×
10.07.2015
216.013.5cdb

Результат интеллектуальной деятельности: СПОСОБ ЭЛЕКТРОЛИТНО-ПЛАЗМЕННОЙ ОБРАБОТКИ ПОВЕРХНОСТИ ДЕТАЛЕЙ ИЗ МАЛОУГЛЕРОДИСТЫХ СТАЛЕЙ С ПОВЫШЕННЫМ СОДЕРЖАНИЕМ ХРОМА

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии полирования изделий из малоуглеродистых сталей с повышенным содержанием хрома и может быть использовано в авиационном и энергетическом машиностроении, в частности для финишной обработки лопаток компрессора. Способ включает погружение обрабатываемой детали в ванну с предварительно нагретым электролитом в виде раствора гидрокарбоната натрия или сульфата аммония, формирование разряда в пароплазменной области, образующейся между обрабатываемой деталью и электролитом, воздействие токами высокой частоты на поверхность детали, при этом в электролит вводят поверхностно-активное вещество в количестве не менее 1,0*10 об.%, а воздействие токами высокой частоты на поверхность детали осуществляют пакетами импульсов тока с длительностью пакета импульсов тока более 15 мкс и скважностью импульсов менее 85%, при этом обрабатываемая деталь является анодом. Техническим результатом является снижение энергетических затрат на единицу обрабатываемой поверхности, повышение экологичности и равномерности обработки поверхности деталей сложного профиля. 4 з.п. ф-лы, 2 табл., 2 пр.

Изобретение относится к области машиностроения и может быть использовано для полирования поверхности изделий из сталей мартенситного класса в авиационном и энергетическом машиностроении, в том числе при финишной обработке лопаток компрессора и других деталей ГТД и ГТУ.

Известны способы обработки поверхности малоуглеродистых сталей мартенситного класса в окислительных растворах, представляющих смесь фосфорной, соляной и азотной кислот, или смеси щавелевой и серной кислот с окислителем (30%-ный раствор H2O2) (Грилихес С.Я. Электрохимическое и химическое полирование: Теория и практика. - Л.: Машиностроение, 1987. - 232 с.), с дальнейшей тщательной промывкой деталей в проточной воде и сушкой. В первом случае обработка ведется при температуре 80°С в течение 5-20 минут, а во втором случае при 20°С в течение 30-60 минут.

Общими недостатками данных способов являются высокая агрессивность используемых растворов и их недолговечность вследствие образования нерастворимых фосфатов и сульфатов, высокая стоимость утилизации отходов, а также недостаточный блеск обработанной поверхности и высокая трудоемкость процесса из-за наличия дополнительных операций.

Известен также способ обработки поверхности малоуглеродистых сталей с повышенным содержанием хрома (Cr≥11%), заключающийся в анодной электрохимической обработке деталей в универсальном электролите, представляющим смесь соляной и азотной кислот с присадкой - блескообразователем (глюкоза или оксибензойная кислота). Время обработки составляет 15-30 минут при температуре 30-40°С (патент РФ №2124577, 1996).

Недостатками способа являются низкая производительность полирования поверхности металла, неравномерность зеркального блеска при обработке деталей больших размеров (площадью более 30 см2), неравномерность обработки деталей сложного профиля, низкая экологичность используемых растворов и проблема утилизации отходов.

Наиболее близким аналогом, взятым за прототип, является электролитно-плазменный способ обработки поверхности малоуглеродистых сталей с повышенным содержанием хрома, включающий анодную обработку в растворе, содержащем сульфат аммония (5% масс.) с добавкой реагента-комплексообразователя Na-ЭДТА (этилендиаминтетрацетат натрия) (0,8% масс.), или в растворе гидрокарбоната натрия (3-22% масс.). Способ электролитно-плазменной обработки включает погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание плазменного разряда в парогазовой оболочке, парогазовую оболочку и плазменный разряд формируют токами высокой частоты (0,1-20 МГц) с помощью индуктора (патент РФ №2355828, опубл. 2007). Недостатком указанного способа является высокое удельное энергопотребление процесса.

