×
10.07.2015
216.013.5c6d

Результат интеллектуальной деятельности: СПОСОБ ОЦЕНКИ РЕСУРСА ТРУБНЫХ ИЗДЕЛИЙ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ

Вид РИД

Изобретение

Аннотация: Использование: для оценки фактического состояния и остаточного ресурса эксплуатации трубных изделий энергетического оборудования. Сущность заключается в том, что из трубы, проработавшей в энергетическом оборудовании, подготавливают один образец, а также два эталона из трубы, не бывшей в эксплуатации. По относительным изменениям параметра элементарной ячейки в образце, отработавшем в ресурсе в котле, определяют скорость и продолжительность первого участка неустановившейся ползучести на кривой, аналогичной классической кривой ползучести. Первый эталон подвергается испытаниям методом термоциклирования и определяется максимально возможное относительное изменение параметра элементарной кристаллической решетки при термических нагрузках. Второй эталон подвергается «холодному» циклическому деформированию, и определяется максимально возможное относительное изменение параметра элементарной кристаллической решетки от внешних давлений. Путем суммирования результатов термоциклирования и «холодного» циклического деформирования устанавливается максимальное относительное изменение параметра элементарной кристаллической решетки на участке ускоренной ползучести, достигаемое при исчерпании изделием ресурса работоспособности за время, рассчитываемое на основании фундаментального кристаллохимического критерия В.М. Гольдшмидта, равного 15% и выбранного за ресурс пластичности матрицы. Ресурсы изделия определяются на основе экспериментальной зависимости изменения параметра элементарной кристаллической ячейки от времени, аналогичной классической кривой ползучести. Технический результат: повышение точности определения остаточного ресурса трубных изделий энергетического оборудования. 1 табл., 6 ил.
Основные результаты: Способ оценки ресурса трубных изделий энергетического оборудования, в котором подготавливают образец трубного изделия, проработавший в энергетическом оборудовании, и два эталона из не эксплуатированных ранее участков трубных изделий, имеющих аналогичный состав и способ изготовления, определяют методом рентгеновской дифракции параметр элементарной кристаллической ячейки первого и второго эталонов при комнатной температуре, проводят последовательно несколько макроциклов термоциклирования первого эталона, строят зависимости изменения параметра элементарной кристаллической ячейки первого эталона от времени термоциклирования, по которым находят максимальное относительное значение изменения параметра элементарной кристаллической ячейки первого эталона после термоциклирования, проводят «холодное» циклическое нагружение второго эталона, строят зависимость изменения параметра элементарной кристаллической ячейки второго эталона от внешних давлений при «холодном» циклическом нагружении, вычисляют максимальное относительное изменение параметра элементарной кристаллической ячейки образца трубного изделия, строят экспериментальную кривую зависимости изменения параметра элементарной кристаллической ячейки от времени, аналогичную классической кривой ползучести, по которой судят о фактическом состоянии и остаточном ресурсе эксплуатации трубных изделий энергетического оборудования, отличающийся тем, что максимальное относительное изменение параметра элементарной кристаллической ячейки образца трубного изделия вычисляют сложением максимального значения относительного изменения параметра элементарной кристаллической ячейки первого эталона после термоциклирования и значения относительного изменения параметра элементарной кристаллической ячейки второго эталона после «холодного» циклического нагружения, определяемого как разницу между максимальным и минимальным значениями, а в качестве ресурса пластичности матрицы выбирают фундаментальный кристаллохимический критерий В.М. Гольдшмидта, равный 15%.

Изобретение относится к способам оценки фактического состояния и остаточного ресурса эксплуатации трубных изделий энергетического оборудования и может найти применение на предприятиях энергетической отрасли, в проектных и научно-исследовательских организациях.

Известен способ определения остаточных напряжений в реальных металлоконструкциях (патент РФ №2115901, МПК G01L 1/25), в котором методом рентгеноструктурного анализа определяют значение структурно-чувствительного параметра кристаллической решетки металла трубопровода в его исходном и постдеформационном (после сварки) состояниях. В качестве структурно-чувствительного параметра металла используется расстояние между плоскостями кристалла, полученное на металле в исходном состоянии do и после различного вида воздействия (деформация, упрочнение, технология и т.д.) - d. Сравнивая полученные значения d и do, расчетным путем определяют деформационно-прочностные характеристики металла, обусловленные силовыми или технологическими факторами. В частности, зная d и do, можно определить удлинение Δd=d-do в направлении, перпендикулярном к отражающей поверхности кристалла. Затем в соответствии с законом Гука определяют остаточные напряжения σост в металле согласно зависимости .

