×
10.07.2015
216.013.603b

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЛИГАТУРЫ НИКЕЛЬ-РЕДКОЗЕМЕЛЬНЫЙ МЕТАЛЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к получению лигатуры никель-редкоземельный металл. В способе расплавляют никель, выдерживают полученный расплав и смешивают его с редкоземельным металлом, производят индукционное перемешивание расплава, его разливку и охлаждение, при этом расплавляют никель в вакууме в инертном тигле индукционной печи, полученный расплав нагревают до температуры 1500-1700°C и выдерживают до его дегазации в плавильной камере под вакуумом, после чего снижают температуру расплава никеля до 1400-1550°C и в вакууме или атмосфере инертного газа порционно добавляют в него редкоземельный металл. Изобретение позволяет обеспечить низкое содержание в лигатуре вредных примесей, например кислорода, серы, азота, и примесей цветных металлов, например свинца, висмута, сурьмы, олова, цинка, улучшить рафинирующее действие лигатуры и обеспечить точный расчет количества лигатуры, необходимого для рафинирования сплавов. 5 з.п. ф-лы, 3 табл., 3 пр.

Изобретение относится к области металлургии, а именно к области получения лигатур никель-редкоземельный металл (далее - РЗМ), и может быть использовано при рафинировании сплавов, в частности литейных и деформируемых жаропрочных сплавов на основе никеля.

Получение качественных слитков или отливок во многом зависит от качества исходных шихтовых материалов, в частности и от лигатур Ni-РЗМ. Значительное улучшение качества структуры сплавов достигается за счет использования лигатур, содержащих РЗМ. Лигатуры Ni-РЗМ способствуют глубокому очищению никелевых сплавов от вредных примесей кислорода, азота, серы и повышают эксплуатационные характеристики сплавов, такие как жаростойкость и длительная прочность при высоких рабочих температурах.

Качество рафинирования жаропрочных никелевых сплавов от вредных примесей напрямую зависит от чистоты лигатур Ni-РЗМ. При повышенном содержании вредных примесей в лигатурах Ni-РЗМ часть РЗМ уже связана в тугоплавкие неметаллические включения, которые вносятся в расплав, не оказывая на него рафинирующего влияния. Поэтому необходимо обеспечить высокую чистоту по вредным примесям в лигатурах Ni-РЗМ.

Необходимость введения РЗМ в виде лигатур Ni-РЗМ в никелевые жаропрочные сплавы обусловлена тем, что плотность РЗМ заметно ниже плотности жаропрочных никелевых сплавов. Поэтому при введении РЗМ в чистом виде его рафинирующее воздействие на сплав ослабевает за счет того, что РЗМ остается на поверхности, не проникая в глубину расплава, и тем самым уменьшается доля расплава, подвергающаяся рафинированию. Введение РЗМ в виде лигатур Ni-РЗМ позволяет рафинировать расплав по всему объему, поскольку плотность лигатуры Ni-РЗМ близка к плотности сплава.

Поверхность практически всех РЗМ при комнатной температуре на воздухе почти мгновенно окисляется, и поэтому при рафинировании посредством введения РЗМ в чистом виде в расплав происходит загрязнение очищаемого расплава кислородом. Вместе с тем РЗМ, связанные в виде лигатуры с никелем, на воздухе не окисляются.

Кроме того, лигатуры Ni-РЗМ активно применяются при переработке отходов жаропрочных никелевых сплавов, которые образуются на моторостроительных и ремонтных заводах и имеют повышенную загрязненность вредными примесями. Известен способ производства лигатуры на основе никеля и легкоплавких компонентов: магния и алюминия. Способ включает загрузку в тигель, нагрев, расплавление магния и никеля и разливку расплава. Нагрев смеси исходных компонентов производится в индукционной печи до тех пор, пока смесь не перейдет в состояние расплава, затем производится разливка в изложницы и охлаждение до затвердевания (US 3794484 A, 26.02.1974).

Основной недостаток данного способа заключается в том, что выплавка лигатур проводится в открытой атмосфере, а это значит, происходит взаимодействие расплава с кислородом и азотом воздуха.

