×
10.07.2015
216.013.5f1e

Результат интеллектуальной деятельности: МИКРОСТРУКТУРНАЯ МНОГОСЛОЙНАЯ ЭКРАННО-ВАКУУМНАЯ ИЗОЛЯЦИЯ КОСМИЧЕСКИХ АППАРАТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к многослойной экранно-вакуумной изоляции (ЭВИ) с микроструктурными элементами для космических аппаратов (КА). Каждый слой ЭВИ выполнен в виде подложки, на которой закреплены теплоотражающие элементы в виде массива прямоугольных микропластин. Каждая микропластина закреплена на подложке с зазором 10...20 мкм. На обращенной к КА стороне подложки выполнены канавки прямоугольного или трапецеидального сечения, а также продольные углубления полукруглого сечения. Второй и последующие слои ЭВИ прикреплены к предыдущим слоям через сферические спейсеры, установленные между пластинами. Диаметр спейсеров составляет не менее величины указанного зазора. В местах установки спейсеров нанесены слои диоксида кремния толщиной 0,5...1 мкм. На внешнюю поверхность микропластин и открытые поверхности подложки нанесено алюминиевое покрытие толщиной 0,1...0,3 мкм с коэфф. отражения 0,7-0,9. Микропластины м.б. выполнены биморфными. При изготовлении микропластин электропроводными на поверхности кремниевой подложки м.б. выполнены токопроводящие шины. Технический результат изобретения состоит в снижении массы и габаритных размеров ЭВИ и КА. 6 з.п. ф-лы, 7 ил.

Область техники

Изобретение относится к микроструктурным устройствам в области космонавтики и может быть использовано как отдельная экранно-вакуумная изоляция (ЭВИ) космических аппаратов (КА), в частности, нано- и пикоспутников, а также в качестве элемента сложной системы теплоизоляции КА или его составных частей.

Уровень техники

Из уровня техники известна активная вакуумная изоляция, состоящая из камеры, закрытой двумя слоями металла, стеклоподобных спейсеров, расположенных в камере между боковыми стенками и обеспечивающих наличие зазора между ними (патент на изобретение США №US 5562154, опубл. 8.10.1996). В камере создан высокий вакуум. В состав изоляции входит аппаратура для регулирования коэффициента теплоизоляции поверхности. Первый вариант включающей/выключающей аппаратуры и методики включает в свой состав металлический гидрид для получения водорода в камере в случае перегрева, и трубки между металлическим гидридом и камерой для возможности возвращения водорода в металлический гидрид. Второй тип включающей/выключающей аппаратуры и методики включает в себя покрытие на поверхности металла с изменяющимся коэффициентом излучения, в котором коэффициент излучения изменяется под действием тепла или электричества. Кроме того, второй тип включающей/выключающей аппаратуры и методики включает в свой состав устройства с контактом металл по металлу, которые могут быть приведены в действие для замыкания/размыкания нагреваемых дорожек или тепловых схем между металлическими боковыми стенками.

Недостатками известного технического решения является большой вес изоляции для ее установки на малые КА, сложности с ее монтажом на КА с большим количеством выводов и аппаратуры на внешнем корпусе, что требует создания изоляции сложной формы. Кроме того, использование в системе металлического гидрида для получения водорода ограничивает срок эксплуатации изоляции, а использование водорода требует применения дополнительных мер предосторожности. Известная конструкция обладает низким быстродействием из-за ее значительной теплоемкости, что сводит на нет преимущества активного управления при монтаже изоляции на нестабилизированные КА.

Из уровня техники известна изоляция космической техники, применяемая для предотвращения теплопередачи между элементами системы и окружающим космическим пространством, происходящей при очень низких температурах и давлении ниже 10 Торр, представляющая собой барьер для передачи тепла, состоящая из множества слоев тонкой металлизированной пластиковой пленки с толщиной металлизации менее 1 микродюйма и коэффициентом излучения менее 0,06 (патент на изобретение США №US 3,244,224, опубл. 5.04.1966). Указанное тонкое металлическое покрытие и материал из пластиковой пленки каждого слоя обеспечивают низкую теплопроводность через боковую стенку. Слои располагаются лицом к лицу относительно друг друга и удерживаются, как правило, через точечный контакт между смежными слоями. Набор слоев включает в себя как минимум две пары слоев, причем два слоя из пары соединены вместе в точке, а второй слой туго натянут на несущей поверхности.

Недостатками известного технического решения является большая толщина конструкции, необходимость применения большого количества слоев (100 слоев и более), из чего вытекает высокая сложность изготовления изоляции, большой вес системы и трудности с монтажом изоляции на поверхность КА, имеющего большое количество внешних элементов.

