×
10.07.2015
216.013.5eed

Результат интеллектуальной деятельности: МЕДЬХРОМЦИНКОВЫЙ КАТАЛИЗАТОР ДЛЯ ГЕТЕРОГЕННЫХ РЕАКЦИЙ

Вид РИД

Изобретение

№ охранного документа
0002555842
Дата охранного документа
10.07.2015
Аннотация: Изобретение относится к химической промышленности, а именно к усовершенствованию промышленного медьхромцинкового катализатора для низкотемпературной конверсии оксида углерода и расширения области его применения для других процессов. Заявлен медьхромцинковый катализатор для гетерогенных реакций, включающий оксиды меди, хрома, цинка, алюминия и дополнительный компонент. Катализатор содержит в качестве дополнительного компонента соединение кремния в пересчете на оксид 0,5-5 мас.%, и сформирован в процессе термообработки гидроксида алюминия совместно с соединениями вышеназванных компонентов, и имеет пористую структуру с общим удельным объемом пор не менее 0,25 см/г и долей мезопор диаметром 10-40 нм более 60%, и катализатор имеет в пересчете на оксиды следующий состав, мас.%: CuO 50,0-57,0; CrO 11,0-16,0; ZnO 9,5-13,0; SiO 0,5-5,0; оксид алюминия - остальное. Техническим результатом предлагаемого изобретения является создание медьхромцинкового катализатора, обладающего повышенной прочностью, термостабильностью и возможность его использования в различных химических процессах. 5 з.п. ф-лы, 2 табл., 8 пр.

Изобретение относится к химической промышленности, а именно к усовершенствованию промышленного медьхромцинкового катализатора для низкотемпературной конверсии оксида углерода и расширения области его применения для других процессов.

Медьхромцинковый катализатор для низкотемпературной конверсии оксида-углерода (НТК-4) имеет следующий состав, мас.%: CuO 37,5-55,0; ZnO 9,0-25,5; Cr2O3 6,0-15,0; Al2O3 (Катализаторы азотной промышленности. Каталог, НИИТЭХИМ, Черкассы, 1989, с.11-12. Катализаторы, применяемые в азотной промышленности. Каталог, НИИТЭХИМ, Черкассы, 1979).

Известно использование этого катализатора для других реакций (патент RU 2066679 C1, C07C 211/48, B01J 23/86, опубл. 20.09.1996). Предложено осуществлять N-алкилирование анилина метанолом на промышленных катализаторах низкотемпературной конверсии оксида углерода серии НТК при 180-220°C в присутствии водорода. Предлагаемый способ позволяет при конверсии анилина до 99,2% и выходе целевого N-метиланилина до 97,7% упростить технологию производства за счет исключения стадии приготовления специального катализатора, проведении процесса при более низкой температуре и продлении срока активной работы катализатора без регенерации.

Недостатком катализатора является его низкая прочность, что приводит к необходимости его частой регенерации и уменьшению срока его службы.

Известно использование катализатора НТК-4 для получения анилина (патент RU 2135461 C1, C07C 211/46, C07C 209/36, опубл. 27.08.1999).

Предложено осуществлять гидрирование нитробензола до анилина на промышленных оксидных алюмомедно-цинкхромовых катализаторах синтеза метанола ДВ-8-2 или низкотемпературной конверсии оксида углерода НТК-4, НТК-4м, НТК-8 при температуре 155-240°C и атмосферном давлении. Предлагаемый способ позволяет при конверсии нитробензола, близкой к 100%, и выходе анилина 99,2-99,8% упростить технологию производства за счет исключения стадии приготовления специального катализатора, проведения процесса при более низкой температуре и продления срока активной работы катализатора без регенерации.

Недостатком этого катализатора в этом процессе является его недостаточно высокая прочность, что также приводит к уменьшению срока его службы.

Известно использование катализатора НТК-4 для получения n-алкиланилинов (патент RU 2152382 C1, C07C 211/48, C07C 209/36, опубл. 10.07.2000).