Также известен способ получения лигатур, разработанный ОАО «Гиредмед» никель-иттрий (20-25%), никель-лантан (20-25%), включающий сплавление компонентов в дуговой печи с нерасходуемым вольфрамовым электродом и медным водоохлаждаемым кристаллизатором в атмосфере аргона (http://rusnanonet.ru/goods/43125, 19.03.2014).

Основной недостаток данного способа заключается в том, что в дуговых печах отсутствует индукционное перемешивание, вследствие чего не может быть достигнуто равномерное распределение легирующего элемента, как во время выплавки в индукционных печах.

Наиболее близким аналогом является способ получения лигатуры на основе никеля и магния с добавкой церия в индукционной печи на воздухе с использованием флюса. В тигель загружается магний, после полного расплавления магния порционно добавляется никель до достижения заданного химического состава (RU 2347836 C1, 27.02.2009).

Данный способ не может обеспечить стабильное качество лигатур из-за загрязнения расплава примесями флюса. Отсутствие дегазации никелевого расплава, присущее всем описанным известным способам, приводит к повышенным содержаниям в лигатуре газов кислорода и азота и примесей цветных металлов, которые являются вредными примесями в никелевых жаропрочных сплавах. Кроме того, высокое сродство РЗМ к кислороду приводит к их окислению при более продолжительном воздействии температуры. При использовании такой лигатуры в производстве никелевых жаропрочных сплавов происходит дополнительное внесение в сплав вредных примесей и уменьшение рафинирующего воздействия РЗМ, что негативно влияет на качество получаемых сплавов.

В предложенном способе получения лигатуры Ni-РЗМ компонент РЗМ вводится на дегазированный расплав никеля в вакууме или инертной атмосфере и не взаимодействует с кислородом и азотом воздуха. Кроме того, РЗМ быстро растворяется, в отличие от известных способов, в которых компонент изначально нагревается в тигле или кристаллизаторе отдельно, либо вместе с никелем. Задачей предложенного изобретения является разработка способа, позволяющего получить лигатуры никель-РЗМ с высокой степенью чистоты и равномерным распределением компонентов по объему.

Техническим результатом является обеспечение низкого содержания в лигатуре вредных примесей (кислорода, серы, азота, примесей цветных металлов: свинца, висмута, сурьмы, олова, цинка и др.), улучшение рафинирующего действия лигатуры и обеспечение точного расчета количества лигатуры, необходимого для рафинирования сплавов.

Указанный технический результат достигается за счет того, что в предложенном способе получения лигатуры никель-редкоземельный металл расплавляют один из компонентов, выдерживают полученный расплав, смешивают никель и редкоземельный металл, производят индукционное перемешивание расплава, его разливку и охлаждение образующегося из расплава слитка, при этом расплавляют никель в вакууме в инертном тигле индукционной печи, полученный расплав нагревают до температуры 1500-1700°C и выдерживают до его дегазации в плавильной камере под вакуумом, после чего снижают температуру расплава никеля до 1400-1550°C, в вакууме или атмосфере инертного газа порционно добавляют в него редкоземельный металл и производят индукционное перемешивание расплава.

В качестве инертного газа можно использовать аргон.

При наличии влаги никель желательно предварительно просушить в печи электросопротивления при температуре от 200 до 300°C в течение 2-х часов.

В зависимости от вида РЗМ и процентного соотношения компонентов в получаемой лигатуре никель можно расплавить в инертном тигле, состоящем из, по меньшей мере, одного компонента, выбранного из группы: оксид иттрия, оксид циркония, оксид алюминия, оксид гафния и оксид магния.

При выплавке лигатур никель-эрбий, никель-иттрий, никель-самарий, никель-церий, никель-лантан, никель-диспрозий во избежание интенсивного испарения РЗМ после снижения температуры расплава никеля до 1400-1550°C в плавильную камеру целесообразно напустить аргон высокой чистоты до давления от 2,67 до 53,33 КПа.

Во избежание окисления в атмосфере воздуха охлаждение образующегося из расплава слитка можно производить при закрытой печи не менее 6-и часов.

Способ осуществляется следующим образом.

Для получения лигатуры используют никель и один из редкоземельных металлов: неодим, эрбий, церий, празеодим, гадолиний, лантан, иттрий, самарий или диспрозий.