Техническим результатом настоящего изобретения является снижение энергетических затрат на единицу обрабатываемой поверхности. Дополнительным преимуществом способа является его экологичность и достижение равномерности обработки поверхности деталей сложного профиля.

Технический результат достигается за счет того, при электролитно-плазменной обработке поверхности деталей из малоуглеродистых сталей с повышенным содержанием хрома, включающей погружение обрабатываемой детали в ванну с предварительно нагретым электролитом в виде раствора гидрокарбоната натрия или сульфата аммония, формирование разряда в пароплазменной области, образующейся между обрабатываемой деталью и электролитом, воздействие на поверхность токами высокой частоты, в электролит вводят поверхностно-активное вещество в количестве не менее 1,0*10-4% об., воздействие токами высокой частоты на поверхность детали осуществляют пакетами импульсов тока с длительностью пакета импульсов тока более 15 мкс, скважностью импульсов менее 85%, при этом обрабатываемая деталь является анодом, а обработку поверхности деталей проводят при значении частоты пакета импульсов тока, находящемся в диапазоне 30-50 кГц. В способе можно использовать раствор гидрокарбоната натрия с концентрацией 5-15% масс. В способе можно использовать сульфат аммония с концентрацией 3-5% масс., а также использовать поверхностно-активное вещество, выбранное из группы, включающей алкилгликозиды, сульфосукционаты, алкоксилаты, алкилсульфаты или их смеси.

Снижение энергетических затрат на единицу обрабатываемой поверхности в 1,5-3 раза для вышеуказанного режима воздействия на поверхность токами высокой частоты (длительности импульсов, скважности) связано с тем, что способ реализуется в диапазоне 30-50 кГц, соответственно снижаются энергопотери по сравнению со способом по прототипу, который требует использования высокочастотного индукционного нагревателя с рабочей частотой 0,1-20 МГц.

Установлено, что использование ПАВ позволяет снизить поверхностное натяжение на границе «обрабатываемая деталь - электролит» и получить устойчивый пароплазменный слой. Воздействие на обрабатываемую поверхность пакетами импульсов тока с указанными параметрами позволяет поднять плотность тока на обрабатываемой детали за счет более интенсивного образования активных частиц в прианодной области.

На стабильность процесса обработки поверхности оказывает влияние длительность пакета импульсов тока и скважность импульсов. При длительности пакета импульсов тока менее 15 мкс разряд не успевает сформироваться. При скважности импульсов более 85% количество образующихся активных частиц в прианодной области недостаточно для активации поверхности и формирования устойчивого разряда. При полировании поверхности стали мартенситного класса в растворах гидрокарбоната натрия или сульфата аммония происходит образование пароплазменного приповерхностного слоя, в котором протекают химические процессы с участием поверхности обрабатываемой детали: оксидирование атомов железа с образованием рыхлого оксида железа (III) или смешанного более плотного оксида железа Fe3O4 и травление образующегося оксида на отрицательной полуволне.

Примеры осуществления

Электролитно-плазменную обработку поверхности изделия из малоуглеродистой стали с повышенным содержанием хрома проводят в несколько этапов в нагретом водном растворе гидрокарбоната натрия NaHCO3 - 5-15% масс. или сульфата аммония (NH4)2SO4 - 3-5% масс., дополнительно содержащем поверхностно-активное вещество (ПАВ) - не менее 1*10-4% об. Обработку проводят в импульсном режиме электропитания пакетами импульсов тока высокой частоты (30-50 кГц) скважностью пакета импульсов не более 85% при напряжении 200-300 В. Под скважностью пакета импульсов тока следует понимать отношение длительности пакета импульсов к периоду импульсного сигнала. Длительность каждого этапа составляет 1-1,5 минут. После завершения каждого этапа обработки проводят охлаждение обрабатываемой детали в холодной воде. Количество этапов определяется качеством исходной поверхности и качеством, предъявляемым финишной обработкой к поверхности. Использование инвертора электрического смещения при формировании парогазовой области вокруг обрабатываемой детали (анода) и инициировании плазменного разряда позволяет, по меньшей мере, в два раза уменьшить значение потребляемой мощности.

