×
10.07.2015
216.013.5df1

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ОБРАБОТКИ РАСТИТЕЛЬНОГО МАТЕРИАЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области обработки растительных материалов, а именно к устройствам обработки растущих растений световым излучением. Предложенное устройство представляет собой контейнер, в котором находятся несколько светоизолированных друг от друга камер, скомпонованных в многоэтажную конструкцию. Каждая камера снабжена своей емкостью с субстратом для выращивания растений, источником света своей длины волны и своей видеокамерой. Источник света на кронштейне - радиаторе и видеокамера смонтированы на стенках камеры под прямым углом друг к другу. Растущие растения освещаются источником света через прозрачную боковую стенку емкости, а наблюдение видеокамерой ведется через другую перпендикулярную ей боковую стенку. Общие для всех камер источник электропитания и блок контроля и управления смонтированы на одной плате и закреплены внутри контейнера. Данное изобретение обеспечивает возможность исследования фототропических и гравитропических реакций растений на облучение их различными видами света, видимого и невидимого спектров, при различных уровнях гравитации, как в наземных условиях, так и в условиях, близких к невесомости, на космических аппаратах. 3 з.п. ф-лы, 2 ил.

Настоящее изобретение относится к области обработки растительных материалов, а именно, к устройствам обработки растущих растений световым излучением и предназначено, в частности, для исследований фототропических и гравитропических реакций растений, на облучение различными видами света видимого и невидимого спектров при различных уровнях гравитации как в наземных условиях, так и в условиях, близких к невесомости, на космических аппаратах.

Известны исследования влияния факторов космического полета на развитие растений при их культивировании на борту орбитальной МКС. Американский модуль "Астрокультура" (AdvAsc), предназначенный для этих целей, использовался в 2001-2002 гг. в составе полезной нагрузки МКС. Были проведены эксперименты в условиях орбитального "полета по выращиванию растений «от семян до семян», т.е. в течение полного жизненного цикла растений - от посева до сбора урожая. Оборудование исследовательского модуля обеспечивало управление параметрами и контроль условий роста растений. (См. NASA/TR - 2009 - 213146 - REV - А РВ 2009 - 115498 International Space Station Science Research Accomplishments During the Assembly Years: An Analysis of Results from 2000-2008 (Revision A). June 2009. P. 83 Advanced Astroculture (AdvAsc)).

Известно также устройство для ускорения роста растений с источниками света, освещающими растения светом определенных длин волн, описанное в патенте WO 03037068, М, кл. A01G 7/04, 2003 г. Согласно этому изобретению для растения важны два основных параметра освещения - длина световых волн и плотность светового потока при определенной длине волны. При этом акцентируется факт, что растения имеют фототропизм, управляемый определенными диапазонами спектра света так, что плоскость листа растения стремится повернуться так, чтобы быть освещенной под прямым углом к источнику света, а побеги и корни растений ориентируются в росте, соответственно, по направлению или в противоположном направлении относительно градиента светового потока. В зависимости от спектра и мощности освещения, побеги листья также могут поворачиваться к источнику света или от него. Управляя излучением источников света, управляют ростом растений так, что они получают желательные форму, размеры и свойства. Для этого устройство содержит источники света, освещающие растения дискретными длинами волн, выбираемыми в диапазонах 429-436 нм, и 449-453 нм, и 636-640 нм, и 658-662 нм. Поскольку, согласно изобретению, растения освещаются одновременно, по крайней мере, двумя источниками света с разными длинами волн, нет возможности оценить фототропические реакции растений на каждый источник света в отдельности. Кроме того, изобретение не содержит конструкционных признаков, указывающих на возможность контролирования, регистрации и управления экологическими параметрами выращивания растений (освещение, температура и пр.).

Наиболее близким по технической сущности к заявляемому изобретению является принятое в качестве прототипа устройство для обработки растительного материала, защищенное патентом WO 2008065352, М., кл. A01G 7/04, 2008 г. Устройство содержит светодиоды в качестве источников красного и синего света для облучения растительного материала в предназначенной для него емкости. Эта емкость находится в специальной камере в зоне действия излученного светодиодами света. Светодиоды расположены на верхней стенке этой камеры и излучают свет красного и синего цвета вниз на растительный материал с длинами волн 625-660 нм и 440 -470 нм и энергиями 500 и 400 мкЭ соответственно, обеспечивая гомогенную смесь цветов света в месте размещения растительного материала с энергиями до 30 мкЭ/(м2·с) красного света и до 20 мкЭ/(м2·с) синего света. Устройство содержит блок электропитания для своих составных частей, а также блок контроля и управления, предназначенный для обеспечения светодиодами определенной энергии и продолжительности освещения емкости с растительным материалом красным и синим светом на основании показаний датчиков энергии освещения и температуры, находящихся в зоне облучения обрабатываемого растительного материала. Блок контроля и управления дополнительно содержит жидкокристаллический дисплей для наблюдения за обработкой растительного материала и запоминающую аппаратуру для записи наблюдаемого процесса.