Из уровня техники известна экранно-вакуумная теплоизоляция космического аппарата с внешним комбинированным покрытием, состоящая из полимерной подложки, электропроводного слоя с износостойким слоем на внешней поверхности и отражающего слоя на внутренней поверхности (патент на изобретение РФ №RU 2397926, опубл. 27.08.2010). Изоляция содержит временный защитный слой на внешней поверхности и укрепляющую полимерную сетку на внутренней поверхности. Достигается повышение надежности, эффективности, уменьшение веса и пылеворсоотделения экранно-вакуумной тепловой изоляции.

К недостаткам этого технического решения следует отнести довольно высокую теплопроводность из-за отсутствия вакуумных зазоров, большие габариты и вес теплоизоляции за счет применения большого количества различных слоев, необходимость в использовании временного защитного покрытия для защиты от повреждений и загрязнения теплоизоляции, трудности с монтажом теплоизоляции на поверхность малых КА с большим количеством внешних элементов.

Наиболее близким по технической сущности является терморегулирующее покрытие и способ его установки на КА, содержащее подложку в виде отдельных элементов из прозрачного радиационно-стойкого материала, тыльная поверхность которой покрыта отражающим, защитным и адгезионным слоями, а на внешней поверхности расположено прозрачное электропроводное покрытие, покрывающее торцевые поверхности подложки и контактирующее с защитным слоем (патент на изобретение РФ №RU 2356074, опубл. 20.05.2009). Толщина отдельных элементов не менее 0,08 мм, электросопротивление электропроводного покрытия - не менее 2 и не более 1×105 кОм/м2. При установке электропроводный клеевой слой наносят на поверхность КА, после чего вспомогательную ленту с липким слоем с наклеенными отдельными элементами прижимают к поверхности КА для удаления пузырьков воздуха и излишков клея. После отверждения клеевого слоя вспомогательную ленту отслаивают. Материал клеевого слоя маловязкий в исходном состоянии и эластичный после отверждения, и содержит ингибитор коррозии, а также волокнистый электропроводный материал, длина волокон которого больше толщины клеевого слоя.

Основными недостатками прототипа являются:

- низкая эффективность теплоизоляции из-за отсутствия вакуумных зазоров;

- большая масса конструкции за счет габаритных размеров и применяемых материалов;

- высокая теплопроводность между адгезивным слоем и корпусом КА в связи с большой площадью контакта;

- необходимость применения вспомогательной ленты с липким слоем с соблюдением заданного зазора между торцевыми поверхностями элементов, что усложняет конструкцию и технологию изготовления и сборки покрытия;

- необходимость применения защитного слоя между отражающим и адгезивным слоями, что усложняет конструкцию и технологию изготовления покрытия.

Раскрытие изобретения

Техническим результатом изобретения является снижение массы и габаритных размеров ЭВИ КА.

Технический результат достигается тем, что в микроструктурной многослойной ЭВИ космических аппаратов каждый слой выполнен в виде устанавливаемой на поверхность аппарата подложки. На подложке закреплены теплоотражающие элементы. Теплоотражающие элементы выполнены в виде массива прямоугольных микропластин. Каждая прямоугольная микропластина закреплена на подложке с зазором 10….20 мкм от поверхности подложки. На обращенной к защищаемому аппарату поверхности подложки выполнены канавки прямоугольного или трапецеидального сечения. Второй и последующие слои ЭВИ прикреплены к предыдущим слоям через калиброванные сферические спейсеры, устанавливаемые между слоями. Диаметр спейсеров составляет не менее величины зазора. На поверхности подложек выполнены продольные углубления полукруглого сечения. На внешнюю поверхность микропластин и открытые площади подложки нанесено теплоотражающее покрытие толщиной 0,1…..0,3 мкм с коэффициентом отражения 0,7…0,9. На подложках в местах установки сферических спейсеров нанесены слои диоксида кремния толщиной 0,5…1 мкм с коэффициентом теплопроводности 1,4 Вт/(м·К). Микропластины могут быть выполнены биморфными, причем коэффициент термического расширения (КТР) слоя, обращенного к подложке, меньше КТР внешнего слоя. На поверхности кремниевой подложки могут быть выполнены токопроводящие шины, а микропластины могут быть выполнены электропроводящими.

Краткое описание чертежей

На фиг. 1 представлена схема расположения микропластин ЭВИ КА на подложке.