Для приготовления раствора использовали следующие ингредиенты:

Натрия гидрокарбонат (хч), ГОСТ Р 54316-2011;

Аммоний сернокислый (хч), ГОСТ 9097-82;

Вода дистиллированная, ГОСТ 6709;

Неонол АФ 9-12, ТУ 2483-077-05766801-98.

В качестве материала для изготовления образцов использовали мартенситные стали следующих марок:

ЭП866.ТУ14-1-2756-79;

ЭП768, ТУ 14-1-957-74;

ЭИ962, ГОСТ 5632-72.

Пример 1. Образец погружали в ванну с водным раствором электролита и производили обработку в два этапа высокочастотными пакетами импульсов тока при длительности пакета импульсов более 15 мкс и варьируемой скважности импульса (регулировкой частоты пакета импульсов и длительности паузы). Длительность каждого этапа обработки составляла 1-1,5 минут. После каждого этапа обработки образец охлаждали до комнатной температуры. Детали обрабатывались в среде электролита на основе водного раствора гидрокарбоната натрия 3…20% с добавкой ПАВ в количестве более 1*10-4% об. Температура электролита поддерживалась на уровне не более 80°С. Исходная высота микронеровностей составляла Ra=0,3 мкм. В Таб. 1 приведены результаты обработки поверхности образцов.

Пример 2. Образец погружали в ванну с водным раствором электролита и производили обработку в два этапа высокочастотными пакетами импульсов тока при длительности пакета импульсов более 15 мкс и варьируемой скважности импульса (регулировкой частоты пакета импульсов и длительности паузы). Длительность каждого этапа обработки составляла 1-1,5 минут. Детали обрабатывались в среде электролита на основе водного 3…15% раствора сульфата аммония с добавкой ПАВ в количестве более 1*10-4% об. Температура электролита поддерживалась на уровне не более 80°С. Исходная высота микронеровностей составляла Ra=0,3 мкм. В Таб. 2 приведены результаты обработки поверхности образцов.

В импульсном режиме электропитания разряд сохраняет свою устойчивость в широком диапазоне концентраций NaHCO3, при длительности пакета импульсов тока более 15 мкс и скважности импульса менее 85%. При понижении концентрации NaHCO3 напряжение, при котором инициируется разряд, увеличивается, электролит при высоком напряжении быстро разогревается, и разряд теряет свою устойчивость. С повышением концентрации электролита плотность тока увеличивается, а напряжение, при котором инициируется и формируется устойчивый разряд, падает. Повышение концентрации гидрокарбоната натрия в растворе выше 15% масс. нецелесообразно, поскольку практически не влияет на результат обработки поверхности.

В импульсном режиме электропитания разряд сохраняет свою устойчивость в диапазоне концентраций сульфата аммония 3-5%, при длительности пакета импульсов тока более 15 мкс и скважности импульса менее 85%. Повышение концентрации соли более 3-5% масс. нецелесообразно по причине ухудшения состояния поверхности, сопровождающегося образованием питтингов.

Повышение температуры раствора электролита усиливает его испарение. При этом граница «жидкость - пароплазменный слой» приобретает более рыхлую структуру, что негативно сказывается на скорости нагрева анода и времени обработки изделия. При температуре выше 80°С стабильность процесса резко падает, и при более высоких температурах нагрев анода вообще невозможен.

Таким образом, по результатам испытаний наиболее эффективными условиями обработки поверхности деталей из малоуглеродистых сталей с повышенным содержанием хрома, способствующими понижению удельного энергопотребления процесса, является использование 3-15%-ного раствора NaHCO3 или 3-5%-ного раствора (NH4)2SO4 с добавкой не менее 1,0*10-4% об. ПАВ при воздействии на обрабатываемую поверхность высокочастотными пакетами импульсов тока с длительностью пакета импульсов более 15 мкс и скважностью импульса менее 85%, температура водного раствора электролита не более 80°С.