Зная σост, сравнивают его с σтр - пределом текучести при растяжении данного металла - и тем самым определяют запас прочности, т.е. ресурс его работоспособности.

Недостаток данного способа состоит в том, что он не позволяет оценивать зависимость ресурса прочности, работоспособности металла от степени его дефектности - микроразрушений - в поверхностных слоях, неизбежно возникающих как при обработке технологическими методами, так и в условиях эксплуатации.

Известен способ определения ресурса работоспособности металлов (RU 2261436, МПК G01N 23/00, G01N 33/20, опубл. 27.09.2005), в котором методом рентгеноструктурного анализа определяют значения структурно-чувствительного параметра кристаллической решетки исследуемого металла в его исходном и постдеформационном состояниях, по изменению этого параметра расчетным путем определяют деформационно-прочностные характеристики металла, а о ресурсе его работоспособности судят путем сравнения фактически полученных характеристик с допустимыми. При этом в качестве структурно-чувствительного параметра используют ширину рентгеновской линии (β), в процессе испытаний регистрируют усилие деформирования (P), обусловленную им деформацию (Δ1) и соответствующие им значения структурно-чувствительного параметра (β), по которым затем расчетным путем определяют зависимости истинных напряжений (S) и структурно-чувствительного параметра (β) от степени относительной остаточной деформации (δ), строят деструкционную диаграмму (S-δ1/2) и линеаризованную диаграмму (β1/21/2) с регистрацией на них точек перегиба, а деформационно-прочностные характеристики SD и δD, соответствующие точке перегиба на деструкционной диаграмме (точке деструкции D), принимают за критерий допустимой поверхностной прочности, обеспечивающей максимальную работоспособность металла.

Недостатком способа является то, что он не позволяет оценивать остаточный ресурс металла во временном эквиваленте, к тому же в основу установления ресурса заложена величина ширины дифракционной линии, являющейся функцией многих параметров - внутренние напряжения, дисперсность, геометрические параметры и т.д., что существенно снижает точность определения остаточного ресурса. Игнорирование этих факторов может внести непрогнозируемую погрешность при определении ресурса в эксплуатационных условиях.

Наиболее близким, принятым за прототип, является способ «Закономерность изменений параметра элементарной ячейки котельной стали как критерий накопления повреждаемости» (Любимова Л.Л., Макеев А.А., Заворин А.С., Ташлыков А.А., Фисенко Р.Н. Закономерности изменений параметра элементарнной ячейки котельной стали как критерий накопления повреждаемости // Известия Томского политехнического университета. - 2011. - Т.319. - №4. - С.35-39), в котором подготавливают образец трубного изделия, проработавший в энергетическом оборудовании, и два эталона из не эксплуатированных ранее в котле участков трубных изделий, имеющих аналогичный состав и способ изготовления. Определяют методом рентгеновской дифракции параметр элементарной кристаллической ячейки первого и второго эталонов при комнатной температуре. Проводят последовательно три макроцикла термоциклирования первого эталона. Строят зависимости изменения параметра элементарной кристаллической ячейки первого эталона от времени термоциклирования, по которым находят максимальное значение изменения параметра кристаллической ячейки первого эталона после термоциклирования. Проводят «холодное» циклическое нагружение второго эталона. Строят зависимость изменения параметра элементарной кристаллической ячейки второго эталона от внешних давлений при «холодном» циклическом нагружении, по которой определяют максимальное значение изменения параметра кристаллической ячейки второго эталона после «холодного» циклического нагружения. Путем сложения максимального значения изменения параметра кристаллической ячейки первого эталона после термоциклирования и значения максимального изменения параметра кристаллической ячейки второго эталона после «холодного» циклического нагружения вычисляют максимальное изменение параметра кристаллической ячейки образца трубного изделия. Принимают за ресурс пластичности α-железа ресурс пластичности матрицы, равный 11%, соответствующий значению максимальной вытяжки межатомных связей в вершине трещины для α-железа. Адаптируют ресурс пластичности матрицы к максимальным деформациям кристаллической ячейки. Строят экспериментальную кривую зависимости среднего параметра кристаллической ячейки на разных этапах старения стали от времени, аналогичную классической кривой ползучести, по которой судят о фактическом состоянии и остаточном ресурсе эксплуатации трубных изделий энергетического оборудования.