Предварительно измельченные РЗМ и никель навешивают согласно требуемому составу. Если никель содержит влагу, его необходимо предварительно просушить в печи электросопротивления при температуре от 200 до 300°C в течение 2 часов. Просушенный никель загружают в инертный тигель индукционной печи, оборудованной загрузочным устройством для введения РЗМ в процессе плавки, вакуумметром для измерения остаточного давления воздуха в плавильной камере и термопарой погружения для измерения температуры расплава.

В зависимости от вида РЗМ и процентного соотношения компонентов в лигатуре в качестве инертного тигля можно применять тигель, состоящий из, по меньшей мере, одного компонента, выбранного из группы: оксид иттрия, оксид циркония, оксид алюминия, оксид гафния и оксид магния. Состав тигля подбирается исходя из того, чтобы сродство металла(-ов) к кислороду в условиях плавки, входящего(-их) в оксид(-ы), из которого(-ых) изготовлен тигель, превышало сродство компонентов лигатуры к кислороду. При этом стоит отметить, что при небольшом количестве РЗМ в лигатуре взаимодействие РЗМ с материалом тигля незначительное, в связи с чем материал тигля выбирается исходя из его стоимости. После загрузки камеру печи закрывают, производят откачку воздуха до остаточного давления не более 5,32 Па (40 мкм) и расплавляют никель. Расплав доводят до температуры 1500-1700°C и выдерживают в плавильной камере под вакуумом до его дегазации приблизительно 5-20 минут.

Момент прекращения испарения определяется с помощью вакуумметра, который регистрирует восстановление низкого давления в плавильной камере. Вышеуказанная температура позволяет произвести дегазацию расплава и испарение примесей цветных металлов и вместе с тем не допустить избыточное испарение никеля и обеспечить минимальное разрушающее воздействие на тигель. Во время выдержки из расплава испаряются кислород, азот и примеси цветных металлов, являющихся вредными для никелевых жаропрочных сплавов.

Перед введением РЗМ температуру расплава никеля снижают до 1400-1550°C, поскольку при данной температуре никель имеет достаточную вязкость для того, чтобы введение РЗМ не приводило к разбрызгиванию расплава.

При выплавке лигатур никель-эрбий, никель-иттрий, никель-самарий, никель-церий, никель-лантан, никель-диспрозий в плавильную камеру после выдержки напускают аргон высокой чистоты до давления от 2,67 до 53,33 КПа (от 20 до 400 мм рт.ст.). Поскольку РЗМ, входящие в состав вышеперечисленных лигатур, имеют высокую упругость насыщенного пара, при низком давлении или вакууме они обладают склонностью к интенсивному испарению. В связи с этим возникает необходимость создавать в камере давление за счет напуска инертного газа, например аргона.

Выплавка лигатур никель-неодим, никель-празеодим, никель-гадолиний проводится в вакууме.

Во избежание разбрызгивания и кипения расплава РЗМ добавляют порционно в зависимости от добавляемого количества, а также от плотности и температуры плавления РЗМ.

На протяжении всего процесса плавки осуществляется дегазация кислорода и азота и удаление из расплава примесей цветных металлов (Sn, Pb, Bi, Sb, Zn и др.) за счет низкого давления в плавильной камере.

После введения необходимого количества РЗМ производят индукционное перемешивание расплава, что обеспечивает равномерное распределение компонентов по всему объему слитка, и приступают к разливке в инертные керамические формы или стальные трубы.

Для предотвращения окисления в атмосфере воздуха охлаждение образующегося из расплава слитка лучше производить при закрытой печи не менее 6-и часов.

Пример 1

Для приготовления лигатуры никель-эрбий (67 мас. % никеля, 33 мас. % эрбия) в качестве шихты использовали никель катодный H1У и эрбий кальциетермический ЭрМ-2. Для выплавки лигатуры применяли автоматизированную вакуумную индукционную плавильно-разливочную установку ВИАМ 2002 с инертным тиглем. Никель в количестве 2,815 кг загрузили в печь, после чего печь закрыли и произвели откачку воздуха до давления 8,1 мкм. Начали нагрев. После расплавления довели температуру до 1570°C и выдержали 5 минут. Далее в плавильную камеру напустили аргон до давления 45 кПа и добавили эрбий в количестве 1,515 кг в две стадии. После каждой стадии расплав выдерживали до полного растворения эрбия. После введения всего количества эрбия произвели перемешивание расплава за счет индукции и приступили к сливу в стальную трубу диаметром 70 мм. Температура перед сливом составляла 1440°C.