В отличие от прототипа предлагаемый способ позволяет понизить удельное энергопотребление и технически упростить процесс электролитно-плазменной обработки поверхности изделий из сталей мартенситного класса.

Источник поступления информации: Роспатент

Показаны записи 331-340 из 368.
09.06.2019
№219.017.76b2

Теплостойкий пеногерметик

Описывается теплостойкий пеногерметик, включающий полиорганосилоксановый каучук, оксид цинка, олигогидридсилоксан, аминосоединение и катализатор вулканизации, отличающийся тем, что в качестве полиорганосилоксанового каучука он содержит полидиметилметилфенилсилоксандиол, в качестве...
Тип: Изобретение
Номер охранного документа: 0002263130
Дата охранного документа: 27.10.2005
09.06.2019
№219.017.76ed

Препрег и изделие, выполненное из него

Изобретение относится к области высокопрочных композиционных материалов на основе волокнистых наполнителей и полимерных связующих, которые могут быть использованы в авиационной промышленности, в машино-, судостроении и других областях техники. Описывается препрег, включающий полимерное...
Тип: Изобретение
Номер охранного документа: 0002264295
Дата охранного документа: 20.11.2005
09.06.2019
№219.017.781e

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с монокристаллической структурой, таким как рабочие лопатки газотурбинных двигателей авиационной промышленности....
Тип: Изобретение
Номер охранного документа: 0002256716
Дата охранного документа: 20.07.2005
09.06.2019
№219.017.7824

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к созданию титановых сплавов, предназначенных для изготовления стрингеров, нервюр, шпангоутов, фюзеляжа, крыльев, двигателей самолета, а также для использования в качестве свариваемых материалов. Предложен сплав на основе титана и изделие,...
Тип: Изобретение
Номер охранного документа: 0002256713
Дата охранного документа: 20.07.2005
09.06.2019
№219.017.7826

Жаропрочный свариваемый сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным свариваемым сплавам на основе никеля, предназначены для изготовления корпусов, кожухов, теплозащитных экранов и других сварных узлов и деталей, работающих при температурах до 900°С. Предложен жаропрочный свариваемый сплав на...
Тип: Изобретение
Номер охранного документа: 0002256717
Дата охранного документа: 20.07.2005
09.06.2019
№219.017.7932

Защитное технологическое покрытие для сталей и сплавов

Изобретение относится к защитным покрытиям от окисления при технологических нагревах в процессе получения высококачественных деталей и полуфабрикатов из сталей и сплавов. Технический результат изобретения заключается в повышении температуроустойчивости и теплоизоляционных свойств защитного...
Тип: Изобретение
Номер охранного документа: 0002345963
Дата охранного документа: 10.02.2009
09.06.2019
№219.017.796c

Способ получения литейных жаропрочных сплавов на никелевой основе

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на никелевой основе с применением различного вида отходов, и может быть использовано при получении шихтовых заготовок для литья изделий. Обеспечивается снижение в сплаве содержания вредных примесей,...
Тип: Изобретение
Номер охранного документа: 0002392338
Дата охранного документа: 20.06.2010
09.06.2019
№219.017.79c6

Способ получения высокотемпературного волокна на основе оксида алюминия

Изобретение относится к области теплозащитных материалов. Технический результат изобретения заключается в сокращении технологического цикла, повышении контролируемости процесса доведения волокнообразующего раствора до требуемой вязкости и стабильности химического состава и свойств получаемого...
Тип: Изобретение
Номер охранного документа: 0002395475
Дата охранного документа: 27.07.2010
09.06.2019
№219.017.79e6

Защитное технологическое покрытие для сталей и сплавов

Изобретение относится к защитным технологическим покрытиям для защиты сталей и сплавов от окисления при технологических нагревах и при термомеханической обработке давлением в процессе получения деталей. Технический результат изобретения заключается в понижении сцепления покрытия к сталям и...
Тип: Изобретение
Номер охранного документа: 0002312827
Дата охранного документа: 20.12.2007
09.06.2019
№219.017.7a17

Связующее для получения антифрикционных изделий, препрег и изделие, выполненное из него

