×
10.07.2015
216.013.5c69

СТЕНД ДЛЯ ГРАДУИРОВКИ АКСЕЛЕРОМЕТРОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к измерительной технике, а именно к стендам поверочным для градуировки акселерометров с использованием более точных средств измерения. Стенд для градуировки акселерометров содержит тензометрическое устройство с градуируемым акселерометром, тензодатчиками и бойком, и наковальню. Стенд выполнен в виде копра с вертикальными стойками, закрепленными на фундаменте, между которыми установлено с возможностью перемещения тензометрическое устройство в виде двух дисковых оснований, соединенных цилиндрической оболочкой с фланцами, в полости которой установлен цилиндрический шток, один конец которого закреплен в верхнем основании, а другой конец выступает за нижнее основание и снабжен бойком, обращенным к наковальне, установленной на фундаменте, тензодатчики установлены на внешней поверхности центральной части оболочки равномерно по ее окружности, акселерометры установлены на верхней поверхности нижнего основания параллельно штоку. 1 з.п. ф-лы, 4 ил.
Реферат Свернуть Развернуть

Изобретение относится к измерительной технике, а именно к стендам поверочным для градуировки акселерометров с использованием более точных средств измерения.

Известна установка для градуировки акселерометров, содержащая градуируемый акселерометр, боек, наковальню (Пеллинец B.C. Измерение ударных ускорений. М., Издательство стандартов, 1975, сс.230-231). Рабочим телом является наковальня, на одном из торцов которой закреплен градуируемый акселерометр. Наковальня подвешена на тросах к раме, боек выполнен в виде молота, также подвешенного на тросах к раме. Установка содержит механизм расцепления молота и улавливатель наковальни. Также установка содержит набор молотов с разными радиусами и специальные амортизаторы для формирования ударных импульсов.

Молот и наковальня имеют осесимметричные формы и в момент соударения их оси должны совпадать для нанесения центрального удара. Пиковое значение ускорения определяется высотой подъема молота, соотношением масс молота и наковальни и зависит от жесткости их контакта (сферы с плоскостью) между молотом и наковальней.

Усилие соударения молота с наковальней через «прослойку» (формирователь импульсов) определяется по диаметру отпечатка на сферической поверхности молота с помощью инструментального микроскопа. Электрический сигнал градуируемого акселерометра регистрируется специальным прибором. Коэффициент преобразования механического сигнала в электрический находят как отношение пикового значения напряжения на выходе акселерометра к пиковому значению расчетного ускорения твердого тела, на котором закреплен акселерометр.

Данная установка предназначена для измерения ударных ускорений средней интенсивности - 2·103 до 5·104 м/с2. Ударные ускорения такой интенсивности характерны для многих производственных циклов и соударений механических систем, но принцип действия этой установки основан на использовании приближенных результатов расчетного решения нелинейной задачи соударения деформируемых в области контакта тел для определения ударного импульса и его параметров, и не может дать высокой точности градуировки акселерометров.

Наиболее близким аналогом заявляемого изобретения, выбранным в качестве прототипа, является устройство для калибровки датчика ускорения ударным воздействием, содержащее тензометрическое устройство с градуируемым акселерометром, тензодатчиками и бойком, и наковальню (з. Японии №4411034, МПК 12 G01P 21/00, опубл. 10.02.2010 г.). Боек выполнен в виде летающих объектов. Тензометрическое устройство выполнено в виде стержня, один торец которого является наковальней (по нему наносится удар), а на другом конце закреплен акселерометр. Боковая поверхность стержня обклеена тензодатчиками.

Известно (С.П. Тимошенко, Д.Х. Янг, У. Уивер. Колебания в инженерном деле. Перевод с английского. М.: Машиностроение, 1985 г., стр.336), что деформации стержня, зарегистрированные тензодатчиками, являются сложными динамическими процессами вида

где первый член характеризует переносное движение стержня как целого (с ускорением ), а остальные члены ряда характеризуют его нестационарную вибрацию (относительные колебания его сечения).