На фиг. 2 представлено поперечное сечение (посредине пластин параллельно горизонтали) ЭВИ КА с канавками прямоугольного сечения.

На фиг. 3 представлено поперечное сечение ЭВИ КА с канавками прямоугольного сечения и продольными углублениями полукруглого сечения.

На фиг. 4 представлено поперечное сечение ЭВИ КА с канавками трапецеидального сечения.

На фиг. 5 представлено поперечное сечение ЭВИ КА с канавками трапецеидального сечения и продольными углублениями полукруглого сечения.

На фиг. 6 представлено поперечное сечение ЭВИ КА, состоящей из нескольких слоев, разделенных калиброванными сферическими спейсерами.

На фиг. 7 представлена микрофотография (х200) ЭВИ КА.

Осуществление изобретения

Микроструктурная многослойная ЭВИ КА состоит из слоев нитрида кремния 1 (фиг. 1 - 6), канавок с различной геометрией стенок 2, кремниевой подложки 3, слоев диоксида кремния 4, слоев теплоотражающего покрытия 5, вакуумного зазора 6, микропластин 7, продольных углублений полукруглого сечения 8 и калиброванных шарообразных спейсеров 9.

ЭВИ КА предназначена для теплоизоляции поверхности КА путем ее защиты от солнечного излучения и кондукции тепла на поверхность КА с поверхности ЭВИ КА. Микропластины представляют собой прямоугольные пластины шириной 330-390 мкм, длиной 370…420 мкм и толщиной 5…15 мкм, выполненные с использованием МЭМС- технологий из никеля, меди или алюминия с наружным теплоотражающим покрытием толщиной 0,1…0,3 мкм с коэффициентом отражения 0,7…0,9 в диапазоне длин волн 0,3…3 мкм, на который приходится основная доля энергии солнечного излучения. Это же теплоотражающее покрытие наносится на всю неприкрытую микропластинами поверхность подложки. В микропластинах выполнены технологические отверстия (на сечениях не показаны) размером 10…15 мкм, не оказывающие существенного влияния на тепловые свойства конструкции.

Прямоугольные микропластины закреплены на подложке с зазором 10-20 мкм. Величина зазора должна быть больше критической величины, при которой в передаче тепла доминируют неоднородные волны. Критическая величина зазора существенно зависит от температуры и при низких температурах этот вид переноса тепла доминирует даже при расстояниях в несколько миллиметров. При температурах от 0°С и выше критическое расстояние слабо изменяется и составляет от 8,4 мкм и ниже, поэтому нижней границей зазора выбрана величина 10 мкм. Согласно исследованиям зазор 20 мкм препятствует кондукции тепла на поверхность КА при температурах до - 173°С [А.И. Волокитин. Радиационная передача тепла и "вакуумное" трение между наноструктурами //Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 16 (2002), 129-139], и его увеличение несущественно влияет на работу ЭВИ в условиях низких температур. Исходя из этого, нецелесообразно выполнять зазор более 20 мкм.

В случае необходимости охлаждения КА за счет биморфной конструкции микропластин или электростатической системы управления возможно уменьшение зазора практически до нуля. В этом случае микропластины прижимаются к подложке и, если температура на поверхности КА больше температуры ЭВИ КА, тепло с поверхности КА за счет теплопроводности стекает на ЭВИ КА и излучается в открытый космос.

Для снижения лучистого теплообмена максимально возможная площадь наружной поверхности ЭВИ КА (~90%) покрывается теплоотражающим покрытием толщиной 0,1...0,3 мкм с коэффициентом отражения до 0,9. Для сведения к минимуму кондукции тепла от поверхности ЭВИ КА к поверхности КА применяется теплоизоляция мест контакта микропластин с кремниевой подложкой и непрофилированной поверхностью обратной стороны подложки путем микропрофилирования обратной стороны подложки канавками прямоугольного или трапецеидального сечения. Для дальнейшего снижения теплопроводности ЭВИ КА возможно формирование дополнительных слоев ЭВИ КА, разделенных сферическими спейсерами с низкой теплопроводностью и точечным тепловым контактом с разделяемыми слоями.