Усовершенствованный способ получения N-алкиланилина восстановительным N-алкилированием нитробензола спиртом проводят на промышленных катализаторах низкотемпературной конверсии оксида углерода серии НТК при 150-300°C в атмосфере водорода. Мольное соотношение исходных компонентов - нитробензол:спирт:водород составляет 1:(1-5):(3-10) соответственно. В качестве спиртов можно использовать спирты С1-C8 нормального, разветвленного или циклического строения.

Недостатком этого катализатора в этом процессе, как и в вышеописанных, является его недостаточно высокая прочность, что приводит к уменьшению срока его службы.

Известно использование медьхромцинкового катализатора для синтеза метанола и конверсии окиси углерода (а.с. SU 671077, B01J 23/72, B01J 23/86, B01J 37/16, опубл. 10.08.2008).

Способ получения катализатора для синтеза метанола и конверсии окиси углерода включает смешение соединений цинка, хрома, меди и алюминия с последующей обработкой восстановителем и сушкой.

Недостатком этого катализатора в этом процессе, как и в вышеописанных, является его недостаточно высокая прочность.

Наиболее близким техническим решением является катализатор для низкотемпературной конверсии оксида углерода, раскрытый в патенте RU 2175265 С1, B01J 23/80, B01J 23/78, B01J 23/84, B01J 23/883, B01J 23/885, B01J 37/04, C01B 3/16, опубл. 27.10.2001.

Предложенный катализатор низкотемпературной конверсии оксида углерода включает оксиды меди, цинка, модифицирующее соединение металла и оксид алюминия, содержащий по крайней мере одно соединение элемента, выбранного из группы K, Na, Si, Fe, Ca, Ba или их смесь, в количестве 0,01-2,0 мас.% в пересчете на оксид, а в качестве модифицирующего соединения катализатор содержит по крайней мере одно соединение металла, выбранного из группы Ni, Mn, Cr, Zr, Na, Ti, Mg или их смесь, в количестве 0,1-15 мас.% в пересчете на оксид, и катализатор имеет следующий состав, мас.%: CuO 35,0-61,0; ZnO 12,0-29,0. По крайней мере одно соединение модифицирующего металла из группы: Ni, Mn, Cr, Zr, Na, Ti, Mg или их смесь 0,1-15,0. Оксид алюминия, содержащий по крайней мере одно соединение элемента, выбранного из группы: K, Na, Si, Fe, Ca, Ba или их смесь, в количестве 0,01-2,0 мас.% - остальное.

Этот катализатор обладает более высокой прочностью, чем вышеописанные катализаторы, однако состав его достаточно сложный. Кроме модифицирующих соединений катализатор содержит носитель, который получают, специальным образом вводя в него необходимые элементы, что приводит к значительному усложнению способа его получения. Катализатор имеет недостаточную прочность для использования его в различных процессах.

Задачей предлагаемого изобретения является создание медьхромцинкового катализатора, обладающего повышенной прочностью и термостабильностью для использования в различных процессах.

Поставленная задача решается с помощью медьхромцинкового катализатора для гетерогенных реакций, включающего оксиды меди, хрома, цинка, алюминия и дополнительный компонент. Катализатор содержит в качестве дополнительного компонента соединение кремния в пересчете на оксид 0,5-5 мас.%, и сформирован в процессе термообработки гидроксида алюминия совместно с соединениями вышеназванных компонентов, и имеет пористую структуру с общим удельным объемом пор не менее 0,25 см3/г и долей мезопор диаметром 10-40 нм более 60%, и катализатор имеет в пересчете на оксиды следующий состав, мас.%:

CuO 50,0-570
Cr2O3 11,0-160
ZnO 9,5-130
SiO2 0,5-50
оксид алюминия остальное

Предпочтительно катализатор имеет форму цилиндрических гранул, полученных экструзией в виде равноразмерных цилиндров с диаметром 3-8 мм.

Предпочтительно катализатор имеет величину удельной поверхности не менее 60 м2/г с сохранением ее до температуры 500°C.

Предпочтительно катализатор имеет механическую прочность на раздавливание по образующей гранулы не менее 5 МПа с сохранением ее до температуры 500°C.

Предпочтительно катализатор содержит диоксид кремния в количестве 2-3 мас.%.

Предпочтительно катализатор используют для получения анилина или низкотемпературной конверсии диоксида углерода, синтеза метанола, синтеза N-алкиланилина.