Аналогичный вид ударных процессов протекает в механической системе с конечным числом степеней свободы (в частности, дискретной модели упругого стержня при продольном ударе), колебания которой описываются известной системой уравнений (А.А. Яблонский, С.С. Норейко. Курс теории колебаний. М.: «Высшая школа», 1975, стр.204)

из решения которой находим ускорение любого тела модели стержня с упругими связями

где Fe(t) - сила удара, приложенная к телу с массой me, - коэффициенты форм колебаний.

Здесь более определенно видно, из каких составляющих состоит ускорение, регистрируемое в любой точке (в частности, на торце) стержня. Первый член ряда характеризует составляющую ускорения тела массы mi в переносном движении стержня, равном ускорению его центра инерции. Сумма остальных членов ряда характеризует его ускорение в колебательном движении сечений стержня. Это движение сопровождается деформациями стержня, которые регистрируют тензодатчики в устройстве прототипа.

Очевидно, если по стержню нанесен относительно «мягкий» удар, то свободный от закреплений стержень во время удара будет двигаться как твердое тело (согласно второму закону динамики) с ускорением

При этом тензодатчики не зарегистрируют этот процесс, т.к. его проволочки, наклеенные на стержень, не будут деформироваться.

Следовательно, для прототипа присущ недостаток - датчики ускорений калибруются по показаниям тензодатчиков с заведомо известной погрешностью, величина которой зависит от соотношения максимального значения переносного ускорения (первый член выражений) и суммарного ускорения колебаний точки стержня в определенном частотном диапазоне (второй член выражений в виде суммы). На эту погрешность обычно не обращают внимания или пренебрегают ею. Так поступают часто при изучении интенсивных волновых (колебаний стержня) процессов.

В случае испытаний большинства конструкций и их узлов на прочность и стойкость к ударным воздействиям такое пренебрежение основной энергией удара не допустимо.

Задача, на решение которой направлено изобретение - повышение точности градуировки и поверки акселерометров на ударные воздействия.

Технический результат, получаемый при использовании предлагаемого технического решения - измерение с высокой точностью силы удара, при котором значение деформации используется для вычисления ускорения.

Указанный технический результат достигается тем, что в стенде для градуировки акселерометров, содержащем тензометрическое устройство с градуируемым акселерометром, тензодатчиками и бойком, и наковальню, особенность заключается в том, что стенд выполнен в виде копра с вертикальными стойками, закрепленными на фундаменте, между которыми установлено с возможностью перемещения тензометрическое устройство в виде двух дисковых оснований, соединенных цилиндрической оболочкой с фланцами, в полости которой установлен цилиндрический шток, один конец которого закреплен в верхнем основании, а другой конец выступает за нижнее основание и снабжен бойком, обращенным к наковальне, установленной на фундаменте, тензодатчики установлены на внешней поверхности центральной части оболочки равномерно по ее окружности, акселерометр установлен на верхней поверхности нижнего основания параллельно штоку.

Для возможности градуировки акселерометров под конкретным углом к ударной нагрузке на верхней поверхности нижнего основания установлено несколько акселерометров под различными углами к штоку.

Выполнив тензометрическое устройство в виде двух дисковых оснований, соединенных цилиндрической оболочкой, в полости которой установлен цилиндрический шток, один конец которого закреплен в верхнем основании, а другой конец выступает за нижнее основание и снабжен бойком, при этом тензодатчики размещены на внешней поверхности оболочки, а градуируемый акселерометр установлен на верхней поверхности нижнего основания, достигли следующего. Нижнее реактивное основание воспринимает только импульсное ударное нагружение от упругой оболочки, а верхнее активное основание воспринимает ударную нагрузку и упругую силу оболочки. Импульсное ударное нагружение пропорционально продольной (растягивающей при ударе и изменяющейся во времени) силе в цилиндрической оболочке, которую с высокой точностью измеряют с помощью тензодатчиков, используют для вычисления с той же точностью ускорений нижнего основания и градуировки акселерометров. Таким образом решают задачу повышения точности градуировки и поверки акселерометров на ударные воздействия.