Недостатком прототипа является низкая точность прогнозирования ресурса трубных изделий энергетического оборудования ввиду того, что относительное изменение параметра кристаллической ячейки после «холодного» циклического нагружения оценивается как максимальное значение деформации параметра кристаллической ячейки от внешних давлений. Данный подход не учитывает изменения параметра кристаллической ячейки, произошедшие при изготовлении трубных элементов, их механической и термической обработке. Второй недостаток прототипа заключается в том, что в нем максимальная вытяжка межатомных связей рассматривается как склонность материала к трещинообразованию. Эта характеристика материала зависит от многих факторов, в том числе, в большей степени - от состава стали. Величина максимальной вытяжки межатомных связей приводится в разных литературных источниках по-разному - 11%, 20%, 25% - без указания химического состава стали. В протопите за ресурс пластичности матрицы произвольно принято значение максимальной вытяжки межатомных связей в вершине трещины для α-железа, равное 11%, что приводит к неопределенности в оценке ресурса работоспособности изделия в целом.

Задача технического решения - повышение точности определения остаточного ресурса трубных изделий энергетического оборудования.

Поставленная задача достигается тем, что в заявленном способе подготавливают образец трубного изделия, проработавший в энергетическом оборудовании, и два эталона из не эксплуатированных ранее участков трубных изделий, имеющих аналогичный состав и способ изготовления. Определяют методом рентгеновской дифракции параметр элементарной кристаллической ячейки первого и второго эталонов при комнатной температуре. Проводят последовательно несколько макроциклов термоциклирования первого эталона. Строят зависимости изменения параметра элементарной кристаллической ячейки первого эталона от времени термоциклирования, по которым находят максимальное относительное значение изменения параметра элементарной кристаллической ячейки первого эталона после термоциклирования. Проводят «холодное» циклическое нагружение второго эталона. Строят зависимость изменения параметра элементарной кристаллической ячейки второго эталона от внешних давлений при «холодном» циклическом нагружении. Вычисляют максимальное относительное изменение параметра элементарной кристаллической ячейки образца трубного изделия. Строят экспериментальную кривую зависимости изменения параметра элементарной кристаллической ячейки от времени, аналогичную классической кривой ползучести, по которой судят о фактическом состоянии и остаточном ресурсе эксплуатации трубных изделий энергетического оборудования. При этом максимальное относительное изменение параметра элементарной кристаллической ячейки образца трубного изделия вычисляют сложением максимального значения относительного изменения параметра элементарной кристаллической ячейки первого эталона после термоциклирования и значения относительного изменения параметра элементарной кристаллической ячейки второго эталона после «холодного» циклического нагружения, определяемого как разница между максимальным и минимальным значениями. В качестве ресурса пластичности матрицы выбирают фундаментальный кристаллохимический критерий В.М. Гольдшмидта, равный 15%.

Фундаментальный кристаллохимический критерий В.М. Гольдшмидта - Δr≤15% (Е.С. Макаров. Изоморфизм атомов в кристаллах. М.: Атомиздат, 1973. - 288 с.) - устанавливает различие в ионных радиусах при изоморфном смешении компонентов и характеризует устойчивость сил межатомных связей кристаллической ячейки. Такая растянутость атомных связей способна сохранить геометрические особенности структуры и ее энергетические константы. При больших значениях возникают накопления повреждаемости, структурное трещинообразование и лавинное разрушение изделия. Таким образом, за ресурс пластичности матрицы целесообразно принимать величину εпл.м=15%.

Для пояснения способа оценки ресурса трубных изделий энергетического оборудования приведены чертежи.

На фиг.1, а показана зависимость изменения параметра элементарной кристаллической ячейки первого эталона (Δa/a, %), наблюдаемого после нагрева до 100°C и последующего охлаждения до 12°C, от времени термоциклирования (τ, ч) в трех термоциклах.

На фиг.1, б показана зависимость изменения параметра элементарной кристаллической ячейки первого эталона (Δa/a, %), наблюдаемого после нагрева до 200°C и последующего охлаждения до 12°C, от времени термоциклирования (τ, ч) в трех термоциклах.

На фиг.1, в показана зависимость изменения параметра элементарной кристаллической ячейки первого эталона (Δa/a, %), наблюдаемого после нагрева до 300°C и последующего охлаждения до 12°C, от времени термоциклирования (τ, ч) в трех термоциклах.