Химический состав лигатуры исследовали на атомно-эмиссионном анализаторе Varian. Содержание примесей цветных металлов определяли на масс-спектрометре X-Series. Содержание S, C, O, N определяли на газоанализаторах Leco. Результаты химического анализа полученной лигатуры приведены в таблице 1.

Пример 2

Для приготовления лигатуры никель-неодим (67 мас. % никеля, 33 мас. % неодима) в качестве шихты использовали никель карбонильный ДНК-1 и неодим кальциетермический НМ-1. Для выплавки лигатуры применяли вакуумную индукционную печь УГШФ-У с инертным тиглем. Никель в количестве 4,650 кг загрузили в печь, после чего печь закрыли, произвели откачку воздуха до давления 10,7 мкм и начали нагрев. После расплавления довели температуру до 1600°C и выдержали 5 минут. Далее охладили расплав до образования корочки и добавили неодим в количестве 2,500 в 3 стадии, после каждой из которых расплав выдерживали до полного растворения неодима. После полного введения неодима произвели перемешивание расплава за счет индукции и приступили к сливу в керамическую форму. Температура перед сливом составляла 1480°C. Результаты химического анализа представлены в таблице 2.

Пример 3

Для приготовления лигатуры со следующим составом никель-иттрий (75 мас. % никеля, 25 мас. % иттрия) в качестве шихты использовали никель карбонильный ДНК-1 и иттрий кальциетермический ИтМ-1. Для выплавки лигатуры применяли вакуумную индукционную печь УППФ-У с инертным тиглем. Никель в количестве 4,550 кг загрузили в печь, после чего печь закрыли, произвели откачку воздуха до давления 8,7 мкм и начали нагрев. После расплавления довели температуру до 1590°C и выдержали 5 минут. Далее в плавильную камеру напустили аргон до давления 48 КПа, охладили расплав до образования корочки и добавили иттрий в количестве 1,600 в 2 стадии, после каждой из которых расплав выдерживали до полного растворения иттрия. После полного введения иттрия произвели перемешивание расплава за счет индукции и приступили к сливу в керамическую форму. Температура перед сливом составляла 1510°C. Результаты химического анализа представлены в таблице 3.

Результаты химического анализа показывают, что лигатуры, полученные по предложенному способу, имеют низкие содержания вредных примесей, которые достигаются за счет технологических отличий предлагаемого способа от прототипа.

Поскольку полученные лигатуры имеют низкие содержания кислорода, азота и серы, РЗМ, входящий в ее состав, практически не связан с ними в тугоплавкие включения. Вследствие этого при введении лигатуры в никелевые жаропрочные сплавы практически вся масса РЗМ оказывает рафинирующее воздействие. Кроме того, введение полученных лигатур практически исключает загрязнение сплава вредными примесями цветных металлов. В связи с изложенным можно заключить, что использование лигатур, полученных предложенным способом, позволяет рассчитать необходимое для рафинирования сплавов количество лигатуры с максимальной точностью.

Источник поступления информации: Роспатент

Показаны записи 311-320 из 367.
09.05.2019
№219.017.4b7a

Способ термической обработки изделий из жаропрочных, деформируемых, дисперсионно-твердеющих сплавов на никелевой основе

Изобретение относится к области металлургии, а именно к термической обработке изделий из жаропрочных, деформируемых, дисперсионно-твердеющих сплавов на никелевой основе. Предложен способ термической обработки изделий из жаропрочных, деформируемых, дисперсионно-твердеющих сплавов на никелевой...
Тип: Изобретение
Номер охранного документа: 0002256723
Дата охранного документа: 20.07.2005
09.05.2019
№219.017.4b7e

Жаростойкий сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным жаростойким сплавам на основе интерметаллида NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с монокристаллической структурой, таким как, например, рабочие и сопловые лопатки, проставки соплового аппарата...
Тип: Изобретение
Номер охранного документа: 0002256714
Дата охранного документа: 20.07.2005
18.05.2019
№219.017.5447