При проведении анализа уровня техники, включающего поиск по патентным и научно-техническим источникам информации, и выявлении источников, содержащих сведения об аналогах заявленного изобретения, не обнаружено аналогов, характеризующихся признаками, тождественными всем существенным признакам данного изобретения. Определение из перечня выявленных аналогов прототипа как наиболее близкого по совокупности существенных признаков аналога позволило выявить совокупность существенных отличительных признаков от прототипа, изложенных в формуле изобретения.

Следовательно, заявленное изобретение соответствует условию «новизна».

Для проверки соответствия заявленного изобретения условию «изобретательский уровень» заявитель провел дополнительный поиск известных решений, чтобы выявить признаки, совпадающие с отличительными от прототипа признаками заявленного устройства. В результате поиска не выявлены технические решения с этими признаками. На этом основании можно сделать вывод о соответствии заявляемого изобретения условию «изобретательский уровень».

На фиг.1 представлен общий вид стенда.

На фиг.2 представлены графики динамических деформаций оболочки.

На фиг.3 представлены графики ударных ускорений нижнего основания, зарегистрированных акселерометрами, установленными под различными углами к штоку.

На фиг.4 представлена таблица со значениями параметров, характеризующих результаты градуировки акселерометров в серии опытов.

Стенд выполнен в виде копра с вертикальными стойками 1, закрепленными на фундаменте 2. Стойки 1 соединены в верхней части балкой, на которой закреплено устройство для подъема и сброса падающих грузов (на фиг. не показано). Между стойками 1 с возможностью перемещения установлено тензометрическое устройство, выполненное в виде двух оснований - верхнего (активного) 3 и нижнего (реактивного) 4. Основания выполнены в виде дисков и соединены цилиндрической оболочкой 5 с фланцами, внутри которой установлен цилиндрический шток 6, жестко закрепленный в верхнем основании 3. Другой конец штока 6 выступает за нижнее основание и снабжен бойком 7 сферической формы. На фундаменте стенда закреплена наковальня 8. Нижнее реактивное основание 4 состоит из набора стальных дисков с возможностью изменения его массы (фиг.1).

В центральной части оболочки 5, длина которой значительно больше диаметра, равномерно по окружности приклеены тензодатчики 9. Градуируемые акселерометры 10 устанавливаются на бобышки 11, которые жестко закреплены на верхней поверхности нижнего реактивного основания 4. При этом акселерометры могут устанавливаться на бобышках как параллельно штоку, так и под любым углом к нему в соответствии с их положениями при установке в реальной конструкции объекта испытаний.

Стенд работает следующим образом. На этапе подготовки выбирается необходимая высота, с которой сбрасывается тензометрическое устройство. При ударе сферического бойка 7 о наковальню 8 возникает ударная нагрузка, которая через шток 6 передается на верхнее основание 3 и тормозит его движение. При этом оболочка 5 испытывает одноосное растяжение под действием сил инерции масс оснований 3 и 4. Возникшие относительные деформации оболочки 5 регистрируются при помощи тензодатчиков 9, а ударное ускорение нижнего основания регистрируется акселерометрами 10. При этом частотный спектр колебательных составляющих формируемого ударного ускорения основания 4 расширяется с увеличением жесткости оболочки 5.

Графики деформации цилиндрической оболочки и ускорений нижнего основания приведены на фиг.2 и 3 (кривая 1 - α=0°; 2 - α=30°; 3 - α=45°; 4 - α=60°; α - угол, под которым установлен акселерометр к штоку). Одинаковый временной характер и зарегистрированные пиковые значения графиков деформаций в процессе (первой волны) ударного воздействия, полученных с нескольких тензодатчиков, размещенных равномерно по окружности оболочки, свидетельствуют об одноосном растяжении оболочки и плоскопараллельном движении основания 4, на котором устанавливаются градуируемые акселерометры 10.