Недостатком устройства обработки растительного материала, выбранного в качестве прототипа, является то, что растительный материал, находящийся в предназначенной для него емкости, освещается сверху одновременно двумя источниками света с разными длинами волн для обеспечения, главным образом, гомогенной смеси красного и синего света и нет возможности оценить реакции растительного материала на каждый источник света в отдельности. Кроме того, при освещении сверху, в обычных наземных условиях, отсутствует возможность раздельной оценки фототропической и гравитропической реакций для случая обработки выращиваемых растений. При этом в устройстве не предусмотрено возможности освещения иными участками видимого спектра и прилегающих к нему диапазонов (ультрафиолетового и дальнего красного), а также наличия питательной среды (субстрата) для обработки длительно выращиваемых растений. Не отражены также особенности конструкции емкости, в которой находится освещаемый растительный материал.

Перечисленные недостатки устранены в предложенном устройстве, т.к., растительный материал (например, побеги мха, семена или проростки арабидопсиса или других растений), находящийся в предназначенной для него емкости, облучается через прозрачную боковую стенку светом только одного цвета, излучаемым источником света (светодиодом), установленным напротив этой стенки на кронштейне - радиаторе, прилегающем к стенке камеры, в которой размещается названная емкость. Наблюдение и регистрация процесса осуществляется посредством видеокамеры через прозрачную боковую стенку емкости, перпендикулярную стенке, через которую производится облучение. Видеокамера крепится к стенке камеры. Изготавливается несколько таких емкостей. Каждая из емкостей со слоем гелеподобного субстрата на дне, например, на основе агара, и с посаженными в субстрат семенами или побегами устанавливается в своей камере с размещенной в ней видеокамерой и источником света и облучается светом своего диапазона длин волн - от ультрафиолетового до инфракрасного, или смесью диапазонов - белый свет. Выполненные таким образом камеры с емкостями компонуются между собой удобным для эксплуатации образом, светоизолированно друг от друга, в частности, собираются в многоэтажную конструкцию и закрепляются внутри специально изготовленного для них контейнера, содержащего смонтированные на специальной плате, общие для всех камер блок электропитания и блок контроля и управления.

Предложенная конструкция устройства обеспечивает возможность одновременного исследования фототропических реакций растений на фотостимулы с несколькими дискретными длинами волн и позволяет изучить влияние освещения светом определенных длин волн на рост, химический состав и различные свойства растущих растений, а также при наличии фактора гравитации оценить гравитропическую реакцию, при различных направлениях светового и гравитационного воздействий.

В частных случаях, в конкретных формах выполнения или при особых условиях использования изобретение характеризуется следующими признаками:

- используется 5-ти камерная конструкция;

- освещение растений в первой камере - синим светом, во второй - красным, в третьей - дальним красным, в четвертой - белым, а в пятой - импульсным инфракрасным светом только во время видеосъемки;

- боковые стенки емкости для исследуемого растительного материала, противоположные прозрачным, выполнены матовыми, при этом фронтальная прозрачная стенка (со стороны видеокамеры) или ей противоположная (матовая), могут иметь масштабные риски;

- емкости для выращивания растений представляют собой стандартные культуральные флаконы.

Сущность предложенного устройства поясняется рисунками фиг. 1 и 2. На фиг. 1 изображен общий вид устройства в разрезе, на фиг. 2 - разрез А -А.

В металлическом контейнере 1, цилиндрической формы, содержатся пять камер 2 из алюминиевого сплава с размещенными в них емкостями 3, представляющими собой стандартные, обеспечивающие стерильность и газообмен, культуральные биофлаконы (покупные) с субстратом 4 и растительным материалом 5 внутри. Емкости 3 (культуральные флаконы) имеют плоские прозрачные стенки 6 и 7, а стенка 8 может быть выполнена матовой. Кроме того, стенка 7 или стенка 8 может иметь масштабные риски. Источники света 9 (светодиоды) установлены на кронштейнах - радиаторах 10, контактирующих с внутренними поверхностями каждой из пяти камер 2. Радиаторы 10 жестко соединены со стенками камер 2. Внешние и внутренние поверхности камер 2 выполнены черными. На монтажной плате 11 расположены общие для всех камер 2 блок электропитания 12 и блок контроля и управления 13 в отсеке 14 контейнера 1. В отсеке 15, под крышкой 16 контейнера 1, помещен видеорегистратор 17. Видеокамеры 18 для наблюдения за освещаемым светодиодами 9 растительным материалом 5 через прозрачные стенки 7 емкостей 3 смонтированы на плоских боковых стенках камер 2. Датчики температуры 19 приклеены к внутренней поверхности нижней стенки каждой камеры 2, а датчики интенсивности освещения 20 - к внешней поверхности верхней стенки каждого культурального флакона 3.

