. После обработки образец извлекали из камеры и исследовали фазовый состав методом рентгеновской дифрактометрии на приборе СУР-01 «РЕНОМ» (CuKα излучение). Исследование структуры проводили на электронно-ионном сканирующем микроскопе Quanta 3D и просвечивающем электронном микроскопе Philips ЕМ-430 ST.

Установлено, что исходные пленки Ti имеют нанокристаллическую зеренную структуру с сильно выраженной текстурой <0001>, параметры кристаллической решетки соответствовали содержанию до 16% кислорода.

На рис. 1 приведены рентгеновская дифрактограмма (а), РЭМ-изображение поперечного среза в отраженном ионном пучке (б) и РЭМ-изображение свободной поверхности во вторичных электронах (в) гетероструктуры TiO2-TiSi2-Si, сформированной в течение 2,0 с, ЕИ=220 Дж·см-2 на воздухе.

Анализ дифрактограммы показал, что фотонная обработка исходной гетероструктуры приводит к образованию гетероструктуры, состоящей из смеси оксидов титана: TiO2(Р), TiO2(А) и TiO, и смеси двух модификаций конечной фазы силицида титана TiSi2(C49) и TiSi2(C54). На дифрактограмме в области малых углов наблюдается увеличение фона, свидетельствующее о содержании аморфной фазы. При этом установлено, что фазы TiO2(Р) и TiSi2(C54) являются преобладающими из кристаллических фаз.

Из РЭМ-изображения поперечного среза следует, что гетероструктура состоит из трех слоев: верхний слой - диоксид титана, имеет анизотропную структуру, ниже идет слой диоксида с более дисперсной структурой, причем на границе этих слоев выявляются поры. Слой под оксидными слоями, контактирующий с кремнием, соответствует смеси двух силицидных фаз: TiSi2(C49) и TiSi2(C54).

Пример 2. Пример осуществляется аналогично примеру 1. В этом примере плотность энергии излучения, поступающего на образец, составляет 240 Дж·см-2.

На рис. 2 приведена рентгеновская дифрактограмма синтезированной гетероструктуры. Из нее следует, что гетероструктура состоит из фаз: TiO2, TiSi2(C54) и Si. В результате фотонной обработки формируется слоевая гетероструктура: нижний слой - дисилицид титана структурного типа С54, контактирует с подложкой кремния, верхний слой - диоксид титана в модификации рутила. Тем самым получено изделие, представляющее собой гетероструктуру TiO2-TiSi2(C54)-Si.

Реализация предлагаемого способа позволяет получить изделия, состоящие из кремниевой подложки и сформированной гетероструктуры TiO2-TiSi2(C54). В сравнении с известными способами предложенное техническое решение обеспечивает снижение температурной нагрузки на кремниевую подложку, сокращение времени процесса при изготовлении изделия, что позволяет избежать протекания негативных процессов, активируемых продолжительным высокотемпературным нагревом.

Источники информации

1. Патент RU 2369663, МПК С23С 8/10, 2009; Бай А.С., Лайнер Д.И., Слесарева Е.Н., Цыпин М.И. Окисление титана и его сплавов. М: Металлургия, 1970.

2. Zhang Y., Ma X., Chen P., Yang D. Crystallization behaviors of TiO2 films derived from thermal oxidation of evaporated and sputtered titanium films // J. of Alloys and Compounds. 2009.- V.480.- No. 2. - P. 938-941.

3. Поут Дж., Ту К., Мейер Дж. (ред.). Тонкие Пленки - Взаимная Диффузия и Реакции // М., Мир, 1982. - 576 с.

4. Мьюрарка С.П. Силициды для БИС. М.: Мир, 1986. - 175 с.

5. Barbarini Е., Guastella S., Pirri C.F. Furnace annealing effects in the formation of titanium silicide Schottky barriers // Advanced Thermal Processing of Semiconductors (RTP), 2010 18th International Conference on Sept. 28 2010-Oct. 1 2010.- P. 119-122.

6. V.A. Pilipenko, V.V. Molofeev, V.N. Ponomar′, A.N. Mikhnyuk, V.A. Gorushko. Modeling of Diffusion Synthesis of Titanium Disilicide // Journal of Engineering Physics and Thermophysics 2005.- V.78. - No. 3. - P.610-615.

7. G.J. Huang, L.J. Chen Investigation of the oxidation kinetics of C54-TiSi2 on (001)Si by transmission electron microscopy // J. Appl. Phys. 1992.- V.72.-P.3143-3150.

8. G.J. Yong, Rajeswari M. Kolagani, S. Adhikari, W. Vanderlinde, Y. Liang, K. Muramatsu, S. Friedrich. Thermal stability of SrTiO3 / SiO2/Si Interfaces at Intermediate Oxygen Pressures // Journal of Applied Physics 2010.- V.108.- P.033502-(1-8).