Известно (В.Г. Пановко. Основы прикладной теории колебаний. Изд. «Машиностроение», М., 1967, стр.248-249), что при колебаниях механической системы из двух твердых тел (оснований 3 и 4) относительные перемещения (деформация цилиндрической оболочки) этих тел должны быть пропорциональны инерционной силе массы реактивного тела (основания 4). Эта пропорциональность очевидна из уравнения колебаний основания 4, имеющего массу m4:

где m4 - масса нижнего основания;

Е - модуль упругости (Юнга);

S - площадь поперечного сечения оболочки;

l - длина оболочки;

- ускорение массы m4;

Δl=х4-x3 - относительное перемещение тел (оснований);

ε(t) - деформация оболочки.

- жесткость оболочки при растяжении (сжатии).

На этом основании можно сделать вывод о возможности использования зарегистрированных тензодатчиками деформаций ε(t) оболочки 5 для вычисления ускорений αε(t) нижнего (реактивного) основания, которое, с учетом уравнения (5), определяется из следующего равенства

принимается за истинное ускорение основания 4 и используется при градуировке акселерометров. В этом состоит суть градуировки акселерометров с использованием более точных тензометрических средств измерения. Следовательно, задача, на решение которой направлено изобретение, решена.

Работа предлагаемого стенда для градуировки акселерометров подтверждена многочисленными экспериментами. Результаты градуировки известных акселерометров АП11 (АДП13), приведенные в таблице на фиг.4, существенно дополняют сведения о важных характеристиках этих датчиков (Пьезоакселерометр АП11. Паспорт АДП13.ПС).

В частности, в паспорте указаны требования по относительной поперечной чувствительности акселерометра - не более 5%, а под каким углом между вектором силы удара и положением оси чувствительности акселерометра это требование должно выполняться не известно. Результаты исследований, приведенные в таблице, дают точный ответ на этот вопрос. В этих опытах была проведена градуировка акселерометров, установленных под различными углами к оси штока: α=0°, α=30°, α=45°, α=60°.

Коэффициент различия сравниваемых ускорений вычисляется по формуле:

где α - максимальное значение ускорения массы m4, определенное по результатам тензометрирования оболочки с использованием равенства (6);

- значение максимального ускорения массы m4, зарегистрированное градуируемым акселерометром, установленным под конкретным углом α к вектору ударной силы;

α - угол между осью чувствительности пьезоакселерометра и вектором ударной нагрузки.

Таким образом, представленные данные свидетельствуют о выполнении при использовании заявляемого изобретения следующей совокупности условий:

- средство, воплощающее заявленное устройство при его осуществлении, предназначено для использования в различных отраслях промышленности (в испытательных комплексах машиностроительных, автомобильных и авиакосмических производств, на атомных объектах и предприятиях ядерного цикла и экспериментальных лабораториях НИИ);

- для заявляемого устройства в том виде, в котором оно охарактеризовано в формуле изобретения, подтверждена возможность его осуществления.

Следовательно, заявляемое изобретение соответствует условию «промышленная применимость».


СТЕНД ДЛЯ ГРАДУИРОВКИ АКСЕЛЕРОМЕТРОВ
СТЕНД ДЛЯ ГРАДУИРОВКИ АКСЕЛЕРОМЕТРОВ
СТЕНД ДЛЯ ГРАДУИРОВКИ АКСЕЛЕРОМЕТРОВ
СТЕНД ДЛЯ ГРАДУИРОВКИ АКСЕЛЕРОМЕТРОВ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 692.
27.04.2013
№216.012.3b44

Способ определения сплошности покрытия изделия

Изобретение относится к неразрушающим методам контроля, в частности к области газовой дефектоскопии, может применяться при контроле сплошности покрытий с низкой водородопроницаемостью, наносимых на поверхность крупногабаритных металлических изделий сложной конфигурации. Способ определения...
Тип: Изобретение
Номер охранного документа: 0002480733
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.41ed

Интерферометр

Изобретение может быть использовано для контроля качества афокальных систем, в том числе крупногабаритных, а именно: плоских зеркал, светоделителей, плоскопараллельных пластин, клиньев, телескопических систем с увеличением, близким к единичному. Интерферометр содержит формирователь...
Тип: Изобретение
Номер охранного документа: 0002482447
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.49ed