ЭВИ КА представляет собой подложку из кремния толщиной 400…500 мкм с изготовленными на поверхности металлическими микропластинами и дополнительными функциональными слоями методами МЭМС-технологий. Поверхность основания, обращенная к КА, профилируется методами плазмохимического травления для снижения площади теплового контакта между микроструктурной многослойной ЭВИ КА и наружной поверхностью КА. Возможно использование как анизотропного глубинного плазмохимического травления кремния (фиг. 2, 3), так и изотропного процесса травления кремния (фиг. 4, 5). Процесс травления затрагивает всю обратную сторону кремниевого основания, за исключением областей, на которых формируются продольные углубления полукруглого сечения под спейсеры. Плазмохимическое травление осуществляется через маску из нитрида кремния, формируемую методами фотолитографии, которая после травления выполняет функцию теплоизоляции мест контакта ЭВИ КА с поверхностью спутника. Теплопроводность нитрида кремния составляет 19 Вт·м/К, что на порядок ниже, чем у кремния - 157 Вт·м/К. Из стандартных материалов, применяемых микроэлектронной промышленностью, по коэффициенту теплопроводности нитрид кремния уступает только диоксиду кремния (1,4 Вт·м/К) и полимерам типа полиимиды и ПММА (0,12 и 0,2 Вт·м/К соответственно). Однако нитрид кремния имеет наиболее близкий к кремнию коэффициент термического расширения (2,8 10-6/°С, у кремния 2,6 10-6/°С), что в условиях космического пространства и частых перепадов температуры в широком диапазоне является наиболее критичным. Полимеры в условиях открытого космоса и отсутствия внешней защиты подвержены разрушительному воздействию атомарного кислорода, что значительно сокращает срок эксплуатации изделия.

Канавки прямоугольного сечения формируются глубиной 50…250 мкм, шириной 40…100 мкм, длиной 200…250 мкм, расстоянием между канавками 5…10 мкм и располагаются под местами закрепления прямоугольных микропластин на подложке слоя ЭВИ КА. Канавки трапецеидального сечения формируют глубиной 50…250 мкм, шириной наружного основания 100…200 мкм, шириной основания в теле подложки 90 мкм, длиной 200…250 мкм, расстоянием между канавками 5…10 мкм и располагаются под местами закрепления прямоугольных микропластин на подложке.

В местах контакта микропластин с кремниевой подложкой формируют слой диоксида кремния толщиной 0,5…1 мкм с коэффициентом теплопроводности 1,4 Вт/(м·К) для теплоизоляции основания от микропластин.

При необходимости увеличения теплоизоляционных характеристик ЭВИ КА формируют второй и последующие слои экранно-вакуумной изоляции, соединяемые между собой через калиброванные сферические спейсеры диаметром около 40 мкм (фиг.6).

Продольные углубления полукруглого сечения в кремниевом основании выполнены для самоорганизации спейсеров между слоями на этапе сборки микроструктурной многослойной ЭВИ КА. На фиг. 7 показано фото опытного образца слоя ЭВИ.

Микропластины могут быть выполнены биморфными. Технологически это не представляет больших сложностей. Подбор материалов с различными значениями коэффициентов теплового расширения позволяет рассчитать величину изменения зазора в зависимости от температуры окружающей среды, а, следовательно, изменять теплозащитные свойства ЭВИ. При этом КТР нижнего слоя должен быть меньше КТР верхнего слоя.

Для изменения вакуумного зазора вплоть до нуля может быть применено электростатическое управление ЭВИ КА. Для этого микропластины изготавливаются электропроводящими, а на оппозитной пластинам поверхности кремниевой подложки выполнены токопроводящие шины и контактные площадки. При подаче разницы потенциалов величиной 0…100 В на подложку и микропластины между ними возникает электростатическое поле и микропластины притягиваются к подложке, уменьшая зазор.

Опытные образцы микроструктурной многослойной ЭВИ изготовлены, проходят стадию всесторонних исследований. Предварительные тепловые испытания показывают, что в сравнении с применяемыми в настоящее время типами ЭВИ ее масса на 10…15 процентов меньше, толщина уменьшена на 20…25 процентов.


МИКРОСТРУКТУРНАЯ МНОГОСЛОЙНАЯ ЭКРАННО-ВАКУУМНАЯ ИЗОЛЯЦИЯ КОСМИЧЕСКИХ АППАРАТОВ
МИКРОСТРУКТУРНАЯ МНОГОСЛОЙНАЯ ЭКРАННО-ВАКУУМНАЯ ИЗОЛЯЦИЯ КОСМИЧЕСКИХ АППАРАТОВ
МИКРОСТРУКТУРНАЯ МНОГОСЛОЙНАЯ ЭКРАННО-ВАКУУМНАЯ ИЗОЛЯЦИЯ КОСМИЧЕСКИХ АППАРАТОВ
МИКРОСТРУКТУРНАЯ МНОГОСЛОЙНАЯ ЭКРАННО-ВАКУУМНАЯ ИЗОЛЯЦИЯ КОСМИЧЕСКИХ АППАРАТОВ
МИКРОСТРУКТУРНАЯ МНОГОСЛОЙНАЯ ЭКРАННО-ВАКУУМНАЯ ИЗОЛЯЦИЯ КОСМИЧЕСКИХ АППАРАТОВ
МИКРОСТРУКТУРНАЯ МНОГОСЛОЙНАЯ ЭКРАННО-ВАКУУМНАЯ ИЗОЛЯЦИЯ КОСМИЧЕСКИХ АППАРАТОВ
МИКРОСТРУКТУРНАЯ МНОГОСЛОЙНАЯ ЭКРАННО-ВАКУУМНАЯ ИЗОЛЯЦИЯ КОСМИЧЕСКИХ АППАРАТОВ
Источник поступления информации: Роспатент