9. J.P. Ponpon, A. Saulnier. Comparison of the growth kinetics of titanium silicide obtained by RTA and furnace annealing // Semiconductor Science and Technology 1989.- V.4. - P.526-528.

10. Sun Chuan-wei, Wang Yu-tai, Li Nian-qiang. Behavior of Ti Based on Si(l 11) Substrate at High Temperature in Oxygen // Semiconductor Photonics and Technology 2007.- No.2.- P. 161-163.

Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой, отличающийся тем, что проводят фотонную обработку упомянутой подложки излучением ксеноновых ламп с диапазоном излучения 0,2-1,2 мкм в атмосфере воздуха пакетом импульсов длительностью 10 с в течение 2,0-2,2 с при дозе энергии в интервале 220-240 Дж·смдля активации реакций оксидирования и силицидобразования при формировании гетероструктуры оксид титана - силицид титана.
СПОСОБ ПОЛУЧЕНИЯ ГЕТЕРОСТРУКТУРЫ ОКСИД ТИТАНА - СИЛИЦИД ТИТАНА НА МОНОКРИСТАЛЛИЧЕСКОЙ КРЕМНИЕВОЙ ПОДЛОЖКЕ, ПОКРЫТОЙ НАНОКРИСТАЛЛИЧЕСКОЙ ТИТАНОВОЙ ПЛЕНКОЙ
СПОСОБ ПОЛУЧЕНИЯ ГЕТЕРОСТРУКТУРЫ ОКСИД ТИТАНА - СИЛИЦИД ТИТАНА НА МОНОКРИСТАЛЛИЧЕСКОЙ КРЕМНИЕВОЙ ПОДЛОЖКЕ, ПОКРЫТОЙ НАНОКРИСТАЛЛИЧЕСКОЙ ТИТАНОВОЙ ПЛЕНКОЙ

Источник поступления информации: Роспатент

Показаны записи 91-100 из 246.
10.07.2015
№216.013.5c7c

Способ испытания образцов листового материала на растяжение

Изобретение относится к испытательной технике и может быть использовано при определении характеристик механических свойств листовых материалов в условиях плоской деформации. Способ испытания конструкционного листовых материалов на растяжение заключается в том, что по всей противолежащей рабочей...
Тип: Изобретение
Номер охранного документа: 0002555217
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5cad

Способ изготовления проволочного электрода-инструмента для электроэрозионной обработки

Изобретение относится к способу изготовления проволочного электрода-инструмента для электроэрозионной обработки и может быть использовано при электроэрозионном прошивании отверстий малого диаметра с большой глубиной в металлических материалах. Закрепляют конец электрода-инструмента в подвижной...
Тип: Изобретение
Номер охранного документа: 0002555266
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d45

Камера жидкостного ракетного двигателя

Изобретение относится к области ракетной техники может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД). Камера ЖРД содержит смесительную головку, внутреннюю профилированную оболочку, на внешней поверхности которой выполнены ребра тракта охлаждения, наружную...
Тип: Изобретение
Номер охранного документа: 0002555418
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d46

Кольцевая камера жидкостного ракетного двигателя

Изобретение относится к области ракетного двигателестроения при создании жидкостных ракетных двигателей, работающих на криогенных компонентах, преимущественно кислороде и водороде. Кольцевая камера жидкостного ракетного двигателя содержит кольцевую смесительную головку, регенеративно...
Тип: Изобретение
Номер охранного документа: 0002555419
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d49

Жидкостный ракетный двигатель

Изобретение относится к области ракетной техники, а именно к двигателестроению, и может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД). ЖРД содержит камеру со смесительной головкой, турбонасосный агрегат, газогенератор, агрегаты питания и регулирования. Камера...
Тип: Изобретение
Номер охранного документа: 0002555422
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d7f

Способ испытания конструкционного материала на пластичность

Изобретение относится к области механических испытаний конструкционных материалов и может быть использовано при определении механических характеристик листовых материалов в условиях плоской деформации. Способ испытания конструкционного материала на пластичность заключается в том, что гладкий...
Тип: Изобретение
Номер охранного документа: 0002555476
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5e00

Статор ветроэлектроагрегата

Изобретение относится к области ветроэнергетики, а именно к ветроэлектрогенераторам. Cтатор ветроэлектроагрегата содержит катушки, торцевой и радиальный магнитопроводы, источник возбуждения. Торцевой магнитопровод выполнен в виде ферромагнитной траверсы крепления ветроколес. Преимуществом...
Тип: Изобретение
Номер охранного документа: 0002555605
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6041