Работа устройства осуществляется следующим образом: растения 5 в каждом из пяти культуральных флаконов 3, находящихся в светоизолированных друг от друга алюминиевых камерах 2 с черными стенками, освещаются определенным диапазоном длин волн своего источника света 9. В частности, освещение в первом (верхнем) культуральном флаконе осуществляется в диапазоне длин волн 440-460 нм (синий свет), во втором - в диапазоне 640-660 нм (красный свет); в третьем - 735±10 нм (дальний красный свет) и в четвертом - белым светом. В пятом культуральном флаконе производится импульсное ИК (инфракрасное) освещение только в периоды видеосъемки. При эксперименте в условиях микрогравитации на КА контейнер должен обеспечивать жизнедеятельность растений в каждом из культуральных флаконов в течение 30 суток полета на орбите при непрерывном освещении светом с плотностью потока фотонов порядка 30 мкЭ/(м2·с). При сеансах связи зарегистрированные с помощью датчиков 19 значения температуры, а также данные о плотности потока фотонов освещения, полученные с помощью датчиков 20, и данные видеонаблюдений за развитием растений, передаются на Землю, где в лабораторных условиях синхронно проводятся контрольные эксперименты с использованием нескольких таких же контейнеров при их различной ориентации относительно вектора гравитации. Сравнивая зарегистрированные результаты наземных экспериментов с результатами экспериментов в условиях микрогравитации на борту КА, можно сделать выводы о фототропических реакциях растительного материала на их облучение светом разного цвета (разных диапазонов длин волн), а также заключения о влиянии вектора гравитации при наличии и при почти полном отсутствии фактора гравитации. В условиях наземных экспериментов, при наличии фактора гравитации, дополнительно оценивают гравитропические и фототропические реакции растений по углу их отклонения от вертикали, поскольку световое и гравитационное воздействия имеют различные направления.

К настоящему времени изготовлено два устройства и проведены их наземные испытания. В качестве одного из примеров проведены наблюдения за развитием побегов мха (physcomitrella patens). Отработано функционирование систем контроля, управления, наблюдения и регистрации экологических параметров и процесса роста растений, что позволило успешно провести эксперимент в космосе.

Использование предложенного устройства позволяет исследовать фототропические реакции растений на фотостимулы с дискретными длинами волн солнечного спектра и определить их раздельное влияние на рост и другие характеристики. Устройство позволяет также оценивать гравитропические и фототропические воздействия порознь и выяснить роль в ориентации и развитии растений.

Предложенное устройство отличается низким энергопотреблением и легко может быть реализовано в автономном варианте (например, с электропитанием от аккумуляторов).

Исследования, выполненные с помощью этого устройства, позволят более грамотно подходить к выращиванию на КА съедобных растений при осуществлении дальних космических полетов.


УСТРОЙСТВО ДЛЯ ОБРАБОТКИ РАСТИТЕЛЬНОГО МАТЕРИАЛА
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ РАСТИТЕЛЬНОГО МАТЕРИАЛА
Источник поступления информации: Роспатент

Показаны записи 61-70 из 72.
11.03.2019
№219.016.dd0d

Способ стыковки космических аппаратов и устройство для его реализации

Изобретения относятся к системам стыковки космических аппаратов (КА) и м.б. использованы в различных ситуациях, включая нештатные. Способ заключается в следующем. Перед стыковкой с пассивного КА выпускают на тросе устройство зацепления, например надувную мишень с высокопрочной сеткой и световой...
Тип: Изобретение
Номер охранного документа: 0002430861
Дата охранного документа: 10.10.2011
11.03.2019
№219.016.dd68

Способ идентификации космических аппаратов и их обломков в космическом пространстве (варианты)

На наружную поверхность корпуса космического аппарата и солнечные батареи наносят маркирующее покрытие. Покрытие составляют из композиции веществ, спектр отражения которой кодирует техническую и правовую информацию о космическим аппарате. Включают светоотражающие элементы на подслое или в...
Тип: Изобретение
Номер охранного документа: 0002442998
Дата охранного документа: 20.02.2012
29.03.2019
№219.016.f805

Способ отображения баллистического состояния орбитальной группировки космических аппаратов

Изобретение относится к области ракетно-космической техники и может быть использовано для повышения эффективности работы систем наблюдения за космической обстановкой. Технический результат - расширение функциональных возможностей за счет повышения надежности и оперативности восприятия...
Тип: Изобретение
Номер охранного документа: 0002461016
Дата охранного документа: 10.09.2012
29.03.2019
№219.016.f80c