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение может быть использовано для получения деталей турбин авиационного и энергетического назначения. Устройство содержит вакуумную камеру, загрузочную шлюзовую камеру, направляющие для перемещения литейных форм, печь подогрева форм и плавильно-заливочную печь, расположенные в вакуумной...
Тип: Изобретение
Номер охранного документа: 0002267380
Дата охранного документа: 10.01.2006
18.05.2019
№219.017.544d

Огнестойкая термопластичная композиция и изделие, выполненное из нее

Изобретение относится к огнестойкой термопластичной композиции на основе поликарбоната. Композиция содержит, мас.ч.: поликарбонат 81-92, модифицированный полибутилентерефталат 7-15, декабромдифенилоксид, модифицированный терефталевой кислотой 1-4. Также изобретение относится к изделию....
Тип: Изобретение
Номер охранного документа: 0002283327
Дата охранного документа: 10.09.2006
18.05.2019
№219.017.55ed

Способ получения защитного покрытия на изделии из бериллия и его сплавов

Изобретение относится к области машиностроения и к технике производства изделий из цветных сплавов, в частности к защитным покрытиям от газовой коррозии в процессах длительной эксплуатации и при технологических нагревах в процессе получения высококачественных деталей и полуфабрикатов из...
Тип: Изобретение
Номер охранного документа: 0002344098
Дата охранного документа: 20.01.2009
18.05.2019
№219.017.5683

Полиимидное связующее для армированных пластиков, препрег на его основе и изделие, выполненное из него

Изобретение относится к области получения полиимидов, а именно к области получения полиимидного связующего для армированных пластиков. Полиимидное связующее представляет собой продукт взаимодействия диангидрида бензофенон-3,3′-4,4′-тетракарбоновой кислоты и м-фенилендиамина и модифицирующую...
Тип: Изобретение
Номер охранного документа: 0002394857
Дата охранного документа: 20.07.2010
18.05.2019
№219.017.56b8

Способ получения пористо-волокнистого металлического материала

Изобретение относится к способам получения пористых материалов из металлических волокон, а именно к способам получения волокнистых металлических материалов с высокой пористостью (до 95%) из жаростойких сплавов для звукопоглощающих конструкций горячего тракта газотурбинного двигателя на рабочие...
Тип: Изобретение
Номер охранного документа: 0002311262
Дата охранного документа: 27.11.2007
18.05.2019
№219.017.576d

Устройство для получения отливок из жаропрочных сплавов с монокристаллической структурой

Изобретение относится к области литейного производства. Устройство содержит керамическую форму, в основании которой выполнены затравочная полость с размещенной в ней монокристаллической затравкой, полость кристалловода и коническая стартовая полость, соединенная с полостью формы, образующей...
Тип: Изобретение
Номер охранного документа: 0002353471
Дата охранного документа: 27.04.2009
18.05.2019
№219.017.5814

Полимерная композиция для покрытий

Изобретение относится к полимерным композициям, применяемым в качестве радиопрозрачных атмосферостойких покрытий холодного отверждения по лакокрасочным покрытиям и полимерным композиционным материалам. Композиция включает следующее соотношение компонентов, в мас.ч.: 9,8-23,5 сополимера...
Тип: Изобретение
Номер охранного документа: 0002333925
Дата охранного документа: 20.09.2008
18.05.2019
№219.017.5826

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к созданию титановых сплавов, предназначенных для изготовления деталей и узлов авиакосмической и ракетной техники: баллонов, шпангоутов, лонжеронов, стрингеров, нервюр, деталей крепления и др. Сплав имеет следующий химический состав, мас.%: алюминий 4,3-6,8; ванадий...
Тип: Изобретение
Номер охранного документа: 0002304178
Дата охранного документа: 10.08.2007
Показаны записи 311-320 из 338.
09.06.2019
№219.017.7db7

Припой на основе никеля

Изобретение относится к области металлургии и может быть использовано при изготовлении деталей горячего тракта газотурбинных двигателей, таких как направляющие аппараты компрессоров и сопловые аппараты турбин из деформированных и литых жаропрочных никелевых сплавов. Заявлен припой на основе...
Тип: Изобретение
Номер охранного документа: 0002452600
Дата охранного документа: 10.06.2012
09.06.2019
№219.017.7f72