Переход волоконно-оптический

Изобретение относится к волоконно-оптической технике и может быть использовано для герметичного ввода оптического волокна через перегородку. Устройство содержит герметично установленный в стенке металлический корпус, выполненный составным из двух скрепленных по резьбе частей с проходным...
Тип: Изобретение
Номер охранного документа: 0002484505
Дата охранного документа: 10.06.2013
27.07.2013
№216.012.5ab8

Система параметрической гидролокации с функцией получения акустического изображения целей

Использование: изобретение относится к области гидролокации и предназначено для обнаружения подводных целей и получения их акустического изображения. Сущность: в предложенной системе параметрической гидролокации излучение низкочастотных зондирующих сигналов формируют путем нелинейного...
Тип: Изобретение
Номер охранного документа: 0002488845
Дата охранного документа: 27.07.2013
10.09.2013
№216.012.686e

Затвор люка камеры

Изобретение относится к машиностроению и может быть использовано при проектировании крупногабаритных камер высокого давления для испытания в них изделий. Затвор люка камеры содержит герметично установленную на люке камеры крышку, имеющую глубокую заходную часть и связанную с размещенным извне...
Тип: Изобретение
Номер охранного документа: 0002492381
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.688d

Складываемая аэродинамическая поверхность

Изобретение относится к области ракетной техники и, в частности к конструкциям складываемых аэродинамических поверхностей, находящихся под воздействием сильных аэродинамических возмущений. Складываемая аэродинамическая поверхность содержит основание и шарнирно соединенную с ним поворотную...
Тип: Изобретение
Номер охранного документа: 0002492412
Дата охранного документа: 10.09.2013
10.10.2013
№216.012.740f

Контактный датчик

Изобретение относится к военной технике, в частности к средствам инициирования. Контактный датчик содержит два кольца, опорное и рабочее, установленных соосно и скрепленных между собой. На основании опорного кольца размещен кольцевой чувствительный элемент, а рабочее кольцо оснащено...
Тип: Изобретение
Номер охранного документа: 0002495368
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.74a5

Двухдиапазонная микрополосковая антенна круговой поляризации

Изобретение относится к антенно-фидерным устройствам, а именно к бортовым антеннам спутниковой навигации. Техническим результатом является создание малогабаритной микрополосковой двухдиапазонной антенны с круговой поляризацией, пригодной для работы с одиовходовым приемником. Двухдиапазонная...
Тип: Изобретение
Номер охранного документа: 0002495518
Дата охранного документа: 10.10.2013
20.11.2013
№216.012.8345

Сцинтилляционный материал на основе zno-керамики, способ его получения и сцинтиллятор

Использование: для регистрации различных видов ионизирующих излучений, в том числе альфа-частиц, в ядерной физике для контроля доз и спектрометрии указанных излучений, в космической технике, медицине, в устройствах, обеспечивающих контроль, в промышленности. Сущность изобретения заключается в...
Тип: Изобретение
Номер охранного документа: 0002499281
Дата охранного документа: 20.11.2013
10.12.2013
№216.012.884d

Устройство фиксации сложенных аэродинамических поверхностей летательного аппарата

Изобретение относится к средствам фиксации складывающихся аэродинамических поверхностей летательного аппарата. Устройство фиксации сложенных аэродинамических поверхностей летательного аппарата содержит узел, обеспечивающий прилегание аэродинамических поверхностей к корпусу летательному...
Тип: Изобретение
Номер охранного документа: 0002500575
Дата охранного документа: 10.12.2013
Показаны записи 1-10 из 260.
27.04.2013
№216.012.3b44

Способ определения сплошности покрытия изделия

Изобретение относится к неразрушающим методам контроля, в частности к области газовой дефектоскопии, может применяться при контроле сплошности покрытий с низкой водородопроницаемостью, наносимых на поверхность крупногабаритных металлических изделий сложной конфигурации. Способ определения...
Тип: Изобретение
Номер охранного документа: 0002480733
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.41ed