Способ передачи информации в условиях отражений (варианты)

Изобретение относится к радиотехнике, в частности к способам и устройствам приема многолучевых сигналов в L-диапазоне частот (1,5/1,6 ГГц), и может быть использовано в системах подвижной спутниковой связи, навигации и передачи данных. Достигаемый технический результат заключается в повышении...
Тип: Изобретение
Номер охранного документа: 0002461124
Дата охранного документа: 10.09.2012
29.03.2019
№219.016.f823

Способ определения эфемеридной информации в аппаратуре потребителя и устройство для его осуществления

Изобретение относится к спутниковым радионавигационным системам позиционирования, в частности, для определения, прогнозирования или корректировки эфемеридных данных. Технический результат - повышение точности и надежности. Для достижения данного результата при полете космического аппарата (КА)...
Тип: Изобретение
Номер охранного документа: 0002460970
Дата охранного документа: 10.09.2012
10.04.2019
№219.017.0210

Система глобального автоматического контроля в режиме реального времени параметров состояния объектов

Изобретение относится к системам автоматического дистанционного контроля в режиме реального времени состояния объектов, а также к системам аварийного оповещения. Техническим результатом является построение системы массового контроля в реальном времени физического состояния объектов для...
Тип: Изобретение
Номер охранного документа: 0002340004
Дата охранного документа: 27.11.2008
23.04.2019
№219.017.36dc

Устройство для испытаний моделей летательных аппаратов в аэродинамических трубах

Изобретение относится к экспериментальной аэродинамике, в частности к устройствам для испытания моделей летательных аппаратов в аэродинамических трубах, и может быть использовано для определения комплекса стационарных и нестационарных аэродинамических характеристик летательных аппаратов....
Тип: Изобретение
Номер охранного документа: 0002685576
Дата охранного документа: 22.04.2019
09.05.2019
№219.017.4fff

Способ создания тяги, устройство для его осуществления и средство перемещения

Изобретения относятся к области транспортных средств и могут быть использованы в двигательных системах различных объектов, в т.ч. космических. Способ заключается во вращении расположенных на объекте 2N роторов, каждый из которых выполнен с дополнительным массивным телом на его периферии и...
Тип: Изобретение
Номер охранного документа: 0002448023
Дата охранного документа: 20.04.2012
01.06.2019
№219.017.720b

Устройство для изменения положения модели в рабочей части аэродинамической трубы

Изобретение относится к экспериментальной аэродинамике, в частности к устройствам для изменения положения испытываемой модели в рабочей части аэродинамической трубы. Устройство содержит узел крепления державки для установки модели и три пары стоек, шарнирно соединенных одним концом с узлом...
Тип: Изобретение
Номер охранного документа: 0002690097
Дата охранного документа: 30.05.2019
19.06.2019
№219.017.86b9

Устройство для развертывания в космическом пространстве тепловой мишени

Изобретение предназначено для установки на наружной поверхности космического аппарата с последующим выведением в космическое пространство надувных тонкопленочных оболочек, служащих для проведения измерений. Устройство содержит кассету с самораскрывающимися створками, тонкопленочные оболочки в...
Тип: Изобретение
Номер охранного документа: 0002381436
Дата охранного документа: 10.02.2010
Показаны записи 51-53 из 53.
25.08.2017
№217.015.b7e0

Способ получения углеродных нанотрубок в сверхзвуковом потоке и устройство для его осуществления

Изобретение относится к физике, химии, биофизике, медицине, биологии, электронике, оптоэлектронике. В смесителе-газоформирователе 8 готовят смесь путём подачи в него углерода и/или углеродсодержащих веществ из блока 15, порошка катализатора из блока 16, инертного газа из системы 6 через...
Тип: Изобретение
Номер охранного документа: 0002614966
Дата охранного документа: 31.03.2017
26.08.2017
№217.015.d8c5

Способ защиты земли от потенциально опасного космического объекта и система для его осуществления

Изобретение относится к области космонавтики и касается защиты Земли от потенциально опасных космических объектов (ПОКО) естественного происхождения (астероидов, комет и болидов) путем изменения их орбит за счет внешнего на них воздействия. Для защиты Земли от ПОКО в качестве меры воздействия...
Тип: Изобретение
Номер охранного документа: 0002623415
Дата охранного документа: 26.06.2017
13.02.2018
№218.016.2211

Способ оценки стойкости материалов космической техники к воздействию факторов космического пространства

Изобретение относится к области испытаний полимерных материалов, входящих в состав конструкций космических аппаратов (КА). В предлагаемом способе образцы материалов экспонируют в течение заданного срока на поверхности КА, затем помещают в контейнер, который, в свою очередь, укладывают в...
Тип: Изобретение
Номер охранного документа: 0002642009
Дата охранного документа: 23.01.2018
+ добавить свой РИД