Полимерная теплоотражающая композиция для покрытия

Изобретение относится к полимерным теплоотражающим композициям для покрытий, которые наносятся на надувные конструкции, защитные и спасательные средства (трапы самолетов гражданской авиации, плоты, дирижабли, надувные ангары, теплоотражающие экраны, щиты для пожарных), состоящие из герметичного...
Тип: Изобретение
Номер охранного документа: 0002467042
Дата охранного документа: 20.11.2012
13.06.2019
№219.017.811d

Способ нанесения защитных покрытий и устройство для его осуществления

Изобретение относится к области нанесения защитных покрытий. Может применяться для получения керамического слоя теплозащитных покрытий на изделия авиационной техники, преимущественно на рабочих и сопловых лопатках турбин из жаропрочных литейных сплавов. Устройство для нанесения покрытий методом...
Тип: Изобретение
Номер охранного документа: 0002691166
Дата охранного документа: 11.06.2019
10.07.2019
№219.017.aa19

Слоистый композиционный материал и изделие, выполненное из него

Изобретение относится к слоистому алюмополимерному материалу для изготовления или ремонта силовых элементов планера самолета: обшивок, перегородок, стрингеров фюзеляжа и крыла, панелей пола, а также для наземного транспорта. Предложен слоистый композиционный материал, состоящий из чередующихся...
Тип: Изобретение
Номер охранного документа: 0002270098
Дата охранного документа: 20.02.2006
10.07.2019
№219.017.ab12

Сплав на основе магния и изделие, выполненное из него

Изобретение относится к области машиностроения и авиастроения, где могут быть применены высокопрочные и жаропрочные свариваемые магниевые сплавы с малой анизотропией механических свойств в качестве легкого свариваемого конструкционного материала, например, для изготовления несущих деталей,...
Тип: Изобретение
Номер охранного документа: 0002293784
Дата охранного документа: 20.02.2007
10.07.2019
№219.017.ab21

Защитное покрытие

Изобретение относится к области производства защитных покрытий, которые могут быть использованы при эксплуатации неорганических волокнистых композиционных материалов конструкционного и технологического назначения, в изделиях авиационно-космической и машиностроительной промышленности....
Тип: Изобретение
Номер охранного документа: 0002290371
Дата охранного документа: 27.12.2006
10.07.2019
№219.017.ac1f

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к металлургии, а именно к литейным сплавам на основе интерметаллида NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической структурой, таким как сопловые лопатки, проставки соплового аппарата, крупногабаритные створки и другие...
Тип: Изобретение
Номер охранного документа: 0002349662
Дата охранного документа: 20.03.2009
10.07.2019
№219.017.ac9c

Способ изготовления составного керамического стержня для литья полых изделий

Изобретение относится к литейному производству, в частности для изготовления газотурбинных лопаток, элементов камеры сгорания и других изделий ГТД и ГТУ. Из керамической массы путем прессования изготавливают основной стержень и производят его высокотемпературный отжиг. На наружной поверхности...
Тип: Изобретение
Номер охранного документа: 0002319574
Дата охранного документа: 20.03.2008
10.07.2019
№219.017.ad62

Способ получения изделий из монокристаллических жаропрочных никелевых сплавов

Изобретение относится к металлургии, а именно к получению изделий из многокомпонентных монокристаллических жаропрочных сплавов на никелевой основе, преимущественно лопаток и других деталей ГТД и ГТУ в авиационной и энергетической промышленности. Отливки получают литьем методом направленной...
Тип: Изобретение
Номер охранного документа: 0002353701
Дата охранного документа: 27.04.2009
11.07.2019
№219.017.b2a9

Способ получения полуфабрикатов из высокопрочных никелевых сплавов

Изобретение относится к области металлургии. Способ получения полуфабрикатов из высокопрочного никелевого сплава системы Ni-Fe-Co включает выплавку слитка в вакуумно-дуговой печи, деформацию слитка, предварительную горячую прокатку и окончательную холодную прокатку. После выплавки слитка...
Тип: Изобретение
Номер охранного документа: 0002694098
Дата охранного документа: 09.07.2019
+ добавить свой РИД