Показаны записи 81-84 из 84.
29.04.2019
№219.017.447e

Микросистемное устройство управления поверхностью для крепления малогабаритной антенны

Изобретение относится к области микросистемной техники и может быть использовано при создании микросистемных устройств управления и/или сканирования малогабаритной антенной или оптической отражающей поверхностью (зеркала) на основе подвижных термомеханических микроактюаторов, обеспечивающих...
Тип: Изобретение
Номер охранного документа: 0002456720
Дата охранного документа: 20.07.2012
18.05.2019
№219.017.5981

Бортовая информационная система с радиолинией метрового диапазона волн

Изобретение относится к области космонавтики, а именно к обработке изображения Земной поверхности и передаче полученной информации на Землю, и предназначено для приема данных от бортовой информационной аппаратуры космического аппарата (КА), предварительной обработки этой информации и передачи...
Тип: Изобретение
Номер охранного документа: 0002429504
Дата охранного документа: 20.09.2011
18.05.2019
№219.017.59fa

Блокирующий диод для солнечных батарей космических аппаратов

Изобретение относится к области дискретных полупроводниковых приборов, в частности к блокирующим диодам для солнечных батарей космических аппаратов. Техническим результатом заявленного изобретения является создание бескорпусного блокирующего диода для солнечных батарей космических аппаратов с...
Тип: Изобретение
Номер охранного документа: 0002457578
Дата охранного документа: 27.07.2012
10.07.2019
№219.017.afcb

Автоматизированная система мониторинга и контроля газа на объектах и/или в помещениях

Изобретение относится к системам безопасности критически важных объектов и сооружений, в частности к автоматизированным системам мониторинга, дистанционного контроля и сигнализации состава газа во взрывоопасных зонах (помещениях) и критически важных объектах (сооружениях). Техническим...
Тип: Изобретение
Номер охранного документа: 0002455695
Дата охранного документа: 10.07.2012
Показаны записи 91-94 из 94.
02.03.2020
№220.018.0822

Многослойная коммутационная плата свч-гибридной интегральной микросхемы космического назначения и способ её получения (варианты)

Изобретение относится к электронной технике, а именно к области СВЧ микроэлектроники. Техническим результатом заявленного изобретения является повышение адгезионной прочности монтажных соединений в коммутационной плате и технологичности коммутационной СВЧ-платы. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002715412
Дата охранного документа: 28.02.2020
16.05.2023
№223.018.630e

Ползающий космический микроробот-инспектор

Изобретение относится к микроробототехнике, а именно к мобильным микророботам, и предназначено для осуществления инспекционных работ на солнечных батареях космических аппаратов и/или Международной космической станции, в экстремальных ситуациях, преимущественно для минимизации рисков человека в...
Тип: Изобретение
Номер охранного документа: 0002771501
Дата охранного документа: 06.05.2022
17.06.2023
№223.018.7e01

Микромодуль космического назначения

Изобретение относится к микроэлектронным приборам космического назначения и может быть использовано в составе бортовой и наземной аппаратуры космических аппаратов с высокоплотным монтажом. Предложен микромодуль, включающий в свой состав корпус с крышкой, основание, N чередующихся коммутационных...
Тип: Изобретение
Номер охранного документа: 0002778034
Дата охранного документа: 12.08.2022
17.06.2023
№223.018.7f2d

Способ изготовления микромодуля

Изобретение относится к технологии микроэлектронных приборов, состоящих из нескольких полупроводниковых компонентов на твердом теле, и может быть использовано при производстве аппаратуры с высокоплотным монтажом. Cпособ изготовления микромодуля включает формирование на коммутационной плате...
Тип: Изобретение
Номер охранного документа: 0002773807
Дата охранного документа: 09.06.2022
+ добавить свой РИД