Изобретение относится к области производства антифрикционных материалов и изделий и может быть использовано при изготовлении высоконагруженных подшипников скольжения в машино- и судостроении, авиационной промышленности и других областях техники. Предложено связующее для получения...
Тип: Изобретение
Номер охранного документа: 0002313010
Дата охранного документа: 20.12.2007
Показаны записи 331-340 из 341.
15.01.2020
№220.017.f4f5

Жаропрочный сплав на никелевой основе и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов, и может быть использовано при изготовлении лопаток газотурбинных двигателей, длительно работающих при температурах до 1200°С. Жаропрочный сплав на основе никеля содержит, мас. %: хром 1,3-3,3, кобальт...
Тип: Изобретение
Номер охранного документа: 0002710759
Дата охранного документа: 13.01.2020
17.04.2020
№220.018.1532

Способ нанесения антикоррозионного покрытия

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитных гальванических покрытий с последующей термообработкой. Способ включает обезжиривание детали, травление детали и последовательное нанесение слоев системы цинк-олово-цинк-олово с последующей...
Тип: Изобретение
Номер охранного документа: 0002718794
Дата охранного документа: 14.04.2020
21.05.2020
№220.018.1f5a

Жаропрочный деформируемый сплав на основе никеля с низким температурным коэффициентом линейного расширения и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным деформируемым сплавам на основе никеля с низким коэффициентом линейного расширения. Жаропрочный деформируемый сплав на основе никеля, содержащий, мас. %: углерод 0,02-0,08, кобальт 18,0-25,0, железо 20,0-35,0, хром 0,3-1,2,...
Тип: Изобретение
Номер охранного документа: 0002721261
Дата охранного документа: 18.05.2020
27.06.2020
№220.018.2bca

Высокопрочная коррозионно-стойкая сталь

Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям, выплавляемым в вакуумно-индукционной печи с последующим электрошлаковым переплавом для введения азота под давлением, используемым для изготовления подшипников качения. Сталь содержит компоненты в...
Тип: Изобретение
Номер охранного документа: 0002724766
Дата охранного документа: 25.06.2020
12.04.2023
№223.018.426b

Теплостойкий плёночный клей

Настоящее изобретение относится к теплостойкому пленочному клею. Теплостойкий пленочный клей содержит армирующий наполнитель с нанесенной на него полимерной основой. Полимерная основа представляет собой имидообразующую смесь, включающую по меньшей мере один диалкоксиэфир тетракарбоновой...
Тип: Изобретение
Номер охранного документа: 0002760127
Дата охранного документа: 22.11.2021
11.05.2023
№223.018.53e2

Способ получения высокочистого мелкодисперсного металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния

Изобретение относится к порошковой металлургии, а именно к получению металлического композиционного порошка на основе алюминиевого сплава, армированного частицами карбида кремния, предназначенного для изготовления деталей газотурбинных двигателей методом аддитивного производства. Способ...
Тип: Изобретение
Номер охранного документа: 0002795434
Дата охранного документа: 03.05.2023
15.05.2023
№223.018.57be

Сплав на основе кобальта

Изобретение относится к области порошковой металлургии, а именно к сплавам на основе кобальта, предназначенным для изготовления деталей ГТД с рабочими температурами не менее 1100°С методом аддитивного производства из металлического порошка. Сплав на основе кобальта для изготовления деталей...
Тип: Изобретение
Номер охранного документа: 0002767961
Дата охранного документа: 22.03.2022
15.05.2023
№223.018.57e7

Способ производства деталей малоразмерного газотурбинного двигателя с тягой до 150 кгс методом селективного лазерного сплавления

Изобретение относится к производству деталей малоразмерного газотурбинного двигателя (МГТД) с тягой до 150 кгс из металлопорошковых композиций сплавов марок никелевых ВЖ159, кобальтовых ВЛК1, алюминиевых АК9ч методом селективного лазерного сплавления. Способ включает создание электронной...
Тип: Изобретение
Номер охранного документа: 0002767968
Дата охранного документа: 22.03.2022
16.05.2023
№223.018.607b

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607c

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
+ добавить свой РИД