Способ электрохимической обработки отверстий форсунки

Изобретение относится к электрохимической обработке и может быть использовано при электрохимической доводке форсунок из токопроводящих материалов, преимущественно форсунок для жидкостных ракетных двигателей. Способ включает подачу токопроводящей жидкости через полый инструмент-катод и...
Тип: Изобретение
Номер охранного документа: 0002556182
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6137

Некогерентный цифровой демодулятор "в целом" кодированных сигналов с фазовой манипуляцией

Изобретение относится к области радиотехники и может быть использовано в устройствах приема цифровых информационных сигналов для цифровой демодуляции кодированных двоичных сигналов с фазовой манипуляцией (ФМ). Технический результат заключается в обеспечении высокоскоростной цифровой демодуляции...
Тип: Изобретение
Номер охранного документа: 0002556429
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.613a

Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для создания мехатронно-модульных роботов

Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в создании способа многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов....
Тип: Изобретение
Номер охранного документа: 0002556432
Дата охранного документа: 10.07.2015
Показаны записи 91-100 из 293.
10.01.2015
№216.013.175b

Способ изготовления диффузионной сваркой стоистой тонкостенной конструкции из титановых листовых материалов

Изобретение может быть использовано при изготовлении слоистых тонкостенных титановых конструкций из листового материала, в частности, выпускных окон энергетических установок для вывода пучка электронов. Между технологическими листами размещают пакет, содержащий плоские решетки с мелкозернистой...
Тип: Изобретение
Номер охранного документа: 0002537407
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175c

Способ объемной штамповки на механическом прессе

Изобретение относится к обработке металлов давлением и может быть использовано при объемной штамповке на механических прессах. Устанавливают величину закрытой высоты пресса менее закрытой высоты штампа. Заготовку, расположенную на нижней половине штампа, деформируют верхней половиной штампа....
Тип: Изобретение
Номер охранного документа: 0002537408
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175d

Инструмент и способ калибровки отверстий малого сечения в форсунках

Изобретение относится к калибровке отверстий малого сечения в форсунках. Предложен инструмент в виде токопроводящей проволоки с нанесенными нетокопроводящими износостойкими твердыми узкими поясками, наружный диаметр которых уменьшается по длине проволоки пропорционально толщине наносимого...
Тип: Изобретение
Номер охранного документа: 0002537409
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175e

Электрод-инструмент для прошивки отверстий

Изобретение относится к области машиностроения и может быть использовано при прошивке отверстий преимущественно малого диаметра в металлических заготовках. Электрод-инструмент содержит металлическую рабочую часть с рабочим и технологическим торцами, выполненную с возможностью подачи в зону...
Тип: Изобретение
Номер охранного документа: 0002537410
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.175f

Способ упрочнения каналов детали

Изобретение относится к области машиностроения и может быть использовано для отделочно-упрочняющей обработки внутренних поверхностей каналов детали. Обеспечивают вибрацию с частотой 20-30 Гц корпуса контейнера, содержащего токопроводящие стальные шарики для возвратно-поступательного движения...
Тип: Изобретение
Номер охранного документа: 0002537411
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.177a

Способ удаления диэлектрических покрытий с металлической основы

Изобретение относится к области машиностроения и может быть использовано при удалении диэлектрических покрытий с металлических изделий путем их обработки вращаемым непрофилированным электродом-щеткой. В способе электрод-щетку с ворсом в виде радиальных проволок перед обработкой устанавливают с...
Тип: Изобретение
Номер охранного документа: 0002537438
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.17b4

Устройство для очистки воздуха

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Техническим результатом является создание блока осушки с адсорбером, конструкция которого позволит исключить попадание капельной влаги на зерна адсорбента....
Тип: Изобретение
Номер охранного документа: 0002537496
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1807

Способ вырубки

Изобретение относится к разделительным операциям обработки металлов давлением и может быть использовано для вырубки тонкого материала. Заготовку укладывают на торец установленного в жесткой обойме на плите основания из мягкого металла. Осуществляют прижим припуска заготовки, осадку и вырубку...
Тип: Изобретение
Номер охранного документа: 0002537579
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.180d

Способ очистки воздуха и устройство для его реализации

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Техническим результатом является создание блока осушки с адсорбером, конструкция которого позволит исключить попадание капельной влаги на зерна адсорбента....
Тип: Изобретение
Номер охранного документа: 0002537585
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.180e

Конденсационная камера

Изобретение относится к очистке воздуха. Конденсационная камера для установки очистки газового потока содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного газового потока и выходной канал для выхода очищенного газового потока, средство для вдувания пара,...
Тип: Изобретение
Номер охранного документа: 0002537586
Дата охранного документа: 10.01.2015
+ добавить свой РИД