На фиг.1, г показана зависимость изменения параметра элементарной кристаллической ячейки первого эталона (Δa/a, %), наблюдаемого после нагрева до 400°C и последующего охлаждения до 12°C, от времени термоциклирования (τ, ч) в трех термоциклах.

На фиг.2 изображена зависимость изменения параметра элементарной кристаллической ячейки второго эталона (Δa/a, %) от внешних давлений (σвнеш, МПа) при «холодном» циклическом нагружении.

На фиг.3 приведена экспериментальная кривая зависимости изменения параметра элементарной кристаллической ячейки от времени, аналогичная классической кривой ползучести: I-II - участок неустановившейся ползучести; II-III - участок установившейся ползучести; III-IV - участок ускоренной ползучести, заканчивающийся разрушением трубного изделия.

В таблице 1 показаны значения параметра элементарной кристаллической ячейки первого эталона (a, А), определенные методом рентгеновской дифракции после охлаждения до 12°C при проведении трех циклов термоциклирования, а также приведены значения изменения параметра элементарной кристаллической ячейки (Δa/a, %), определяемые по формуле:

где a1_t - параметр элементарной кристаллической ячейки первого эталона, определенный методом рентгеновской дифракции после нагрева до температуры t и последующего охлаждения до 12°C при осуществлении первого цикла термоциклирования;

i - номер цикла термоциклирования (i=1, 2, 3);

t - температура нагрева первого эталона (t=100, 200, 300, 400);

ai_t - параметр элементарной кристаллической ячейки первого эталона, определенный методом рентгеновской дифракции после нагрева до температуры t и последующего охлаждения до 12°C при осуществлении i-го цикла термоциклирования.

При нахождении значения изменения параметра элементарной кристаллической ячейки первого эталона (Δa/a)1_t после первого цикла термоциклирования формула (1) принимает вид:

где a01_12 - параметр элементарной кристаллической ячейки первого эталона, определенный методом рентгеновской дифракции до осуществления первого цикла термоциклирования при 12°C.

Температурный интервал термоциклирования ограничен температурой 350°C ввиду того, что Ст 10, из которой изготовлены образец трубного изделия и эталоны, не используется в энергетическом оборудовании при более высоких температурах (Масленков С.Б. Стали и сплавы для высоких температур: справочник: в 2 кн. / С.Б. Масленков, Е.А. Масленкова. - М.: Металлургия, 1991. - 383 с.).

Пример конкретного применения

Для оценки ресурса трубных изделий котла ДКВР-6,5 подготавливают образец трубного изделия размерами 15×20 мм, вырезанный с поверхности экранной трубы Ст 10, проработавшей в котле в течение времени (tоти), равного 8760 ч, и два эталона из не эксплуатированных ранее участков трубных изделий, имеющих аналогичный состав и способ изготовления. До осуществления первого цикла термоциклирования определяют методом рентгеновской дифракции параметр элементарной кристаллической ячейки первого (a01_12) и второго (a02_12) эталонов при 12°С:

a01_12=a02_12=2,8722 А.

Проводят последовательно три макроцикла термоциклирования первого эталона (нагревают до 100°C - охлаждают до 12°C - определяют методом рентгеновской дифракции параметр элементарной кристаллической ячейки (a1_100) при 12°C - нагревают до 200°C - охлаждают до 12°C - определяют методом рентгеновской дифракции параметр элементарной кристаллической ячейки (a1_200) при 12°C - нагревают до 300°C - охлаждают до 12°C - определяют методом рентгеновской дифракции параметр элементарной кристаллической ячейки (a1_300) при 12°C - нагревают до 400°C - охлаждают до 12°C - определяют методом рентгеновской дифракции параметр элементарной кристаллической ячейки (a1_400) при 12°C и затем повторяют эту последовательность действий еще два раза (таблица 1)).

Затем строят зависимости изменения параметра элементарной кристаллической ячейки первого эталона (Δa/a, %) от времени термоциклирования (τ, ч) - фиг.1, а, б, в, г, по которым находят максимальное относительное значение изменения параметра элементарной кристаллической ячейки первого эталона после термоциклирования (Δa/a)_тц_max (фиг.1, в):

(Δa/a)_тц_max=0,3447%.