Интерферометр

Изобретение может быть использовано для контроля качества афокальных систем, в том числе крупногабаритных, а именно: плоских зеркал, светоделителей, плоскопараллельных пластин, клиньев, телескопических систем с увеличением, близким к единичному. Интерферометр содержит формирователь...
Тип: Изобретение
Номер охранного документа: 0002482447
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.49ed

Переход волоконно-оптический

Изобретение относится к волоконно-оптической технике и может быть использовано для герметичного ввода оптического волокна через перегородку. Устройство содержит герметично установленный в стенке металлический корпус, выполненный составным из двух скрепленных по резьбе частей с проходным...
Тип: Изобретение
Номер охранного документа: 0002484505
Дата охранного документа: 10.06.2013
27.07.2013
№216.012.5ab8

Система параметрической гидролокации с функцией получения акустического изображения целей

Использование: изобретение относится к области гидролокации и предназначено для обнаружения подводных целей и получения их акустического изображения. Сущность: в предложенной системе параметрической гидролокации излучение низкочастотных зондирующих сигналов формируют путем нелинейного...
Тип: Изобретение
Номер охранного документа: 0002488845
Дата охранного документа: 27.07.2013
10.09.2013
№216.012.686e

Затвор люка камеры

Изобретение относится к машиностроению и может быть использовано при проектировании крупногабаритных камер высокого давления для испытания в них изделий. Затвор люка камеры содержит герметично установленную на люке камеры крышку, имеющую глубокую заходную часть и связанную с размещенным извне...
Тип: Изобретение
Номер охранного документа: 0002492381
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.688d

Складываемая аэродинамическая поверхность

Изобретение относится к области ракетной техники и, в частности к конструкциям складываемых аэродинамических поверхностей, находящихся под воздействием сильных аэродинамических возмущений. Складываемая аэродинамическая поверхность содержит основание и шарнирно соединенную с ним поворотную...
Тип: Изобретение
Номер охранного документа: 0002492412
Дата охранного документа: 10.09.2013
10.10.2013
№216.012.740f

Контактный датчик

Изобретение относится к военной технике, в частности к средствам инициирования. Контактный датчик содержит два кольца, опорное и рабочее, установленных соосно и скрепленных между собой. На основании опорного кольца размещен кольцевой чувствительный элемент, а рабочее кольцо оснащено...
Тип: Изобретение
Номер охранного документа: 0002495368
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.74a5

Двухдиапазонная микрополосковая антенна круговой поляризации

Изобретение относится к антенно-фидерным устройствам, а именно к бортовым антеннам спутниковой навигации. Техническим результатом является создание малогабаритной микрополосковой двухдиапазонной антенны с круговой поляризацией, пригодной для работы с одиовходовым приемником. Двухдиапазонная...
Тип: Изобретение
Номер охранного документа: 0002495518
Дата охранного документа: 10.10.2013
20.11.2013
№216.012.8345

Сцинтилляционный материал на основе zno-керамики, способ его получения и сцинтиллятор

Использование: для регистрации различных видов ионизирующих излучений, в том числе альфа-частиц, в ядерной физике для контроля доз и спектрометрии указанных излучений, в космической технике, медицине, в устройствах, обеспечивающих контроль, в промышленности. Сущность изобретения заключается в...
Тип: Изобретение
Номер охранного документа: 0002499281
Дата охранного документа: 20.11.2013
10.12.2013
№216.012.884d

Устройство фиксации сложенных аэродинамических поверхностей летательного аппарата

Изобретение относится к средствам фиксации складывающихся аэродинамических поверхностей летательного аппарата. Устройство фиксации сложенных аэродинамических поверхностей летательного аппарата содержит узел, обеспечивающий прилегание аэродинамических поверхностей к корпусу летательному...
Тип: Изобретение
Номер охранного документа: 0002500575
Дата охранного документа: 10.12.2013
+ добавить свой РИД