В настоящие время в России медьхромцинковый катализатор НТК-4 получают таблетированием. Основным недостатком этого катализатора является маленький срок службы из-за потери механической прочности, особенно в присутствии водяных паров.

Предлагаемый катализатор получают методом смешения компонентов, включающих медь, хром, цинк, кремний и гидроксид алюминия, при смешении которых происходит равномерное распределение компонентов катализатора по грануле. Катализатор получают методом экструзионного формования.

Неожиданным результатом стало получение медьхромцинкового катализатора, обладающего повышенной прочностью и имеющего общий удельный объем пор не менее 0,25 см3/г и мезопоры диаметром 10-40 нм. Получение катализатора с такими свойствами позволяет использовать его для многих химических процессов, например:

1) получение анилина;

2) низкотемпературная конверсия оксида углерода;

3) синтез метанола;

4) синтез N-алкиланилина.

Нижеследующие примеры иллюстрируют предлагаемое изобретение. Удельную поверхность определяют методом БЭТ, объем пор - адсорбцией воды, прочность на раздавливание - на приборе МП-9С.

Пример 1

В лопастной смеситель загружают гидроксид алюминия псевдобемитной структуры в количестве 15-25% в пересчете на готовый катализатор, проводят его пептизацию азотной кислотой. Кислотный модуль составляет 0,12-0,14. Затем загружают порошкообразные компоненты - оксиды меди, хрома, цинка и кремния в количествах, необходимых для получения готового катализатора следующего состава, мас.%:

CuO 53
Cr2O3 13,5
ZnO 10
SiO2 2
Al2O3 остальное

Сухие компоненты равномерно перемешивают с влажным гидроксидом алюминия, в присутствии воды доводят массу до однородного пастообразного состояния. Полученную пасту экструдируют через фильеру с диаметром отверстий 5 мм, разрезают на гранулы длиной 5-6 мм, которые сушат при температуре 120°C - 4 часа. Прокаливание катализатора проводят в токе воздуха при температуре от 400 до 500°C. Удельная поверхность готового катализатора составляет 73 м2/г, прочность на раздавливание по образующей - 6,2 МПА, суммарный объем пор - 0,27 см3/г, доля объема пор с радиусом от 10 до 40 нм - 70%.

Примеры 2-7 аналогичны примеру 1, отличие состоит в том, что загрузка компонентов в смеситель производилась в количестве, соответствующем составу катализатора, мас.%.

Пример 2

CuO 54.5
Cr2O3 12,5
ZnO 11,7
SiO2 5
Al2O3 остальное

Характеристика катализатора представлена в таблице 1.

Пример 3

CuO 51,8
Cr2O3 14,0
ZnO 12,2
SiO2 1,05
Al2O3 остальное

Характеристика катализатора представлена в таблице 1.

Пример 4

CuO 52,3
Cr2O3 16,0
ZnO 12,9
SiO2 3,5
Al2O3 остальное

Характеристика катализатора представлена в таблице 1.

Пример 5

CuO 55,4
Cr2O3 12,0
ZnO 10,3
SiO2 2,7
Al2O3 остальное

Характеристика катализатора представлена в таблице 1.

Пример 6

CuO 51,5
Cr2O3 15,1
ZnO 9,0
SiO2 0,5
Al2O3 остальное

Характеристика катализатора представлена в таблице 1.

Пример 7

CuO 57,0
Cr2O3 14,5
ZnO 11,8
SiO2 0,5
Al2O3 остальное

Характеристика катализатора представлена в таблице 1.

Пример 8 (прототип)

К гидроксиду алюминия, содержащему Na2O в количестве 0,03%, добавляют кислородсодержащие соединения Cu, Cr, Zn в количестве, необходимом для получения в составе катализатора CuO - 52%, ZnO - 9,96%, Cr2O3 - 12, добавляют азотную кислоту (кислотный модуль равен 0,75), массу перемешивают в течение 30 мин, экструдируют, сушат при температуре 110°C и прокаливают при температуре 450°C в течение 6 часов.

Из таблицы 1 видно, что предлагаемый катализатор характеризуется высокой механической прочностью и удельной поверхностью. Доля объема пор от 10 до 40 нм, обеспечивающих высокую активность катализатора, составляет не менее 70% от суммарного объема пор.