Проводят холодное» циклическое нагружение второго эталона - фиг.2 (воздействуют внешним давлением σвнеш=25 МПа - точка 1, на второй эталон - снимают нагрузку - определяют параметр элементарной кристаллической ячейки в ненагруженном состоянии и затем повторяют эту последовательность действий, изменяя внешнее давление: σвнеш=33 МПа - точка 2; 42 МПа - точка 3; 49 МПа - точка 4; 58 МПа - точка 5; 65 МПа - точка 6; 73 МПа - точка 7; 83 МПа - точка 8; 90 МПа - точка 9).

Затем строят зависимость изменения параметра элементарной кристаллической ячейки второго эталона (Δa/a, %) от внешних давлений (σвнеш, МПа) при «холодном» циклическом нагружении (фиг.2), по которой определяют значение относительного изменения параметра элементарной кристаллической ячейки второго эталона после «холодного» циклического нагружения (Δa/a)_хцн:

(Δa/a)_хцн=0,2700-0,2000=0,0700%.

Максимальное относительное изменение параметра элементарной кристаллической ячейки образца трубного изделия (Δa/a)_оти_max вычисляют сложением максимального значения относительного изменения параметра элементарной кристаллической ячейки первого эталона после термоциклирования (Δa/a)_тц_max, равного 0,3447%, и значения относительного изменения параметра элементарной кристаллической ячейки второго эталона после «холодного» циклического нагружения (Δa/a)_хцн, равного 0,0700%:

(Δa/a)_оти_max=(Δa/a)_тц_max+(Δa/a)_хцн=0,3447+0,0700-0,4147%.

Строят экспериментальную кривую зависимости изменения параметра элементарной кристаллической ячейки от времени (фиг.3), аналогичную классической кривой ползучести, по которой судят о фактическом состоянии и остаточном ресурсе эксплуатации трубных изделий энергетического оборудования в следующей последовательности:

- определяют методом рентгеновской дифракции параметр элементарной кристаллической ячейки образца трубного изделия (aоти) при 12°C:

aоти=2,8661 А,

по которому расчетным путем вычисляют изменение параметра элементарной кристаллической ячейки образца трубного изделия (Δa/a)_оти, произошедшее за время эксплуатации (tоти) в котле ДКВР-6,5 (фиг.3, точка 1):

- строят участок I-II. Температура, при которой эксплуатируется образец трубного элемента (экранная труба) в котле ДКВР-6,5, составляет 200°C; при данной температуре по фиг.1, б определяют максимальное значение изменения параметра элементарной кристаллической ячейки первого эталона после термоциклирования, при котором наблюдается начало участка установившейся ползучести:

(Δa/a)_тц_max[200]=0,2854%;

Максимальное изменение параметра элементарной кристаллической ячейки образца трубного изделия (Δa/a)_II на участке I-II составит:

(Δa/a)_II=(Δa/a)_тц_max[200]+(Δa/a)_хцн=0,2854+0,0700=0,3554%.

При этом период времени, соответствующий окончанию участка I-II, равен:

- участок II-III получают соединением участков I-II и III-IV, при этом условно принимают его за прямую линию;

- строят участок III-IV, для построения которого определяют скорость изменения параметра элементарной кристаллической ячейки образца трубного изделия Vcp для температуры эксплуатации (200°C) по фиг.1, б:

где (Δa/a)3_200, (Δa/a)2_200 - значения изменения параметра элементарной кристаллической ячейки, полученные после нагрева до 200°C и последующего охлаждения до 12°C в 3 и 2 циклах термоциклирования соответственно;

τ3_200, τ2_200 - время, затраченное на осуществление нагрева до 200°C и последующее охлаждение до 12°C в 3 и 2 циклах термоциклирования соответственно.

Принимают ресурс пластичности, соответствующий максимальной вытяжке атомных связей в вершине трещины, равным величине εr_ме=15%, согласно (Макаров Е.С. Изоморфизм атомов в кристаллах. М.: Атомиздат, 1973. - 288 с.).

Тогда прогнозируемое время до разрушения образца трубного изделия принимают за окончание участка III-IV и вычисляют по формуле:

Изменение параметра элементарной кристаллической ячейки образца трубного изделия (Δa/a)_IV, являющееся окончанием участка III-IV, приравнивают к максимальному изменению параметра элементарной кристаллической ячейки образца трубного изделия (Δa/a)_оти_max:

(Δa/a)_IV=(Δa/a)_оти_max=0,4147%.