К медьсодержащим катализаторам, используемых в процессах низкотемпературной конверсии оксида углерода водяным паром, синтеза анилина и других, предъявляют жесткие требования в отношении:

1. Активности.

2. Термостабильности, т.е. активность должна сохраняться при перегреве катализатора до 350-400°C.

3. Стабильности, т.е. к устойчивости катализатора к воздействию реакционной среды.

4. Механической прочности.

Механическая прочность приобретает особое значение при загрузке катализатора в трубчатый реактор, например синтез анилина. Катализатор в таком реакторе должен обеспечивать устойчивый перепад давления по трубке, то есть иметь хорошую прочность и не разрушаться при эксплуатации. Поэтому предлагаемый катализатор неоднократно подвергался воздействию высоких температур 500°C в течение четырех часов для проверки сохранения его свойств.

Характеристика образцов (удельная поверхность и прочность на раздавливание по образующей) после термообработки при 500°C приведена в таблице 2.

Из таблицы 2 видно, что предлагаемый катализатор обладает высокой термостабильностью и сохраняет высокую удельную поверхность и механическую прочность до 500°C, что позволяет его использовать с высокой эффективностью для многих гетерогенных реакций, в которых ранее использовался медьхромцинковый катализатор. Предлагаемый катализатор был испытан в следующих реакциях:

1. Гидрирование нитробензола до анилина при температуре 160-240°C и атмосферном давлении.

Катализатор показал следующие результаты:

Конверсия нитробензола - 99,8%

Выход анилина - 99,8%

2. Низкотемпературная конверсия оксида углерода. Активность катализатора характеризуется константой скорости реакции (см3/г·с) при температурах 180°C, 200°C, 225°C, при объемной скорости 5000 ч-1 и соотношении пар:газ - 0,7:1, объемной доле N2 - 23,1%, Н2 - 55,6%, CO - 12,5%, CO2 - 9,4%. Константа скорости реакции составляет при температурах:

180°C - 2,6

200°C - 4,2

225°C - 6,2

Техническим результатом предлагаемого изобретения является создание медьхромцинкового катализатора, обладающего повышенной прочностью и термостабильностью и возможность его использования в различных химических процессах.

Источник поступления информации: Роспатент

Показаны записи 31-37 из 37.
13.01.2020
№220.017.f4ee

Микросферический порошкообразный гидроксид алюминия заданной дисперсности и способ его получения

Изобретение относится к области химической технологии и может быть использовано в производстве оксидов и гидроксидов алюминия различных модификаций, солей алюминия и др. Поставленная задача решается с помощью микросферического порошкообразного гидроксида алюминия для приготовления носителей для...
Тип: Изобретение
Номер охранного документа: 0002710708
Дата охранного документа: 09.01.2020
22.01.2020
№220.017.f88b

Способ получения алюмооксидных катализаторов процесса клауса и применение их на установках получения серы

Изобретение относится к технологии получения катализаторов, в частности каталитических композиций процесса Клауса, и может найти применение в процессах очистки серусодержащих газов на предприятиях газовой, нефтяной, химической промышленности и металлургии. Поставленная задача решается с помощью...
Тип: Изобретение
Номер охранного документа: 0002711605
Дата охранного документа: 17.01.2020
01.02.2020
№220.017.fc61

Способ приготовления носителя для катализаторов на основе оксида алюминия

Изобретение относится к области катализа - к способу получения носителя с повышенной водостойкостью для приготовления катализаторов процессов нефте- и газопереработки, нефте- и газохимии. Описан способ приготовления носителя для катализаторов на основе оксида алюминия путем пептизации...
Тип: Изобретение
Номер охранного документа: 0002712446
Дата охранного документа: 29.01.2020
13.02.2020
№220.018.0219

Способ получения переосажденного гидроксида алюминия и способ получения гамма-оксида алюминия на его основе