Начало участка III-IV устанавливают на основе большого эксплуатационного опыта, свидетельствующего, что на ускоренный процесс развития разрушения приходится примерно 20% времени от общего ресурса (Злепко В.Ф., Линкевич К.Р., Швецова Т.А. Влияние восстановительной термической обработки на свойства стали 12Х1МФ // Теплоэнергетика. - 2001. - №6. - С.68-70), т.е. время начала участка III-IV (τ_III) принимают равным:

τ_III_IV·0,8=156250·0,8=125000 ч.

При этом изменение параметра элементарной кристаллической ячейки образца трубного изделия (Δa/a)_III определяют как:

(Δa/a)_III=(Δa/a)_II+((Δa/a)_II·εr_ме·0,8)=0,3554+(0,3554-0,15-0,8)=0,3980%.

С помощью экспериментальной кривой зависимости изменения параметра элементарной кристаллической ячейки от времени, аналогичной классической кривой ползучести (фиг.3), можно определить продолжительность времени, в течение которого изделие эксплуатировалось в энергетическом оборудовании, а также остаточный ресурс в часах.

Например, через некоторый промежуток времени работы котла ДКВР-6,5 тем же способом подготавливают образец трубного изделия №2, определяют методом рентгеновской дифракции параметр элементарной кристаллической ячейки образца трубного изделия №2 (аоти2) при 12°C, который оказывается равным:

аоти2=2,8616 А,

по которому расчетным путем по формуле (2) вычисляют изменение параметра элементарной кристаллической ячейки образца трубного изделия №2 (Δa/a)_оти2, произошедшее за этот промежуток времени в котле ДКВР-6,5 (фиг.3, точка 2):

Отмечают значение изменения параметра элементарной кристаллической ячейки образца трубного изделия №2 (Δa/a)_оти2 на экспериментальной кривой зависимости изменения параметра элементарной кристаллической ячейки от времени, аналогичной классической кривой ползучести (фиг.3, точка 2), определяя время эксплуатации образца трубного изделия №2 (τ2=48468 ч) в котле ДКВР-6,5. А остаточный ресурс (τост2) определяют вычитанием времени эксплуатации образца трубного изделия №2 (τ2) из времени окончания участка ускоренной ползучести II-III (τ_III):

τост2_III2=125000-48468=76532 ч≈8,7 лет.

Таблица 1
Температура, °C Параметр элементарной кристаллической решетки a1 при 12°C в 1 макроцикле, Å Изменение параметра элементарной кристаллической решетки (Δa/a)1 после проведения 1-го цикла, % Параметр элементарной кристаллической решетки a2 при 12°C во 2 макроцикле, Å Изменение параметра элементарной кристаллической решетки (Δa/a)2 после проведения 2-го цикла, % Параметр элементарной кристаллической решетки a3 при 12°C в 3 макроцикле, Å Изменение параметра элементарной кристаллической решетки (Δa/a)3 после проведения 3-го цикла, %
100 2,8732 0,0348 2,8664 0,2367 2,8634 0,3411
200 2,8727 0,0174 2,8645 0,2854 2,8644 0,2889
300 2,8718 0,0139 2,8650 0,2268 2,8619 0,3447
400 2,8731 0,0313 2,8633 0,3411 2,8632 0,3446

Способ оценки ресурса трубных изделий энергетического оборудования, в котором подготавливают образец трубного изделия, проработавший в энергетическом оборудовании, и два эталона из не эксплуатированных ранее участков трубных изделий, имеющих аналогичный состав и способ изготовления, определяют методом рентгеновской дифракции параметр элементарной кристаллической ячейки первого и второго эталонов при комнатной температуре, проводят последовательно несколько макроциклов термоциклирования первого эталона, строят зависимости изменения параметра элементарной кристаллической ячейки первого эталона от времени термоциклирования, по которым находят максимальное относительное значение изменения параметра элементарной кристаллической ячейки первого эталона после термоциклирования, проводят «холодное» циклическое нагружение второго эталона, строят зависимость изменения параметра элементарной кристаллической ячейки второго эталона от внешних давлений при «холодном» циклическом нагружении, вычисляют максимальное относительное изменение параметра элементарной кристаллической ячейки образца трубного изделия, строят экспериментальную кривую зависимости изменения параметра элементарной кристаллической ячейки от времени, аналогичную классической кривой ползучести, по которой судят о фактическом состоянии и остаточном ресурсе эксплуатации трубных изделий энергетического оборудования, отличающийся тем, что максимальное относительное изменение параметра элементарной кристаллической ячейки образца трубного изделия вычисляют сложением максимального значения относительного изменения параметра элементарной кристаллической ячейки первого эталона после термоциклирования и значения относительного изменения параметра элементарной кристаллической ячейки второго эталона после «холодного» циклического нагружения, определяемого как разницу между максимальным и минимальным значениями, а в качестве ресурса пластичности матрицы выбирают фундаментальный кристаллохимический критерий В.М. Гольдшмидта, равный 15%.
СПОСОБ ОЦЕНКИ РЕСУРСА ТРУБНЫХ ИЗДЕЛИЙ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ
СПОСОБ ОЦЕНКИ РЕСУРСА ТРУБНЫХ ИЗДЕЛИЙ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ
СПОСОБ ОЦЕНКИ РЕСУРСА ТРУБНЫХ ИЗДЕЛИЙ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ
СПОСОБ ОЦЕНКИ РЕСУРСА ТРУБНЫХ ИЗДЕЛИЙ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ
СПОСОБ ОЦЕНКИ РЕСУРСА ТРУБНЫХ ИЗДЕЛИЙ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ
СПОСОБ ОЦЕНКИ РЕСУРСА ТРУБНЫХ ИЗДЕЛИЙ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 152.
10.12.2014
№216.013.0e6c

Способ получения нанопорошков металлов с повышенной запасенной энергией

Изобретение относится к порошковой металлургии, в частности к получению нанопорошков металлов с повышенной запасенной энергией. Может использоваться для повышения реакционной способности нанопорошков при спекании, горении, в энергосберегающих технологиях. Образец нанопорошка металла облучают...
Тип: Изобретение
Номер охранного документа: 0002535109
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0e8b

Композиция с антиоксидантной и антибактериальной активностью

Изобретение относится к области медицины и представляет собой композицию, обладающую антиоксидантной и антибактериальной активностью, включающую аскорбат лития, отличающуюся тем, что дополнительно содержит бензоат лития при следующем соотношении компонентов, мас.%: аскорбат лития - 50; бензоат...
Тип: Изобретение
Номер охранного документа: 0002535140
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0f28

Способ защиты электродвигателей от коротких замыканий

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для защиты электродвигателей. Технический результат - повышение чувствительности к токам двухфазных коротких замыканий. Способ защиты электродвигателей от коротких замыканий заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002535297
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1195

Свч генератор с виртуальным катодом коаксиального типа

Изобретение относится к технике СВЧ и может быть использовано для генерации мощных импульсов электромагнитного излучения сильноточными электронными пучками. СВЧ-генератор с виртуальным катодом коаксиального типа содержит источник высокого напряжения (1), отрицательный электрод которого соединен...
Тип: Изобретение
Номер охранного документа: 0002535924
Дата охранного документа: 20.12.2014
10.02.2015
№216.013.2267

Способ измерения тока в проводнике с помощью герконов

Изобретение относится к измерительной технике и может быть использовано для измерения токов в электроустановках. Способ измерения тока в проводнике с помощью герконов заключается в том, что два геркона с нормально разомкнутыми контактами устанавливают вблизи проводника. Настраивают их так,...
Тип: Изобретение
Номер охранного документа: 0002540260
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2268

Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления индия из интерметаллического соединения rhx iny

Изобретение может быть использовано в различных отраслях народного хозяйства для определения содержания в растворах различных концентраций ионов металлов. Способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления индия из...
Тип: Изобретение
Номер охранного документа: 0002540261
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.22c6

Пленкообразующее вещество на основе нефтеполимерной смолы

Изобретение относится к технологии полимеров и может найти применение в лакокрасочной промышленности при производстве лаков, красок и адгезивов. Пленкообразующее вещество на основе нефтеполимерной смолы включает озонированную нефтеполимерную смолу, при этом озонированная нефтеполимерная...
Тип: Изобретение
Номер охранного документа: 0002540355
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.231d

Способ измерения фоновых концентраций веществ в болотных водах

Изобретение относится к гидрохимии болот и может быть использовано для измерения фоновых концентраций веществ в болотных водах. Сущность: выделяют однородные участки болота на основе анализа глубин торфяной залежи и болотных фитоценозов. Измеряют фоновую концентрацию вещества в болотных водах...
Тип: Изобретение
Номер охранного документа: 0002540442
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.231e