Изобретение относится к способу получения гидроксида алюминия, используемого для приготовления носителей для катализаторов. Заявленный способ включает однопоточное осаждение из раствора алюмината натрия азотной кислотой, его стабилизацию, отмывку, фильтрацию, при этом процесс осаждения ведут...
Тип: Изобретение
Номер охранного документа: 0002713903
Дата охранного документа: 11.02.2020
22.04.2020
№220.018.16db

Устройство для подготовки катализатора в процессах дегидрирования парафиновых углеводородов c - c

Изобретение относится к области нефтехимии, в частности к установкам дегидрирования парафиновых углеводородов С-С в соответствующие олефиновые углеводороды, используемые для получения основных мономеров для синтетического каучука, а также при производстве полипропилена, метилтретичнобутилового...
Тип: Изобретение
Номер охранного документа: 0002719490
Дата охранного документа: 17.04.2020
21.06.2020
№220.018.28a4

Носитель для катализатора дегидрирования парафиновых углеводородов в стационарном слое на основе активного оксида алюминия

Изобретение относится к области катализаторов. Описан носитель для катализатора дегидрирования парафиновых углеводородов в стационарном слое на основе активного оксида алюминия, в котором предшественником оксида алюминия является композиция из переосажденного гидроксида алюминия в количестве...
Тип: Изобретение
Номер охранного документа: 0002724048
Дата охранного документа: 19.06.2020
11.07.2020
№220.018.318a

Катализатор для дегидрирования алкилароматических углеводородов

Изобретение относится к области производства катализаторов, а именно к катализатору для дегидрирования олефиновых и алкилароматических углеводородов. Катализатор включает соединения железа, калия и промоторы: оксид натрия, оксид магния, оксид и карбонат кальция, оксид молибдена (VI), оксид...
Тип: Изобретение
Номер охранного документа: 0002726125
Дата охранного документа: 09.07.2020
Показаны записи 11-15 из 15.
19.01.2018
№218.016.0a6c

Процесс окисления сероводорода

Изобретение относится к очистке газов и может быть использовано для обессеривания газов различного происхождения, содержащих 0,3-15,0 об.% сероводорода: отходящих газов процесса Клауса, биогазов, природного происхождения, топливных, коксовых печей, выбросов химических производств. Процесс...
Тип: Изобретение
Номер охранного документа: 0002632014
Дата охранного документа: 02.10.2017
13.02.2018
№218.016.2548

Кожухотрубные теплообменники в процессах дегидрирования углеводородов c-c (варианты)

Изобретение относится к кожухотрубному противоточному теплообменнику для нагрева паров сырья в процессах дегидрирования парафиновых углеводородов Сз-С теплом контактного газа, выходящего из реактора дегидрирования, содержащему вертикальный цилиндрический кожух (1), пучок теплообменных труб (2)...
Тип: Изобретение
Номер охранного документа: 0002642440
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2c3b

Технологическая схема установки дегидрирования парафиновых углеводородов с-с (варианты)

Изобретение относится к двум вариантам установки для получения олефиновых углеводородов дегидрированием парафиновых углеводородов C-C в кипящем слое мелкодисперсного алюмохромового катализатора, циркулирующего в системе реактор-регенератор, включающей узел приготовления исходного сырья...
Тип: Изобретение
Номер охранного документа: 0002643366
Дата охранного документа: 01.02.2018
20.02.2019
№219.016.bcc9

Катализатор для удаления соединений серы из промышленных газов и способ его получения

Изобретение относится к катализаторам для очистки отходящих серусодержащих газов по способу Клауса и может найти применение в процессах очистки отходящих газов на предприятиях газовой, нефтяной, химической промышленности, черной и цветной металлургии. Задачей, решаемой настоящим изобретением,...
Тип: Изобретение
Номер охранного документа: 0002280505
Дата охранного документа: 27.07.2006
21.06.2020
№220.018.28a4

Носитель для катализатора дегидрирования парафиновых углеводородов в стационарном слое на основе активного оксида алюминия

Изобретение относится к области катализаторов. Описан носитель для катализатора дегидрирования парафиновых углеводородов в стационарном слое на основе активного оксида алюминия, в котором предшественником оксида алюминия является композиция из переосажденного гидроксида алюминия в количестве...
Тип: Изобретение
Номер охранного документа: 0002724048
Дата охранного документа: 19.06.2020
+ добавить свой РИД