Способ определения места обрыва на воздушной линии электропередачи

Изобретение относится к области электротехники, а именно средствам обработки информации в электротехнике, и может быть использовано для определения места обрыва на воздушной линии электропередачи. Сущность: способ заключается в том, что измеряют массивы мгновенных значений напряжений и токов...
Тип: Изобретение
Номер охранного документа: 0002540443
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.231f

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытание на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002540444
Дата охранного документа: 10.02.2015
Показаны записи 61-70 из 244.
10.11.2013
№216.012.7f8b

Способ определения наличия гармонических составляющих и их частот в дискретных сигналах

Изобретение относится к области цифровой обработки сигналов и может быть использовано для определения наличия гармонических составляющих и их частот в сигналах различного происхождения при решении задач неразрушающего контроля и диагностики оборудования на основе корреляционного анализа....
Тип: Изобретение
Номер охранного документа: 0002498324
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.8065

Коаксиальный магнитоплазменный ускоритель

Изобретение относится к плазменной технике и может быть использовано для ускорения плазмы до гиперскоростей и получения нанодисперсных порошков титана и меди. Коаксиальный магнитоплазменный ускоритель содержит соленоид, цилиндрический титановый ствол, цепь питания. Титановый ствол содержит...
Тип: Изобретение
Номер охранного документа: 0002498542
Дата охранного документа: 10.11.2013
20.11.2013
№216.012.8199

Цеолитсодержащий катализатор, способ его получения и способ переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к способам получения катализаторов переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола. Описан катализатор, содержащий, мас.%: высококремнеземный цеолит...
Тип: Изобретение
Номер охранного документа: 0002498853
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.820b

Способ получения волластонитовых керамических пигментов на основе двухкальциевого силиката

Изобретение относится к области производства пигментов для фарфоровых, полуфарфоровых и майоликовых изделий. Способ заключается в быстром охлаждении в воде обожженного при температурах 1050-1100°C геля, полученного обработкой концентрированной соляной кислотой смеси тонкомолотого отхода -...
Тип: Изобретение
Номер охранного документа: 0002498967
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.83a1

Устройство для возбуждения высокочастотного факельного разряда

Изобретение относится к плазменной технике и может быть использовано для инициирования высокочастотной плазмы. Устройство для возбуждения высокочастотного факельного разряда содержит диэлектрическую трубку, установленную в пазу диэлектрического фланца, в осевом отверстии которого размещен полый...
Тип: Изобретение
Номер охранного документа: 0002499373
Дата охранного документа: 20.11.2013
27.11.2013
№216.012.862e

Устройство для моделирования объединенного регулятора потока мощности

Изобретение относится к области моделирования объектов электрических систем и может быть использовано для воспроизведения в реальном времени непрерывного спектра нормальных и анормальных процессов в объединенном регуляторе потока мощности в специализированных многопроцессорных...
Тип: Изобретение
Номер охранного документа: 0002500028
Дата охранного документа: 27.11.2013
10.12.2013
№216.012.8806

Способ определения оптимальной скорости резания

Способ относится к твердосплавным режущим инструментам группы применяемости Р в виде режущих пластин и заключается в том, что проводят измерения температуры в зоне рабочего контакта твердый сплав - обрабатываемый материал при различных скоростях резания с построением графической зависимости....
Тип: Изобретение
Номер охранного документа: 0002500504
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.889b

Способ получения нанодисперсной шихты для изготовления нитридной керамики

Изобретение относится к области порошковых технологий и может быть использовано в электронной промышленности для изготовления нитридной керамики. Способ получения нанодисперсной шихты для изготовления нитридной керамики заключается в том, что в герметичном реакторе в среде газообразного азота...
Тип: Изобретение
Номер охранного документа: 0002500653
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8977

Электроимпульсный буровой снаряд

Изобретение относится к области проходки скважин и стволов высоковольтными разрядами в крепких горных породах и может найти применение в горнодобывающей промышленности, а также в строительной отрасли. В снаряде последовательно соединены гидротоковвод (1), колонна бурильных труб (2) и буровой...
Тип: Изобретение
Номер охранного документа: 0002500873
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.897b

Установка для обработки буровых и тампонажных растворов

Изобретение относится к нефте- и горнодобывающим отраслям промышленности и может быть использовано для обработки цементных, буровых, тампонажных растворов. Установка содержит последовательно соединенные повысительно-выпрямительные узлы с фильтром высших гармоник на входе, генератор импульсных...
Тип: Изобретение
Номер охранного документа: 0002500877
Дата охранного документа: 10.12.2013
+ добавить свой РИД